Supplementary Table 1: Photosynthetic efficiency

Supplementary Table 1. Photosynthetic Efficiency. The photochemical efficiency, Φ_{PSII} , light dependent thermal dissipation component of nonphotochemical quenching, Φ_{NPQ} , and the sum of fluorescence quenching and light-independent thermal dissipation, $\Phi_{f,D}$, at normal light and moderate light and drought and their respective sums, Σ , were determined at normal light and moderate light and drought. The mean and standard error are shown for the average of two experiments with four plants per line per treatment per experiment (see Figure 2). Asterisks indicate significant difference (*p*<0.05) between treatments.

	Normal conditions				Moderate light and drought			
	$oldsymbol{\Phi}_{PSII}$	$oldsymbol{\Phi}_{NPQ}$	$oldsymbol{\Phi}_{ extsf{f}, extsf{D}}$	Σ	$oldsymbol{\Phi}_{PSII}$	$oldsymbol{\Phi}_{NPQ}$	${oldsymbol{\Phi}}_{ extsf{f}, extsf{D}}$	Σ
Col-O	0.49±0.03	0.23±0.03	0.28±0.00	1.00	0.40±0.01	0.33±0.04	0.27±0.03	1.00
aox1a-1	0.46±0.03	0.24±0.03	0.30±0.00	1.00	0.23±0.05*	0.47±0.06*	0.29±0.01	1.00
aox1a-2	0.48±0.05	0.22±0.03	0.29±0.02	1.00	0.19±0.03*	0.45±0.05*	0.36±0.02	1.00

			Genotype	
Metabolite Class	Metabolite Name	aox1a	Col-0	
	cis-Sinapinic acid*		3.2	
	Citramalate	1	2.1	
	Citrate	2.2	2.1	
	Malate		1.1	
	Nicotinate	1.2	1.8	
Organic Acids	Succinate	1.4	2.2	
	GABA	2.9	4.2	
	Glycine		6.7	
	Isoleucine		2.7	
	Leucine		2.2	
	Tvrosine		5.2	
	Valine		4.1	
Amino Acids	Unknown amino acid [USH: N-Acetylglycine (1TMS), 71]	0.2	0.5	
	1,6-Anhydro-beta-D-glucose	0.9	0.7	
	beta-D-Glc-(1,6)-D-Glc*	34	15	
	Fructose	11	2.8	
	Galactose	8.1	4.9	
	Glucose	8.1	4.9	
	Raffinose*	22	14	
	Sucrose	1.5	1.6	
	Unknown sugar [USH: Arabinofuranose (4TMS), 70]	3.6	1.7	
	Unknown sugar [USH: Arabinofuranose (4TMS), 75]	2.8	1.4	
	Unknown sugar [USH: beta-D-Glc-(1,4)-D-Glc (8TMS), 85]	2.2	_ 1.5 _	
	Unknown sugar [USH: beta-D-Glc-(1,6)-D-Glc, 76]	1.6	1.1	
	Unknown sugar [USH: D-Glycero-D-gulo-Heptose methoxime (6TMS), 79]	1.9	1.5	
	Unknown sugar [USH: Digalactosylglycerol (9TMS), 88]	4.2	1.5	
	Unknown sugar [USH: D-Ribose methoxime (4TMS), 81]	1.3	1.3	
	Unknown sugar [USH: Maltose methoxime (8TMS), 92]	3.6	3.4	
	Unknown sugar [USH: Melibiose (8TMS), 76]	12	2.6	
	Unknown sugar [USH: Melibiose (8TMS), 83]	46		
	Unknown sugar [USH: Sedobentulose methoxime (6TMS) 84]	4	3.8	
Sugars and Sugar	Linknown sugar [USH: Sedohentulose methovime (6TMS), 85]	2.1	1.6	
Derivatives	Linknown sugar [LISH: Sedoheptulose methoxime (6TMS), 86]	3.6	37	
	Glucuronate	2.4	1.2	
	Unknown sugar acid (USH: Galactaric acid (6TMS) 78]	2	2.1	
Sugar Acids	Unknown sugar acid [USH: Gluconic acid methoxime (5TMS), 89]	2.8	1.7	
	Galactitol	1.1	0.8	
	Galactinol*	20	21	
	Sorbitol	2.6	1.7	
Polyols	Threitol	1.5	1.2	
Nitrogen-rich	Allentein		19	
Dolyaminaa			1.5	
rolyannines	Putrescine Unknown phenylpropanoid [USH: 4-hydroxy-3-methoxynhenethylene	1.6	0.9	
Phenylpropanoids	glycol (3TMS), 93]	2.5	1.4	
-	gamma-Tocopherol*	9.8	4.6	
lerpenoids	Unknown terpenoid [USH: Phytol (1TMS), 95]	1.4	1.2	
Inorgania Asida	Phosphate	1.2	3.9	
Inorganic Acius	Methylphosphate*	1.3	4.2	

Supplementary Table 2. Characteristic metabolite response profile of aox1a T-DNA insertion lines to moderate light and drought compared with Col-0 response. Metabolite level changes occurring in response to 3 days of moderate light and drought treatment were detected in Col-0 and two independent aox1a T-DNA insertion lines using GC-MS based metabolite profiling (see Materials and Methods). The mean fold change in GC-MS signal levels (across the two independent aox1a lines) are shown above for metabolites that responded similarly in both aox1a lines. For comparison, the responses of these metabolites in Col-0 are shown in the right-hand column. Metabolite signals that increased significantly (p < 0.05, n = 5) in response to the stress treatment are highlighted in blue while signals that decreased significantly (p < 0.05, n = 5) are highlighted in red. Signals that showed no significant change are shown in black. Colour intensities are related to metabolite response intensities with more strongly responsive signals highlighted in brighter tones. * These metabolites were putatively identified by matching against the publicly available Golm Metabolome Database MSRI library (see supplementary information). Compounds contained in square brackets are unknown metabolites with mass-spectral homology to the indicated compound, the number after the compound name being the 'simple' match score reported by AMDIS when searched against the NIST02 MS library.

Supplementary Table 4. List of 17 genes and ubiquitin and primers used for QRT-PCR. The genes tested have been linked to various stress responses. All five genes listed as hallmarks by Gadjev et al., 2006 were analysed, as well as representative genes listed in other studies.

Chromosomal Locus	Gene Description	QRT-PCR primers	Reference
NDB2 (At4g05020)	Mitochondrial NAD(P)H dehydrogenase	Forward: ctgactctctcaaagagttcc	Clifton et al., 2006
AOX1a (At3g22370)	Alternative oxidase 1a	Forward: gacggtccgtacggttcg	Clifton et al., 2006
		Reverse: cttctgattcgcgtcctcctcct	
UCP (At3g54110)	Uncoupling protein 1	Forward: gaaaactagctgcaggtgcg	Clifton et al., 2006; Sweetlove et al. 2007
		Reverse: acaacgttgtcagtgaaaccc	
UPOX (At2g21640)	Unknown Function - Up-regulated by oxidative stress	Forward: ccgagaacccgccaaaacc	Clifton et al., 2006; Gadjev et al., 2006
PP1 (At2a14610)	Pathogen related protein 1	Reverse. golicicigodacigodic Econvard: atagattagogagagagagata	Bechtold et al. 2005
1 M1 (Al2914010)		Reverse: actitiqueacatecquatet	Dechiola et al., 2003
UBC (At5a25760)	Ubiquitin	Forward: ctocoactcaogoaatcttcta	Czechowski et al., 2005
,		Reverse: ttgtgccattgaattgaattgaaccc	,,
At2g43510	Defensin-like protein	Forward: ggctatcgtttccatcttcg	Gadjev et al., 2006
_		Reverse: actcgttaccttgcgcttct	-
At1g57630	Disease resistance protein RPP1-WsB	Forward: acgcttcttcgtggtgttgt	Gadjev et al., 2006
		Reverse: cgtttgacccgactctttct	
At1g27730	Transcription factor - ZAT10	Forward: ttttgcctcatgcttctcg	Kilian et al., 2007
		Reverse: acacttgtagctcaacttctccac	
At5g51190	AP2 domain transcription factor	Forward: gttcaggctgatgcttgtcc	Kilian et al., 2007
445 - 47000	Ethylana managerius alamant hinding fastas 5	Reverse: gtctgctccgtcccaaaac	Killer et al. 2007
At5g47230	Ethylene-responsive element-binding factor 5		Killah et al., 2007
At1a10020	Linknown, expressed protein	Reverse. lgcalacygalicagagaaalc	Cadiov at al. 2006
Aligibuzu	Olikilowii- expressed protein	Reverse: cacttocactacttotoac	
At1a05340	Linknown - expressed protein	Forward: cottagaagatgagccagtacg	Gadiev et al. 2006
7		Reverse: agtagtagtagtagtagtag	
At4a27657	Unknown - expressed protein	Forward: gcaaggcgacagaaatgttat	Kilian et al., 2007
5	• •	Reverse: aacaggtgaggatctaggagga	
At5g59820	Transcription factor - ZAT12	Forward: ctttgggaggacacatgagg	Rizhsky et al., 2004
		Reverse: caaagcgcgtgtaaccaac	
At4g32320	Cystolic ascorbate peroxidase APX6	Forward: tttgggaagacttgattcagc	Panchuk et al., 2005
		Reverse: tcctgggtcgaaaatccttt	
At3g15210	ERF/AP2 transcription factors family member	Forward: atggggatcggtaacgtagg	Yang et al., 2005
		Reverse: cgatctaaacgccgatgtc	
At4g27410	NAC transcription factor induced in response to dessication	Forward: gcacgagtatcgcttaatagaaca	Lee et al., 2006
		Reverse: cgacacaacacccaatcatc	

Supplementary Figure 1. Characterisation of the insertional lines inactivating AOX1a. A) A diagrammatic representation of the AOX1a gene structure (At3g22370) and the position of the primers used to determine if a T-DNA insert was present. B) RT-PCR with different primer sets to determine if a T-DNA insert was present in the gene; the failure to produce a fragment using primer set 1 in both insertional lines, that were designed to amplify a fragment if the gene is uninterrupted, and the production of a fragment using primers to the left border of the T-DNA (primers sets 2 and 3) indicates that both lines are homozygous knock-out lines. The two lines were designated aox1a-1 and aox1a-2 C) Western blot analysis of mitochondria purified from wild-type Arabidopsis plants (Col-0) and AOX1a knock out lines (aox1a-1 and aox1a-2) were probed with antibodies to the alternative oxidase and porin. The lack of a cross-reacting band when probed with antibodies to AOX in the aox1a-1 and aox1a-2 lines confirmed that these plants contained an inactivated AOX1a gene. Furthermore, treatment of leaf samples with H_2O_2 caused a detectable increase in the band that cross reacted with the AOX antibody in mitochondria isolated from Col-0 plants, but no cross reacting band was present in the *aox1a-1* and *aox1a-2* lines.

A) Col-0 normal conditions vs aox1a normal conditions

C) Cell wall Precursors

Supplementary Figure 2. Overview of changes in transcript abundance associated with

primary metabolism. Transcripts associated with primary metabolism, which are significantly changing after false discovery rate (FDR) correction between A) *aox1a* and Col-0 under normal conditions and. B) *aox1a* normal conditions compared to *aox1a* under moderate light and drought treatment. Changes are displayed using the MapMan software

(http://gabi.rzpd.de/projects/MapMan/). The abundance ratio or fold-change is shown by the colour scale, red indicating a decrease and blue indicating an increase in transcript abundance. Key genes and areas are highlighted in red and blue based on direction of transcript abundance changes. C) Significant changes in transcript abundance after FDR correction for genes encoding proteins involved in cell wall precursor synthesis pathways in *aox1a* normal conditions versus *aox1a* moderate light and drought treated. Pathway was generated using the MapMan software (http://gabi.rzpd.de/projects/MapMan/). The color scale indicates abundance ratios; red indicates a decrease in abundance while blue indicates an increase. Significantly changing metabolites are also indicated as blue (increased) and red (decreased) stars.

Component

other cellular components: 0.533%

Function

- unknown molecular functions: 28.016%
- transcription factor activity: 4.977%

- receptor binding or activity: 0.714%

∗ ■ unknown molecular functions: 22.144%

- ∗ □ other enzyme activity: 13.484%

- ∗ unknown molecular functions: 16.085%
- ∗ transcription factor activity: 6.132%

- other molecular functions: 2.744% ■ nucleic acid binding: 1.928%
- structural molecule activity: 0.452%
- receptor binding or activity: 0.799%
- * unknown molecular functions: 18.718%
- * □ other enzyme activity: 10.438%

- structural molecule activity: 0.523%
- receptor binding or activity: 0.539%
- ∗ unknown molecular functions: 20.271%
- ∗ □ other enzyme activity: 11.147%
- transcription factor activity: 3.424%

- other molecular functions: 2.712%

- receptor binding or activity: 0.712%

Supplementary Figure 3. Analysis of functional categorization of *aox1a* **responsive transcripts.** Analysis of the changes in transcript abundance between Col-0 and *aox1a* under normal and combined drought and moderate light treatment. An asterisk indicates a significant difference as determined by Chi squared analysis between this set and the whole genome, a green asterisk indicates changes in this group are under-represented while a red asterisk indicates changes in this grouping are over-represented.

Supplementary Figure 4. Relative transcript abundance for genes encoding anti-oxidant defence components located in Arabidopsis. The relative expression data for anti-oxidant defence components for heat, drought, salt, cold, high-light treatments, knock-out superoxide dismutase, knock-out catalase and anti sense ascorbate peroxidase were taken from Mittler et al., 2004 and compared *aox1a* grown under normal conditions and *aox1a* under moderate light and drought treatments. Red indicated an increase and green a decrease in abundance, with numbers indicating magnitude on a linear scale, black indicates no significant change. Subcellular localisation was taken from Mittler et al. 2004.

Supplementary Figure 5. Changes in transcript abundance for genes that encode proteins involved in anthocyanin production. Anthocyanin production pathway was taken from Vanderauwera et al 2005 (Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inze' D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139: 806-821). Changes in transcript abundance for aox1a untreated versus aox1a moderate light and drought treated is shown. Red indicates an up-regulation while blue indicates transcripts which are downregulated.