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Summary Tumour necrosis factor-α (TNF-α) is a cytokine that can induce cell death of different cancers via a cellular cascade of proteases,
the caspases. However, TNF-α has been detected in tumour and serum of patients with head and neck squamous cell carcinoma (HNSCC),
and tumour cell lines derived from this environment often exhibit resistance to TNF-α-induced cell death. Cell death mediated by TNF-α and
caspases may be inhibited by cytoprotective genes regulated by transcription factor nuclear factor-κB (NF-κB). We recently showed that NF-
κB is constitutively activated in HNSCC, and that inhibition of NF-κB by expression of a nondegradable mutant inhibitor of NF-κB, IκBαM,
markedly decreased survival and growth of HNSCC cells in vivo. In the present study, we examined the TNF-α sensitivity and response of
HNSCC with constitutively active NF-κB, and of HNSCC cells in which NF-κB is inhibited by stable expression of a dominant negative mutant
inhibitor, IκBαM. Human lines UM-SCC-9, 11B and 38, previously shown to exhibit constitutive activation of NF-κB, were found to be highly
resistant to growth inhibition by up to 104 U/ml of TNF-α in 5 day MTT assay. These TNF-α resistant HNSCC lines expressed TNF receptor I,
and exhibited constitutive and TNF-α-inducible activation of NF-κB as demonstrated by nuclear localization of NF-κB p65 by
immunohistochemistry. UM-SCC-9 I11 cells which stably expressed an inhibitor of NF-κB, IκBαm, were susceptible to TNF-α-induced growth
inhibition. DNA cell cycle analysis revealed that TNF-α induced growth inhibition was associated with accumulation of cells with sub-G0/G1
DNA content. Cell death was demonstrated by trypan blue staining, and was blocked by caspase inhibitor. We conclude that HNSCC that
exhibit constitutive and TNF-α-inducible activation of transcription factor NF-κB are resistant to TNF-α, and that inhibition of NF-κB sensitizes
HNSCC to TNF-α caspase-mediated cytotoxicity. The demonstration of the role of activation of NF-κB in resistance of HNSCC to TNF-α may
be helpful in the identification of potential targets for pharmacological, molecular and immune therapy of HNSCC. © 2000 Cancer Research
Campaign
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Tumour necrosis factor-alpha (TNF-α) is a cytokine which was
initially reported to have cytocidal activity against a variety 
normal and neoplastic cells (Carswell et al, 1975; Haranaka 
Satomi, 1981; Sugarman et al, 1985; Fransen et al, 1986). TNα
has been shown to induce cell death of tumours via apoptos
necrosis (Schmid et al, 1986; Dealtry et al, 1987; Larrick a
Wright, 1990; Laster et al, 1998). TNF-α can induce apoptosis o
some HNSCC cell lines at concentrations at or above 104 U/ml
(Briskin et al, 1996), but most human HNSCC have been repo
to be relatively resistant to TNF-α (Gapany et al, 1990, Schuge
et al, 1990; Sacchi et al, 1991, Monchimatsu et al, 1993, Bris
et al, 1996). Development of resistance to TNF-α has been shown
to occur with tumour progression in murine fibrosarcomas thro
exposure of tumour cells to TNF-α produced by host response
and selection of TNF-α resistant tumour cells (Urban et al, 198
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1986). TNF-α expression has been detected in tumour and se
of patients with HNSCC, indicating that TNF-α resistant HNSCC
may also develop in the presence of endogenous TNF-α (Parks et
al, 1994; Soylu et al, 1994; Younes et al, 1996; Knerer et al, 19
Kurokawa et al, 1998). Thus, these tumours may be resista
concentrations of TNF-α produced endogenously or administere
exogenously (Fraker et al, 1995; Olieman et al, 1999). T
mechanism of increased resistance of HNSCC to TNF-α has not
been previously defined.

TNF-α induces cell death through activation of TNF Recepto
(Tartaglia and Goeddel, 1992) and a cascade of death 
products, including caspases (Wallach et al, 1999). Lack of T
receptor expression has been proposed as a possible bas
TNF-α resistance of HNSCC (Younes et al, 1996), but other inv
tigators have found that TNF-α resistant HNSCC may retain
expression of TNF receptors (von Biberstein et al, 199
Alternatively, resistance to TNF-α could involve mechanisms
which promote cell survival. We recently reported that survival
HNSCC cells is promoted by constitutive activation of nucle
factor-κB (NF-κB) (Duffey et al, 1999), a transcription facto
which has been reported to induce expression of a variety
1367
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proteins that can inhibit cell death (Beg and Baltimore et al, 19
Wang et al, 1996; Van Antwerp et al, 1996; Mayo et al, 1997; S
and Carpenter, 1998; Wang et al, 1998; Zong et al, 1999).
showed that several human HNSCC cell lines in the Univer
of Michigan (UM-SCC) series exhibit constitutive activation 
NF-κB and NF-κB inducible cytokine genes (Duffey et al, 1999
Ondrey et al, 1999). We also demonstrated that an increas
constitutive activation of NF-κB and expression of NF-κB
inducible cytokines occurs with metastatic tumour progression 
murine model of squamous cell carcinoma (Dong et al, 1999).
noted that TNF-α induced NF-κB and NF-κB-inducible cytokine
production in these human UM-SCC and murine SCC cell li
without evidence of significant cell toxicity or death. These obs
vations suggest the hypothesis that acquisition of TNF-α resis-
tance by HNSCC may result from selection of cancer cells
which NF-κB and cytoprotective responses can be activated.

Activation of NF-κB has been shown to involve signal-induce
phosphorylation and degradation of inhibitor κB (IκB) proteins,
which release NF-κB for nuclear translocation (Brockman et a
1995; Brown et al, 1995; Traeckner et al, 1995; Verma et al, 19
and for binding to the promoter sites of target genes. Studie
these laboratories have shown that mutations in the serine p
phorylation sites at S32 and/or S36 of IκBα can inhibit the signal-
dependent activation of NF-κB by a variety of stimuli. Such
phosphorylation mutants can therefore exert a dominant nega
effect, preventing the activation of NF-κB dependent genes. By
expression of a dominant negative IκBα mutant, NF-κB has been
shown to be important in activation of genes necessary for surv
and protection of cells from injury by a variety of cytotox
stimuli, including cytokine TNF-α, chemo- and radiation therap
(Beg and Baltimore et al, 1996; Van Antwerp et al, 1996; Wa
et al, 1996). In these studies, decreased resistance of cells to 
α-induced cell death could be demonstrated following cytoplas
inactivation of NF-κB by expression of an inhibitor-κB (IκB)
phosphorylation mutant which is unable to undergo TNF-α-
induced phosphorylation and degradation. We recently repo
that inactivation of NF-κB by expression of an IκB phosphoryla-
tion mutant inhibits survival and in vivo growth of human UM
SCC cell lines (Duffey et al, 1999).

In the present study, we determined the effects of TNF-α treat-
ment on UM-SCC cell lines which exhibit constitutive activatio
of NF-κB, and asked whether inhibition of NF-κB activation
by stable expression of a dominant negative inhibitor-κB could
enhance sensitivity to TNF-induced cytotoxicity. We provi
evidence that HNSCC that exhibit constitutive and TNF-α-
inducible activation of transcription factor NF-κB are resistant to
TNF-α, and that inhibition of NF-κB activation by the expression
of a phosphorylation mutant of inhibitor-κBα (IκBαM) sensitizes
a UM-SCC cell line to TNF-α-mediated cell death. This TNF-α
induced cytotoxicity was blocked by caspase inhibitor. W
conclude that HNSCC cell  line that exhibit constitutive and TN
α-inducible activation of transcription factor NF-κB are resistant
to TNF-α, and that inhibition of NF-κB sensitizes HNSCC to
TNF-α caspase-mediated cytotoxicity.

MATERIALS AND METHODS

Cell culture

Human squamous cell carcinoma cell lines were derived fr
advanced stage head and neck cancer patients at the Univers
British Journal of Cancer (2000) 83(10), 1367–1374
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Michigan and were a generous gift of Thomas Carey, P
Squamous carcinoma cell lines UMSCC-9, -11B, and -38 c
used in the present study were previously described (Duffey e
1999; Ondrey et al, 1999). These lines were cultured at 37°C, 5%
CO2 as adherant monolayer cultures in Minimum Essen
Medium (Gibco/BRL, Gaithersburg, MD) with 10% hea
inactivated fetal calf serum (Gibco/BRL) containing 2 mM 
glutamine, and penicillin (50µg/ml), streptomycin (50µg/ml).
Log-phase cells were routinely passaged weekly after trypsin
tion.

Cell proliferation assay

Cell proliferation was quantified using an MTT-based colorime
assay (Cell Proliferation Kit I, Boehringer Mannheim, Mannhe
Germany). HNSCC cells were plated in flat-bottomed 96-w
plates at a density of 5 × 103 cells/well and allowed to adher
overnight at 37°C. Addition of control medium or medium wit
TNF-α was followed by incubation at 37°C for 1–5 days. The
MTT assay was conducted at 1, 3 and 5 days following stimula
according to manufacturer’s protocol (Boehringer Mannhe
Indianapolis, IN). At endpoint intervals, 100µl of medium was
removed and 10µl of dimethylthiazol-diphenyl tetrazolium
bromide (MTT) labelling reagent was added and the plate 
incubated for 4 hours at 37°C as per the manufacturer’s recom
mendations. After a 4 hour incubation, cells were solubilized
adding 100µl of 10% SDS in 0.01 M HCl as per the manufa
turer’s instructions. Overnight incubation at 37°C was then fol-
lowed by optic densitometry reading at 570 nm with a microp
reader (Biotek 311, Biotek Systems, Winooski, VT). All readin
were done in quadruplicate.

RNAse protection assay

Total RNA from UM-SCC-9, 11B and 38 was harvested w
Trizol reagent (Gibco BRL Life Technology, Inc, Gaithersbu
MD). 10µg of RNA from each sample was hybridized with 32P-
labelled RNA probes specific for TNFRI and II made fro
commercially available templates, which included probes for 
and GAPDH as loading controls (hCR-4, #45374P, Pharmin
San Diego, CA). The hybridized products were digested w
RNAse. 15µg total RNA was loaded per lane and the protec
RNA probes were separated by sequencing gel electropho
which was exposed to X-ray film. The films were scanned 
density of TNFRI and TNFRII was normalized to GADPH usi
NIH IMAGE software, v1.62, and reported as a ratio.

Immunohistochemical staining

Immunohistochemical analysis was performed using anti-TNF
and anti-TNF RII, and anti-p65 antibody which recognizes 
nuclear localization sequence of the activated form of NF-κB p65
using a modification of the protocol of Kaltschmidt et al (199
UM-SCC-9, -11B and 38 cells were plated at a density of 104 cells
and incubated at 37°C for 2–3 days to roughly 50% confluency o
8-well chamber slides (Lab-Tek, Naperville, IL). The slides w
attached cells were fixed with 3.7% formalin in PBS for 5 minu
washed with PBS, and then permeabilized with 0.2% Triton X-
in PBS for 10 minutes. After washing, the slides were bloc
with 10% goat serum for 30 minutes, and goat anti-TNF RI or a
TNF RII antibody (Santa Cruz Biotechnology, Santa Cruz, C
© 2000 Cancer Research Campaign
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Figure 1 Effect of TNF-α upon growth of UM-SCC cell lines in MTT assay.
UM-SCC-9, 11B and 38 cells were cultured in 96 well plates in the presence
of 0 to 104 U/ml TNF-α, and growth on day 1, 3 and 5 was compared by MTT
assay, as described in Methods. The OD 570 nm +/– SEM is shown.
*Denotes significant difference by Student’s t test at P < 0.05
was added directly into the blocking serum on the slides a
1:2000 dilution for 1 hour. Isotype controls were purified goat Ig
at 1:2000 dilution (Cappel, West Chester, PA) that correspon
to an equal concentration of primary antibody. After washin
secondary anti-goat antibody and biotin-avidin conjugates fr
Vectastain Elite ABC kit and chromogen diaminobenzidi
tetrahydrochloride (Vector Lab, Inc., Burlingame, CA) were us
for colour development following the manufacturer’s instruction

Transfection of UM-SCC-9 cells with I κBαM and control
vector

The cDNA plasmid pCMX IκBαM contains a mutation at S36 o
the NH2 terminus and a COOH-terminal PEST sequence mutat
and was a generous gift from Dr Inder M Verma, Salk Institute,
Jolla, CA (Van Antwerp et al, 1996). The plasmid containing 
neomycin (neo) resistance gene used is described by Brown 
(1995). The method of transfection and isolation of UM-SCC
cells was previously described (Duffey et al, 1999). UM-SCC
I11 cells expressed IκBαM most abundantly and UM-SCC-9 C1
cells transfected with vector control alone were expanded and 
for the present studies. We recently showed that the difficulty
obtaining stable transformants of UM-SCC 11B and 38 cell line
due to decreased survival of cells transfected with IκBα (Duffey et
al, 1999).

Cell viability by DNA cytofluorometry and trypan blue
exclusion

Cells were collected for DNA cell cycle analysis and stained w
propidium iodide using the Cycle TEST PLUS DNA Reagent K
according to manufacturer’s instructions (Becton Dickinson, S
Jose, CA). The stained cells were analysed using a FACScan
cytofluorometer and compared for DNA content following calibr
tion with diploid DNA QC particles, using CELLQuest softwa
(Becton Dickinson, Mountain View, CA). Statistical analyses we
performed by ModFit LT software (Verity Software Hous
Topsham, ME).

Cell viability was quantified by trypan blue exclusion. Ce
were plated at 5 × 103 cells/well in each well of a 96-well plate
UM-SCC-9 I11 and UM-SCC-9 C11 control cells in monolay
cultures were treated with TNF-α as described, and adherent an
nonadherent cells were collected in suspension following tryp
EDTA treatment. For the caspase inhibition study, UM-SCC9 I
cells were incubated overnight, pre-incubated for 60 minu
with 0, 1, 10, and 25µM Caspase Inhibitor I (Z-VAD-FMK)
(Calbiochem, La Jolla, CA), and 1000 U/mL TNF-α was added.
Cells were centrifuged at 1200 rpm for 5 minutes at room temp
ature. The cell pellet was resuspended in MEM complete med
An aliquot was mixed with an equal volume of 1.0% trypan bl
and cell concentration and viability were determined using
haemacytometer.

RESULTS

UM-SCC-9, 11B and 38 cell lines are resistant to TNF- α
induced cytotoxicity and express TNFR I

To determine the sensitivity of a panel of HNSCC lines to TNFα,
we cultured UM-SCC-9, 11B and 38 cell lines with 100, 1000 a
© 2000 Cancer Research Campaign
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104 U/ml of TNF-α or control media, and compared the prolifer
tion of cells during a 5-day MTT assay (Fig. 1). TNF-α showed no
appreciable inhibitory effect upon the proliferation of cells dur
the first 3 days, and only a small inhibition of growth of UM-SC
9 and 38 cells was detected by day 5. Although the inhibitio
growth following treatment at higher concentrations was stat
cally significant, cells continued to grow in the presence of TN
α, and no difference in density larger than 30% was detecte
day 5. The TNF-α used was functional, since TNF-α at the same
concentrations completely inhibited proliferation of prima
keratinocytes (not shown). Since it has been reported that r
tance of HNSCC to TNF-α-induced cytotoxicity may be due t
loss of expression of TNF receptor (Younes et al 1996), we ex
ined the expression of TNF receptor I and II mRNA and pro
expression, as determined by RNAse protection assay 
immunohistochemical analysis. Table 1 shows that all three U
SCC cell lines expressed quantitatively similar ratios of TNF
mRNA when normalized to GADPH by densitometric analysis
similar pattern of protein staining was detected in all 3 cell lines
immunohistochemistry. No TNFR II was detected in UM-SC
cells by either method, while control A549 cells were positive
both receptors by immunohistochemistry. Thus, the TNF-α resis-
tant UM-SCC cell lines examined in the present study re
expression of TNFR I, the TNF receptor associated with T
inducible cell cytotoxicity (Tartaglia and Goeddel, 1992).
British Journal of Cancer (2000) 83(10), 1367–1374
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Figure 2 Immunolocalization of activated NF-κB p65 in untreated and TNF-α treated UM-SCC cell lines. UM-SCC-38, 9, and 11B cell lines stained with anti-
p65 specific for the nuclear localization sequence in the absence of TNF-α (-TNF2α) show varying levels of constitutive cytoplasmic and nuclear staining, while
104 U/ml TNF-α (+TNF-α) induces increased nuclear localization of p65 in all cell lines

Table 1 Detection of TNF receptor expression in UM-SCC cells by RNAse
protection assay and immunohistochemistry

TNF Cell line
receptor UM-SCC-9 UM-SCC-11B UM-SCC-38 A549

TNF RI
RNA 0.82 0.80 0.78 ND
Protein + + + +
TNF RII
RNA – – – ND
Protein – – – +

TNFR I and II mRNA expression was assayed by RNAse protection, and the
ratio of TNFR to GADPH mRNA is reported, as described in Methods. TNFR I
and II protein was assayed by immunohistochemistry using anti-TNF RI and
TNF RII antibodies. UM-SCC were compared with A549 cell line expression
as a positive control for both TNFR I and TNFR II. ND, not done
TNF-α induces increased activation and nuclear l
localization of NF- κB in UM-SCC cell lines

Resistance to TNF-α induced cell death has been associated w
activation of NF-κB (Beg and Baltimore, 1996; Van Antwerp et a
1996; Wang et al, 1996). We previously showed that NF-κB/Rel A
(p50/p65) is constitutively activated in UM-SCC-9, 11B and 
cell lines (Ondrey et al, 1999), and may be further induced
TNF-α in UM-SCC-9 (Duffey et al, 1999). To examine wheth
TNF-α induces activation of NF-κB/Rel A in TNF-α resistant
HNSCC cell lines, we examined the pattern of nuclear activa
and localization of the NF-κB p65 subunit by immunoperoxidas
staining in UM-SCC-9, 11B and 38, in the absence and presen
104 U/ml of TNF-α, using an antibody that recognizes the nucl
British Journal of Cancer (2000) 83(10), 1367–1374
h

y

n

 of
r

localization site of activated Rel A p65 (Kaltschmidt et al, 19
Duffey et al, 1999). The left panels in Fig. 2 show the base
staining pattern, which reveals mixed cytoplasmic and nuc
staining of p65 in UM-SCC 9 and 38 cell lines, and an appa
increase in constitutive nuclear staining in UM-SCC-11B. T
apparent difference in constitutive nuclear localization betw
UM-SCC-11B and the other two cell lines is consistent with
relative differences in constitutive activation of NF-κB in these
cell lines by EMSA and NF-κB luciferase reporter assay (Ondr
et al, 1999). Within 15 minutes of treatment with TNF-α, an
increase and predominant staining of NF-κB in the nuclear and
perinuclear regions was detected in all three cell lines (Fig
middle panels). The staining with anti-p65 could be differentia
from background detected with an isotype control (Fig. 2, r
panels). We confirmed that TNF-α induced p50/p65 DNA binding
activity in the cell lines by electromobility shift assay (Ondrey
al, 1999; D Duffey, data not shown). Thus, TNF-α induces activa-
tion of the NF-κB signal pathway in HNSCC cell lines that a
resistant to TNF-α.

TNF-α induces cell death in UM-SCC-9 111 cells
expressing a dominant negative mutant Inhibitor- κB by
a caspase-dependent mechanism

We recently demonstrated that expression of an inhibitor-κBα phos-
phorylation mutant (IκBαM) in UM-SCC-9 can inhibit both const
tutive and TNF-α inducible activation of NF-κB (Duffey et al,
1999). The inhibition of NF-κB in UM-SCC-9 I11 cells was demon
strated by EMSA, NF-κB luciferase reporter activity, and by expre
sion of NF-κB-dependent cytokine gene expression (Duffey e
© 2000 Cancer Research Campaign
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Figure 3 Growth of UM-SCC-9, C11 and I11 cells cultured without and with
TNF-α in MTT assay. UM-SCC-9 parental cells, UM-SCC-9 C11 cells
transfected with vector alone, and UM-SCC-9 I11 cells transfected with
IκBαM mutant were cultured in media alone or media with 104 U/ml of TNF-
α. Growth was compared on days 0, 1, 2, 3 and 5 of culture. The optical
density shown is the average result of two independent experiments, each
consisting of quadruplicate cultures. A significant inhibition in growth was
observed in UM-SCC-9 I11 cells on day 3 and 5 (P < 0.05)
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Figure 4 DNA content analysis of UM-SCC-9, C11 and I11 cells cultured
without and with TNF-α. UM-SCC-9, C-11 and I-11 cells cultured without
(Control) and with TNF-α for 24 were stained with PI and analysed for DNA
content by flow cytofluometry, as described in methods. The percentage fo
cells in sub G1/G0, G1/G0, S and G2/M was quantified. A 14% increase in
cells with sub G0/G1 DNA content was detected at 24 hours
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Figure 5 Cell viability of UM-SCC-9, C11 and I11 cells cultured without and
with TNF-α in trypan blue exclusion assay. The viability of cells following
exposure to 104 U/ml TNF-α was determined by trypan blue exclusion and
staining as described in Methods. A 75% decrease in viability observed in I11
cells was significant (P < 0.05)
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Figure 6 TNF-α induced cell death is blocked by Caspase I inhibitor. Cell
viability was quantified by trypan blue exclusion. For the caspase inhibition
study, UM-SCC9 I-11 cells were pre-incubated for 60 minutes with 0, 1, 10,
and 25 µM Caspase Inhibitor I (Z-VAD-FMK) and 1000 U/mL TNF-α was
added
1999). To determine if inhibition of NF-κB sensitized UM-SCC-9
cells to TNF-α, we compared the TNF-α sensitivity of IκBαM
transfected UM-SCC-9 I11 cells with UM-SCC-9 and control vec
transfected UM-SCC-9 C11 cells in MTT assay. Figure 3 shows
average optical density from two independent MTT experime
UM-SCC-9 I11 cells exposed to TNF-α exhibit a significant
decrease in density relative to untreated UM-SCC-9 I11 or U
SCC-9 and control vector transfected UM-SCC-9 C11 cells by d
of culture. An effect of TNF-α on UM-SCC-9 I11 cells is no
detectable by MTT assay on day 1 and 2. The difference is obs
toward the end of the exponential growth phase when untre
UM-SCC-9 I11 cells reach maximal density, and is sustai
without further increase in the difference for up to 5 days of cult

To examine if the decrease in cell density of IκBαM transfected
cells treated with TNF-α is associated with evidence of cell cyc
© 2000 Cancer Research Campaign
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block or sub-G0/G1 DNA fragmentation prior to detection 
differences in density, the DNA staining profile of IκBαM trans-
fected cells was determined by flow cytofluorometry 24 ho
following treatment with TNF-α. Figure 4 shows a comparison o
propidium iodide DNA staining in UM-SCC-9, control vecto
and IκBαM transfected cells following TNF-α treatment. A 14%
increase in sub-G0/G1 DNA content was observed in IκBαM
expressing UM-SCC-9 I11 cells beginning 24 hours followi
treatment with TNF-α, while no increase in sub-G0/G1 DNA
staining was observed in UM-SCC-9 and UM-SCC-9C11 cells

To establish whether the significant decrease in cell den
detected after 3 days in Figure 3 was attributable to cell death
determined the viability of cells by trypan blue exclusion at 
hours. Decreased viability of UM-SCC-9 I11 cells was detected
shown by a 75% decrease in cells excluding trypan blue exclu
British Journal of Cancer (2000) 83(10), 1367–1374
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following exposure of the cells to TNF-α for 72 hours (Fig. 5). To
determine if TNF-α induced cell death following inhibition of NF
κB was attributable to a caspase mediated mechanism, we 
mined whether cytotoxicity could be blocked by a casp
inhibitor. Figure 6 shows that caspase inhibitor blocked TNα
induced cytotoxicity in a dose-dependent manner. We conc
that TNF-α induces cytototoxicity in UM-SCC-9 cells expressi
a dominant negative mutant inhibitor-κB by a caspase-depende
mechanism. The blockade of caspase dependent cell death b
κB has been shown previously to be due to NF-κB induced
expression of cytoprotective proteins, which can be blocked 
cycloheximide (Beg and Baltimore, 1996). We further confirm
by microscopy that TNF-α induces morphologic cell fragmenta
tion of all 3 UM-SCC cells lines in the presence of 10µg/ml cyclo-
heximide, but not TNF-α or cycloheximide alone (data no
shown). These observations provide evidence that NF-κB medi-
ated resistance of the UM-SCC cell lines to TNF-α is dependent
on TNF-α inducible cytoprotective proteins.

DISCUSSION

In the present study, we confirmed that the 3 human UM-SCC
lines previously shown to exhibit constitutive activation of NF-κB
are highly resistant to TNF-α induced cell death. Our resul
which demonstrate a relatively high resistance of these 3 UM-
cell lines to TNF-α cytotoxicity are consistent with several stud
with different panels of cell lines, which showed that resistanc
HNSCC to TNF-α is common (Gapany et al, 1990, Schuger e
1990, Sacchi et al, 1991, Monchimatsu et al, 1993, Briskin e
1996). The UM-SCC cell lines in the present study exhib
limited sensitivity at 104 U/ml TNF-α, consistent with results
obtained in another laboratory with a different panel of HNS
cell lines (Briskin et al, 1996). TNF-α has been shown to induce
wide range of biological responses, including inflammation, 
proliferation, differentiation, tumour necrosis and apoptosis (
et al, 1996). Induction of responses to TNF-α is mediated through
binding of TNF Receptor I or II and activation of the TN
Receptor-associated protein 1 and 2 (TRAF) pathways (Tart
and Goeddel et al, 1992; Wallach et al, 1999). Previous inves
tors have attributed a lack of TNF-α sensitivity of HNSCC to a
lack of TNF receptor expression (Younes et al, 1996). We h
demonstrated that the UM-SCC cell lines examined in this and
previous studies exhibit resistance to TNF-α induced cell death
while retaining expression of TNFR I. We have shown that th
HNSCC retain TNF-α responsiveness, as demonstrated by TNα
inducible activation of transcription factor NF-κB/RelA (Fig. 1;
Dong et al, 1999; Duffey et al, 1999). In UM-SCC-9 cells in wh
we obtained stable expression of a mutant IκBα (IκBαM) and
inactivation of NF-κB (Duffey et al, 1999), TNF-α inhibited
growth and induced an increase in cell death relative to 
observed in UM-SCC-9 cells or cells transfected with ve
lacking the insert. We obtained evidence confirming that the T
α induced cell death observed was dependent on the ca
pathway, and that TNF-α resistance of HNSCC is dependent up
inducible expression of protective proteins, as previously repo

In previous studies, we noted that TNF-α treatment of human
and murine SCC cell lines induced NF-κB and NF-κB dependent
cytokine production (Dong et al, 1999; Duffey et al, 199
without evidence of significant cytotoxicity or cell death. W
reported recently that inactivation of NF-κB by expression of an
British Journal of Cancer (2000) 83(10), 1367–1374
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inhibitor-κB (IκB) phosphorylation mutant in human HNSC
cells can inhibit survival in vitro and growth in vivo (Duffey et a
1999). We encountered difficulty in obtaining other HNSCC lin
which stably expressed the dominant negative IκBα phosphoryla-
tion site mutant, suggesting that expression of the mutant IκBα
could severely affect survival of transfected UM-SCC cells. 
confirmed that when 3 UM-SCC cell lines were co-transfec
with a Lac-Z reporter in the presence of excess vector contain
human IκBα phosphorylation mutant or control vector, transfe
tion of mutant IκBα markedly reduced the survival of β-galactosi-
dase staining cells by 70–90% in cultures within 72 hours (Du
et al, 1999). These results were consistent with studies by o
which show that inhibition of activation or deletion of N
κB/RelA inhibits survival of a variety of normal and neoplas
cells of different tissue origin (Beg and Baltimore, 1996; V
Antwerp et al, 1996; Wang et al, 1996; Wu et al, 1996; Bar
et al, 1997; Naksharti et al, 1997; Shattuck-Brandt and Richm
1997). These observations indicated that constitutive activatio
NF-κB may play a role in inhibiting cell death of HNSCC, even
the absence of TNF-α. Interestingly, independent clones of t
UM-SCC-9 cell line in which stable expression of IκBαM was
obtained, survived and grew in vitro, but grew poorly or regres
in vivo (Duffey et al, 1999). These observations raise the po
bility that even surviving UM-SCC-9 cells transfected w
IκBαM may have attenuated resistance to cytotoxic host fac
such as TNF-α.

TNF-α has been reported to have a variety of effects on D
cell cycle and cell death, including sub G0/G1 DNA fragmen
tion, and block at the G1/S and G2/M transitions (Watanabe e
1987; Coffman et al, 1989; van de Loosdrecht et al, 1993; 
et al, 1993; Pocsik et al, 1995; Shih and Stutman et al, 1
Otsuka et al, 1999). The cytotoxic effect of TNF-α on UM-SCC
following inhibition of NF-κB or cycloheximide treatmen
appeared to involve an increase in cell death rather than cell 
block. The increase in trypan blue staining and sub G0/G1 D
content of UM-SCC-9 IκBαM transfected cells following TNF-α
treatment provides evidence for cell death and subcellular D
fragmentation. The morphologic changes in UM-SCC-9, -11B 
-38 following inhibition of protein synthesis with cycloheximid
included cell rounding, blebbing, fragmentation and cell loss (
not shown). The early increase in Sub G0/G1 DNA conten
UM-SCC-9I-11 cells and changes in cell morphology of all 3 
lines following treatment with cycloheximide were observ
within 18–24 hours following TNF-α treatment, consistent with
the time interval during which TNF-α-induced cell death is
observed in other cell types (Beg and Baltimore, 1996; 
Antwerp et al, 1996; Wang et al, 1996).

The susceptibility or resistance of several other cell type
TNF-α induced cell death has recently been shown to depend 
the state of activation or recruitment of signal transduction p
ways, particularly those involving transcription factor NF-κB and
NF-κB dependent proteins (Beg and Baltimore, 1996; V
Antwerp et al, 1996; Wang et al, 1996). In cells where NF-κB is
induced by TNF-α, apoptosis may not occur (Liu et al, 1996). T
promotion of cell survival by activation of NF-κB has recently
been attributed to expression of several proteins which 
protect cells from apoptosis. NF-κB has been reported to induc
TRAF1, TRAF2, c-IAP1 and c-IAP2, resulting in suppression
caspase-8 activation, thereby inhibiting apoptosis (Wang e
1998). We obtained evidence that TNF-α induces cell death in
© 2000 Cancer Research Campaign
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UM-SCC-9 I11 by a caspase dependent mechanism, since 
death was blocked by a caspase inhibitor. Other novel inhibitor
cell death have been reported. IEX-1L (Wu et al, 1998) and 
pro-survival Bcl-2 homologue Bfl-1/A1 (Zong et al, 1999) hav
been shown to be transcriptional targets of NF-κB which can block
TNF-α-induced apoptosis. In other systems, the targets of NF-κB
have been shown to include p53 (Hu et al, 1994) and the c-m
oncogene promoter (La Rosa et al, 1994; Klefstrom et al, 19
Mayo et al, 1997; Bellas and Sourshein, 1999; Kaltschmidt et
1999), leading to the abrogation of apoptosis. Our data are con
tent with the findings of others which suggest that TNF-α
signalling results in a negative feedback mechanism involving N
κB activation and expression of protective proteins, with sub
quent suppression of downstream signals which lead to casp
mediated cell death (Beg and Baltimore, 1996; Van Antwerp et
1996; Wang et al, 1996, 1998). Although TNF-α resistance can be
inhibited by the addition of cycloheximide in these cell lines, a
cytoprotection appears to require new protein synthesis, the id
tity of these protein(s) in HNSCC remains to be determined.

It is possible that the cytokines expressed by HNSCC a
contribute to survival of cells exposed to TNF-α. We previously
showed that HNSCC cells express IL-1α (Chen et al, 1998),
another cytokine that can induce activation of NF-κB and
cytokines (Wood and Richmond, 1995). IL-1α has been reported
to promote resistance of cells to apoptosis, such as occur
response to radiation damage (Neta, 1997). We have rece
found that IL-1α serves as an autocrine factor for HNSCC, an
that IL-1α can stimulate transcriptional activation of both NF-κB
and AP-1 (Wolf et al, 1999). Preliminary studies have provid
evidence that expression of IL-1-receptor antagonist to block 
autocrine effects of IL1α, produces a decrease in cytokine expre
sion and survival by UM-SCC cell lines (Wolf et al, 1999). Furth
study in this area is warranted.

Identification of the molecular components of pathways ac
vated up- and downstream of NF-κB in HNSCC will be important.
Identification of proteins necessary for cell survival followin
TNF-α treatment may allow for specific targeting and develo
ment of therapy to sensitize HNSCC to TNF-α produced by host
responses or given exogenously. For example, epidermal gro
factor receptor activation has been detected in the majority
HNSCC, and the EGF induced Ras activation can activate NFκB
and AP-1 (Sun and Carpenter, 1998). Ras activation has b
shown to suppress p53 independent apoptosis (Mayo et al, 19
Since approximately 50% of HNSCC appear to retain wild ty
p53, it will important to determine whether constitutive activatio
of NF-κB or AP-1 can prevent apoptosis by p53 mediated DN
repair or p53 independent mechanisms involving c-myc that aff
cell cycle (La Rosa et al, 1994; Klefstrom et al, 1997; Bellas a
Sonenshein, 1999; Kaltschmidt et al, 1999; Kirch et al, 199
Regulation or manipulation of activation of these transcripti
factors, such as by pharmacologic inhibitors of NF-κB (Giardina
et al, 1999) or by introduction of mutant transcription fact
repressors using viral vectors, may hold promise in sensitiz
HNSCC and other cancers to TNF-α and other types of cytotoxic
therapy.
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