Appendix 6. Comparing observations in bacterial genomes with expectations in randomly generated genomes

Magnification of the results obtained for randomly generated genomes

Figure 6.1 Minimal, average and maximal values observed over 100 randomly generated genomes, for sp and upsp respectively; 32 bacterial genomes are considered (see Figure 1 for genome nomenclature). For each such bacterial genome, 100 artificial genomes are generated at random, which have same proportions of A, C, T, G nucleotides and same total number of genes encoding proteins as the bacterial genome. sp_{CI} denotes the number of genes with a putative Strong Promoter identified under constraint set CI. sp_{CII} is defined similarly for constraint set CII (see Section "Systems and methods", Subsection "Genome analysis upon request" for the definition of CI and CII constraints). $upsp_{CI}$ denotes the number of genes with an **UP** element in their putative Strong Promoter, and identified under constraint set CI. $upsp_{CII}$ is defined similarly.

Description of statistical significance through Z-scores

In Section "Are potentially strong σ 70 promoter-like sequences harbouring an UP-like element frequent?", CH condition has been shown to be under-constrained when not combined with the presence of the UP element. Therefore, in the sequel, the data relative to CH are only provided for the record.

Table 6.1 compares the Z-scores obtained under all four conditions. When Z-scores could not be calculated, we noticed that the sp value (respectively the upsp value) observed for the bacterial genome and the corresponding value expected for the average artificial genome are both equal to 0 (exceptionally, such previous values are equal to 1 and 0 respectively).

	CI CII UP element optional						CI CII UP element required					II				
8 Firmicutes	min	max	av	std	min	max	av	std	min	max	av	std	min	max	av	std
	81.3	308.5	193.0	66.1	92.9	324.6	216.9	66.8	74.9	291.7	155.9	64.3	69.4	311.9	188.3	66.9
13 Proteobacteria	1.0	32.4	16.0	9.5	3.4	53.6	23.5	15.2	2.0	15.6	11.0	7.9	4.4	66.6	16.8	17.0
26 species with large genomes	1.0	308.5	74.9	89.9	4.9	324.6	91.4	97.0	0.15 (2)	291.7	76.9	81.6	0.2 (3)	311.9	75.9	88.8

Table 6.1 Evaluation of the statistical significance of σ 70 promoter frequencies: comparison between different bacterial groups. For details about Z-scores, see text, Subsection "Comparing observations in bacterial genomes with expectations in randomly generated genomes"; av: average, std: standard deviation. (1)(2)(3): Z-scores were calculable respectively for 10, 19 and 25 genomes.

genome name	abbreviation	CI			C	II		CI			CII		
		UP element			optional			UP element requ			uired		
		genomes for which Z-score values						ue is above threshold					
		7	15	80	7	15	80	7	15	80	7	15	80
Mycobacterium leprae tn	Atb_ML	ML	ML		ML	ML							
Mycobacterium tuberculosis h37rv	Atb_MT	MT			MT	MT		-	-	-	MT	MT	
Streptomyces coelicolor a3 (2)	Atb_SC	SC			SC	SC		-	-	-	-	-	-
Aquifex aeolicus vf5	Others_AA	AA	AA	AA	AA	AA	AA	AA	AA		AA	AA	
Deinococcus radiodurans r1	Others_DR	DR			DR	DR		-	-	-	DR		
Thermotoga maritima	Others_TM	TM	TM	TM	TM	TM	TM	TM	TM		TM	TM	TM
Brucella melitensis 16m	Proteo_BM	BM			BM			-	-	-	BM		
Escherichia coli k12	Proteo_EC	EC	\mathbf{EC}		EC	\mathbf{EC}		EC			EC	EC	
Haemophilus influenza rd kw20	Proteo_HI	HI			HI			HI			HI		
Helicobacter pylori j99	Proteo_HP	HP			HP			HP			HP		
Neisseria meningitidis mc58	Proteo_NM	NM	NM		NM	NM		NM	NM		NM		
Pseudomonas aeruginosa pa01	Proteo_PAe	PAe	PAe		PAe	PAe		-	-	-	PAe	PAe	
Sinorhizobium meliloti 1021	Proteo_SM	SM	SM		SM	SM		-	-	-	SM	SM	
Shewanella oneidensis mr1	Proteo_SO	SO	SO		SO	SO		SO			SO	SO	
Salmonella typhimurium lt2	Proteo_ST	ST	ST		ST	ST		ST	ST		ST	ST	
Vibrio cholerae n16961	Proteo_VC				VC								
Xanthomonas campestris atcc 33913	Proteo_XC							-	-	-			
Yersinia pestis	Proteo_YP	YP			YP	YP					YP		

Table 6.2 Evaluation of the statistical significance of σ 70 promoter frequencies for 18 bacterial species selected as non *Firmicutes* species with large genomes. For definition of *CI* and *CII* constraints, see Section "Systems and methods", Subsection "Genome analysis upon request". Three significance thresholds are considered (7, 15 and 80). – means that the Z-score is not calculable. In a given column, the mention of a species points out statistical significance for the corresponding threshold.

		Z-scores							
	UP element presence	E. coli	min	max	average	standard deviation			
CI	optional	21.7	1.0	308.5	74.9	89.9			
CII	"	38.2	4.9	324.6	91.4	97.0			
CI	required	7.3	0.15	291.7	76.9	81.6			
CII	"	15.3	0.2	311.9	75.9	88.8			

Table 6.3 Evaluation of the statistical significance of σ 70 promoter frequencies: comparison of *E. coli* with respect to 26 species with large genomes.

		Z-score threshold			number of genomes
		7	15	80	with calculable Z-scores
	UP element presence				
CI	optional	24	15	10	26
CII	,,	25	21	10	26
CI	required	16	12	7	19
CII	"	22	16	8	25

Table 6.4 Numbers of large genomes (among 26) for which the total number of putative strong promoters identified is shown to be significantly different from that of the corresponding "average" randomly generated genome.

Description of statistical significance through relative differences

In complement to Figure 2, Table 6.5 describes the relative differences between bacterial and randomly generated genomes. With an overwhelming majority, this relative difference is always higher than 0.70. However, we would insist that an asserted difference must not be mistaken for biological significance, whose proof can only be brought through experimental validation. Besides, we recall that results relative to *C11* constraint are only provided for the record.

Table 6.5 Another description of the difference between bacterial and randomly generated genomes: the ratio displayed is computed as $\frac{f_{bact} - f_{rand}}{f_{bact}}$, where f_{bact} and f_{rand} respectively denote the frequency of genes encoding proteins harbouring a putative strong promoter, in a bacterial genome, and the corresponding frequency in the similarly-AT rich genome generated at random.

Is there a genome size bias? Comparison of *Firmicutes* genomes with similarly AT-rich *Proteobacteria* genomes

Hereafter, we complete our analysis, checking that the specificity observed for *Firmicutes* is not due to genome size bias. For this purpose, we compare two *Proteobacteria* genomes (*H. influenza, H. pylori*) and four *Firmicutes* genomes (*L. innocua, L. monocytogenes, S. pneumoniae, T. tengcongensis*). All six (high) AT-richnesses range in the narrow interval [60.8%, 62.6%]. Successively considering the number of promoters observed in each *Proteobacteria* genome as a reference, we calculate a corrected frequency for each *Firmicute* genome, applying a correction based on proportionality relative to genome sizes. Then we compare observed values *versus* corrected values under each of the four conditions studied. Not only do we implement such corrections for bacterial genomes, we also process the six average random genomes in a similar way (see Tables 6.5 and 6.6). When considering the average genomes generated at random corresponding to *Firmicutes*, we show that the order of magnitude is identical for expected values and corrected expected values. In contrast, when dealing with bacterial genomes, the size bias correction does not smooth out the difference between *Firmicutes* and *Proteobacteria*.

	Proteo	bacteria	Firmicutes									
	HI	HP	1	LI]	LM	S	Pn	TT			
AT-content	61.9%	60.8%	62.6%		62.0%		60.28%		62.4%			
g	1673	1478	2962	HI - HP	2837	HI - HP	1861	HI - HP	2588	HI - HP		
	obs	obs	obs	corr	obs	corr	obs	corr	obs	corr		
sp_{CI}	31	31	713	54-62(*)	707	52-59	213	34-39	581	47-54		
sp_{CII}	37	34	946	65-68	926	62-65	285	41-42	715	57 - 59		
$upsp_{CI}$	8	7	145	14-14	147	13-13	59	8-8	150	12-12		
$upsp_{CII}$	20	17	501	35-34	488	33-32	120	22-21	407	30-29		

Table 6.6 Comparison of the observed numbers of putative strong promoters between two *Proteobacteria* and four *Firmicutes* genomes characterized by close (high) AT-contents (range [60.2%, 62.4%]), under conditions CI and CII, and with or without UP element required. g: total number of genes encoding proteins in the genome considered; HI: *Haemophilus influenza*, HP: *Helicobacter pylori*; LI: *Listeria innocua*, LM: *Listeria monocytogenes*, SPn: *Streptococcus pneumoniae*, TT: *Thermoanaerobacter tengcongensis*; obs: observed values, corr: corrected values. (*) With HI then HP taken as a reference, these columns in italics yield the corrected values $sp_{CI}, ..., upsp_{CII}$ on the basis of proportionality to total gene number; the two corrected values in italics have to be compared with the value on their left. Example: the reference being HI, corrected $sp_{CI,corr}$ for LI is $sp_{CI,corr}(LI) = \frac{sp_{CI,obs}(HI) \times 2962}{1673} = 54$, with $sp_{CI,obs}(HI) = 31$; $sp_{CI,corr}(LI)$ has to be compared with the value of 713 observed for LI.

	Proteol	bacteria	Firmicutes									
	HI	HP	1	LI]	LM	S	Pn	TT			
AT-content	61.9%	60.8%	62.6%		62.0%		60.28%		62.4%			
g	1673	1478	2962	HI - HP	2837	HI - HP	1861	HI - HP	2588	HI - HP		
	\exp	exp	exp	corr	exp	corr	exp	corr	\exp	corr		
sp_{CI}	6	6	14	10-12(*)	12	10-11	8	6-7	16	9-10		
sp_{CII}	7	8	17	12-16	14	11-15	11	7-10	20	10-12		
$upsp_{CI}$	0	0	1	0-0	1	0-0	0	0-0	1	0-0		
$upsp_{CII}$	2	2	6	3-4	5	3-3	3	2-2	7	3-3		

Table 6.7 Comparison of the expected numbers of putative strong promoters between six average genomes generated at random and characterized by the same AT-contents as two *Proteobacteria* and four *Firmicutes* genomes (range [60.2%, 62.4%]), under conditions *CI* and *CII*, and with or without UP element required. See Table 6.5 caption for explanations. Example: the reference being HI, corrected $sp_{CI,corr}$ for LI is $sp_{CI,corr}(LI) = \frac{sp_{CI,exp}(HI) \times 2962}{1673} = 10$, with $sp_{CI,exp}(HI) = 6$; $sp_{CI,corr}(LI)$ has to be compared with the value of 14 expected for the average artificial genome having the same AT-richness as the LI genome.