
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 1983, p. 1877-1883
0099-2240/83/061877-07$02.00/0
Copyright 0 1983, American Society for Microbiology

Vol. 45, No. 6

Seasonal Variation in Survival of Escherichia coli Exposed In
Situ in Membrane Diffusion Chambers Containing Filtered and

Nonfiltered Estuarine Watert
IRIS C. ANDERSON, MARTHA W. RHODES, AND HOWARD I. KATOR*

Department ofEstuarine and Coastal Ecology, Virginia Institute ofMarine Science and School of Marine
Science, College of William and Mary, Gloucester Point, Virginia 23062

Received 8 October 1982/Accepted 8 March 1983

Human fecal Escherichia coli isolates were exposed over a seasonal cycle to
estuarine water in diffusion chambers filled with double-filtered (0.45 and 0.2 p.m)
and nonfiltered water. Laboratory manipulations of E. coli cultures before
estuarine exposure were reduced to minimize sublethal stress, and nonselective or
resuscitative enumeration techniques were employed to maximize recovery of
stressed cells. E. coli was capable of extended survival during in situ exposure to
estuarine water, provided eucaryotes were excluded from diffusion chambers.
Survival was directly related to temperature in absence of the eucaryote compo-
nent of the natural microbiota. Although it was not possible to prevent eventual
bacterial contamination in double-filtered water, there was no direct evidence that
such contamination affected E. coli survival. Conversely, E. coli disappearance
was most pronounced at warmer temperatures in the presence of the natural
microbiota, and decline coincided with increasing eucaryote densities. In con-
trast, the decline of E. coli during winter was similar in both filtered and
nonfiltered seawater.

Public health decisions concerning the safety
of estuarine waters for recreational use or for the
harvesting of shellfish continue to be based
primarily upon fecal coliform enumerations. Al-
though the validity of the fecal coliform indica-
tor system continues to be questioned (9, 10,
32), a suitable alternative has yet to be accepted.
Selection of a reliable indicator requires infor-
mation concerning the fate of the potential indi-
cator in aquatic systems. Strategies to evaluate
indicator survival in aquatic environments have
included in vitro exposure of batch cultures to
ambient water, simultaneous in situ release of
coliforms with a conservative tracer, or in situ
exposure within dialysis bags or diffusion cham-
bers (7, 8, 11, 27, 41, 43). Enumeration of
surviving organisms has most frequently em-
ployed selective plating procedures, which can
be lethal to bacteria sublethally stressed by
exposure to the aquatic environment (3, 4, 10,
16).

Diffusion chambers offer a methodology to
study a confined population of microorganisms
under relatively natural conditions. One of the
most widely used chambers (27) consists of a
central Plexiglas spacer covered with opposing
membrane filters held by Plexiglas retainer
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rings. With such chambers, McFeters and Stuart
(27) exposed pure cultures of Escherichia coli to
river water and observed that bacterial survival
was inversely proportional to temperature (5 to
15°C). Similar results have been noted in estua-
rine water (12, 41). In contrast, Soracco et al.
(R. J. Soracco, D. L. Tison, and D. L. Pope,
Abstr. Annu. Meet. Am. Soc. Microbiol. 1980,
N43, p. 170), using a modified McFeters-Stuart
chamber, detected prolonged survival of pure E.
coli cultures in a warm freshwater pond
(>25°C). If Tgo values (time required for an
order of magnitude decrease in E. coli cell
density) are used to compare results from coli-
form survival studies employing all types of
exposure techniques, numerous inconsistencies
become apparent. For example, at approximate-
ly similar temperatures, T9o values observed
during seawater exposure in batch cultures (6,
11, 43) or dialysis bags (8, 39) exceeded those
reported for diffusion chamber experiments (12,
41). Two factors which might account for dis-
crepancies in experimental results are interac-
tions with the autochthonous microbiota, includ-
ing predation, and the development of sublethal
stress. Incubation of coliforms in coarsely fil-
tered seawater fractions containing autochtho-
nous microbiota such as bacteria and protozoans
resulted in a rapid decline of E. coli cell densities
after a 2- to 4-day lag period (11, 23, 35).
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Sublethal stress can contribute to an apparent
decline in E. coli viable count when selective
enumeration procedures are used (3, 8). Using
selective techniques, Verstraete and Voets (42)
enumerated E. coli exposed in batch cultures to
filter-fractionated river water sampled monthly.
Since maximum die-off occurred during summer
in both nonfiltered and 5-pum-filtered water and
during winter in autoclaved and 0.45-p,m-filtered
water, they suggested that predation exerted its
maximum influence on coliform densities during
spring and summer but sublethal stress contrib-
uted to increased mortality after exposure to
cold water temperatures.

Biological interactions between allochthonous
bacteria and the natural microbiota are complex
and poorly understood. Although predation,
competition with autochthonous bacteria for
substrates, and antibiosis due to products of
autochthonous organisms may effect a reduction
in the coliform population, stimulatory effects
may also occur (5, 23, 24, 29).

In an attempt to resolve the discrepancies
previously mentioned, experiments were per-
formed to test the hypothesis that both seasonal
temperature and the presence of natural micro-
biota would affect E. coli survival. Fecal E. coli
mixed with nonfiltered or filtered water were
exposed in diffusion chambers to estuarine wa-
ters during various seasons. Laboratory manipu-
lation before exposure was reduced to minimize
predisposition to sublethal stress, and nonselec-
tive or resuscitative enumeration techniques
were employed to maximize recovery of
stressed cells.

MATERIALS AND METHODS
Bacterial suspensions were prepared and inoculated

into membrane diffusion chambers which were fabri-
cated, deployed, and sampled in the estuary as previ-
ously described (34). Chambers were deployed in
duplicate for each treatment.

Determination of solute diffusion rate. Solute diffu-
sion rates were determined for chambers fitted with
fresh polycarbonate membranes (0.2 pum; Nuclepore
Corp., Pleasanton, Calif.) and for chambers that had
been exposed in the environment for various lengths of
time. Safranin was dissolved in estuarine water to give
an optical density at 515 nm of approximately 1.0
before membrane filtration (0.2 p.m). Chambers were
flushed twice with this solution, filled, and immersed
in the York River, Va., 75 m from shore at a depth of 1
m. At hourly intervals, 1.5-ml samples were taken for
determination of optical density. Readings were cor-
rected for dilution due to sampling and plotted versus
time of immersion.
Enumeration techniques. (i) Enumeration ofE. coli in

mixed cultures. E. coli were enumerated by a modifica-
tion of the violet red bile agar (BBL Microbiology
Systems, Cockeysville, Md.) method for resuscitation
of stressed fecal coliforms (19). Duplicate samples (0.1
ml) were spread plated onto Trypticase soy agar

(BBL) plates and incubated at room temperature for 2
h, followed by addition of a 10-ml surface overlay of
violet red bile agar. Plates were incubated at 44.5°C for
24 t 2 h.

(ii) Enumeration of E. coli in pure culture. Duplicate
volumes were spread plated onto Trypticase soy agar
and incubated at 35°C for 24 t 2 h.

(iii) Enumeration of indigenous estuarine bacteria.
Duplicate samples (0.1 ml) were spread plated onto
heterotroph medium (consisting of [g/liter of estuarine
water based medium]: Bacto-Peptone, 1; yeast ex-
tract, 0.5; ferric citrate, 0.01; sodium glycerol phos-
phate, 0.1; agar, 15). Plates were incubated at room
temperature for 5 days.

(iv) Enumeration of eucaryotic microorganisms by
epifluorescence microscopy. A Zeiss standard micro-
scope equipped for epifluorescence with a 63x oil
immersion lens, a 450 to 490 nm excitation filter, an LP
520 barrier filter, and an FT 510 beam splitter was
used. Samples were fixed immediately after collection
by addition of gluteraldehyde (5% solution) in filtered
(0.2 Rxm) estuarine water to a final concentration of
0.5%. Fixed samples were processed as soon as possi-
ble but held for no longer than 2 weeks. Nuclepore
filters (0.2 ,um, 25-mm diameter) were soaked for at
least 5 min in 0.2% irgalan black BLG (Ciba-Geigy
Corp., Greensboro, N.C.) in 2% acetic acid and rinsed
in sterile distilled water. Each sample (0.5 to 1 ml),
plus sufficient sterile distilled water to yield 2 ml, was
added to the tower of a microanalysis filtration unit
(Millipore Corp., Bedford, Mass.), and the cells were
stained with 40 R1 of a proflavine (hemisulfate; Sigma
Chemical Co., St. Louis, Mo.) solution (0.033% pro-
flavine in sterile distilled water). The mixture was
swirled, filtered after 1 min under low vacuum (100
mm Hg) to dryness, and washed twice with successive
5-ml portions of sterile distilled water. While under
suction, the filter was removed and placed over a drop
of nonfluorescing immersion oil (type LF; Cargille,
Cedar Grove, N.J.) on a clean slide. A drop of oil was
placed on top of the filter followed by a cover slip. At
least 100 fields of view or up to 400 eucaryotes were
counted per slide. Since proflavine does not mask
autofluorescence by chlorophyll, it is possible to dis-
tinguish between autotrophic and heterotrophic eu-
caryotes. However, a number of problems were en-
countered. In samples taken during winter, a
proportion of heterotrophic microflagellates appeared
to have lost flagella. In spring, high densities of
autofluorescing autotrophs visually complicated enu-
meration of heterotrophs. We were not able to enu-
merate amoebae. For these reasons and because both
autotrophic and heterotrophic eucaryotes are known
to affect bacterial populations, eucaryote data report-
ed herein are expressed in terms of total eucaryotes
detectable by epifluorescence.

RESULTS
To minimized stress due to laboratory ma-

nipulation, E. coli grown to early-stationary
phase in minimal M9 medium containing 5,000
ppm glycerol was introduced with culture medi-
um into diffusion chambers for seawater expo-
sure studies. The time necessary to reduce the
initial glycerol concentration to 0.018 ppm was
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FIG. 1. Rates of safranin diffusion from chambers

in seawater at 27°C. Chambers filled with sterile water
were exposed to seawater for 0 (0), 7 (AL), and 13 (l)
days. One chamber (0) was inoculated with a bacterial
suspension during 13-day exposure to seawater. After
seawater exposure, all chambers were flushed with
sterile seawater before addition of dye. Flag indicates
replicate experiment.

derived from safranin diffusion experiments
(Fig. 1). The growth rate of a steady state
chemostat culture of E. coli (106 cells per ml) has
been shown to be greatly reduced at glucose
concentrations less than 0.018 ppm (37). Solute
diffusion rates were calculated from the equation
C, = Coe-k', derived from Fick's law of diffusion
(14), where C0 is the concentration of safranin at
zero time, C, is the concentration at selected
time t, and k is the rate of exchange. The time
necessary to reduce the glycerol concentration
to 0.018 ppm in seawater at 27°C varied from 17
h in fresh chambers to 26 h in chambers previ-
ously exposed to river water for 7 days. Since
the Qlo for sugar diffusion is 1.37 (14), the
diffusion rate will decrease at colder tempera-
tures. For example, at 7°C, 24 h would be
required to reduce the glycerol concentration to
0.018 ppm.

Seasonal survival of E. coli exposed in situ in
filtered estuarine water. In situ survival of pure
cultures of E. coli in filtered estuarine water was
directly related to temperature over the seasonal
range of 1 to 25°C (Fig. 2). Eucaryotes were not
detected in any chambers from which survival
data were collected, although contamination by

autochthonous bacteria was observed after sev-
eral days of exposure (open boxes, Fig. 4A and
C). However, there was no direct evidence that
these contaminants substantially affected E. coli
survival in the diffusion chamber over the ex-
perimental period. At temperatures greater than
13°C, E. coli was capable of growth during a 5-
day exposure period. To test the effect of the
residual glycerol concentration and initial cell
density on subsequent growth during in situ
seawater exposure at 27°C, chambers were in-
oculated with a suspension containing 108 cells
per ml in the growth medium containing 5,000
ppm glycerol and with a lOOx dilution of this
suspension. Growth and survival characteristics
over the 5-day study period were similar (data
not shown) for both suspensions.

Seasonal survival of E. coli exposed in situ in
nonfiltered estuarine water. E. coli cultures in
M9 medium were diluted twofold with either
double-filtered (0.45 and 0.2 ,um) estuarine wa-
ter, 1-,um filtered water, or nonfiltered seawater
before exposure in an attempt to separate the
influence of autochthonous bacteria and eucary-
otes on E. coli attrition. However, microflagel-
lates were detected in most chambers containing
E. coli in 1-pum filtered seawater. Therefore, it
was not possible to examine the interaction of E.
coli and autochthonous bacteria exclusive of
eucaryotes and these data are not presented.
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FIG. 2. Survival of E. coli during in situ exposure
to seawater at various temperatures in the absence of
eucaryotes. Bacteria pregrown in M9 medium at 35°C
were introduced directly into diffusion chambers.
Symbols: A, 23 to 250C, 18 to 20 ppt salinity; A,
13.50C, 16 ppt; Ol, 2.5 to 40C, 24 ppt; 0, 10C, 24 ppt.
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seawater coincided with an increase in densities
of eucaryotes. In contrast, there were no de-
creases in E. coli in filtered water after a week of
in situ exposure (Fig. 4B). In the fall (21°C), E.
coli densities did not decline during 5 days of
exposure in the absence of eucaryotes, although
the number of autochthonous bacterial contami-
nants increased rapidly (Fig. 4C). In nonfiltered
seawater, E. coli decline began after a 3-day lag
period coincident with increasing population
densities of both eucaryotes and autochthonous
bacteria. In this particular experiment, although
diatoms were abundant from 0 to 3 days, they
were later displaced by heterotrophic microfla-
gellates (<10 ,um) whose appearance coincided
with the disappearance of E. coli. Results of a
summer experiment (26°C, 22 ppt salinity; data
not shown) were similar to the fall observations
except that microflagellates predominated dur-
ing the 7-day study period.

DISCUSSION
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Results reported in this paper are not in agree-
ment with observations of other workers who
employed diffusion chambers to study in situ
survival of E. coli in seawater (12, 41). Whereas

1 6 9 we have observed a direct relationship between
3 6 E. coli survival and water temperature, others

DAYS IN SEAWATER have noted an inverse relationship. We suggest

E. coli during in situ exposure that this disagreement was due to the occurrence
temperatures in the presence of of sublethal stress induced by laboratory ma-

regrown in M9 medium at 35°C nipulation and related to the pre-exposure his-
with unfiltered seawater and tory of the isolates used (1, 34), as well as to

on chambers. Symbols: 0, 3C, unrecognized contamination by indigenous mi-
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Proper design of seawater exposure experi-
ments requires an assessment of and compensa-
tion for the degree to which test bacteria have

iave reported that microfla- been sublethally stressed. Sublethally stressed
of penetrating 1-,um mem- organisms survive in the environment and may
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'C), E. coli disappeared at experiments when stressful laboratory manipu-
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). Autochthonous bacteria cultures pregrown in a rich medium were used
hambers filled with filtered (15), or when selective enumeration techniques
[though indigenous bacterial were employed (12, 15, 26).
ed, increases in eucaryotic Initially, problems were encountered in pre-

detected. A repeat experi- venting contamination of diffusion chambers of
1.5°C, 24 ppt salinity) pro- the design employed by other workers (12, 27,

ts (data not shown). During 28). Monitoring chamber contents by epifluores-
coli decline in nonfiltered cence microscopy revealed that eucaryotic and
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FIG. 4. Survival of E. coli during in situ exposure to seawater in the presence and absence of eucaryotes.
Bacteria pregrown in M9 medium at 35°C were exposed to filtered (0.2 ,um) or natural seawater at: (A) 3°C, 23 ppt
salinity; (B) 13°C, 15 ppt; (C) 21°C, 24 ppt. Symbols: A, E. coli; O, autochthonous bacteria; 0, eucaryotes.

bacterial contamination regularly occurred and
was most severe during warm weather. Al-
though elimination of eucaryotic contamination
was achieved using 0-rings and cemented rub-
ber sampling septa, contamination by autoch-
thonous bacteria was not prevented with 0.2-,um
membranes. MacDonell and Hood (22) have
recently described estuarine ultramicrobacteria
capable of passing through 0.2-,um filters. These
bacteria resembled Vibrio, Aeromonas, Pseudo-
monas, and Alcaligenes species. Since most
reports indicate diffusion chambers were not
monitored for autochthonous microorganisms,
the paucity of studies (36) reporting contamina-
tion after in situ exposure is not surprising.
Our results indicated that both the numbers

and kinds of eucaryotes varied seasonally. Lag
times before decline in coliform numbers were
directly related to water temperature and eu-
caryote density at moderate and warm tempera-
tures. At low temperatures, the rate of coliform
disappearance was not increased in the presence
of eucaryotes. Identification of those members
of the natural microbiota or their products re-
sponsible for declines in coliform numbers was
beyond the scope of these experiments. Micro-
flagellates common to estuarine waters and be-
longing to the families Bodonidae and Monadi-
dae phagocytize bacteria (17). Other

microorganisms, difficult to detect by epifluores-
cence microscopy, such as amoebae, also graze
on coliforms (30, 31, 35). Autotrophic eucary-
otes such as Skeletonema costatum may be
responsible for coliform death via an antibiotic
effect (38). Autochthonous bacteria may cause
increased coliform mortality through production
of antibiotics or by competition for available
nutrients (24).
Although diffusion chambers provide for in

situ exposure of microorganisms, containment
in an environment with a high surface area!
volume ratio could enhance coliform survival or
growth of coliforms or predators (or both).
Thus, chamber effects may result in predator/
prey ratios which are unlikely to occur in nature.
Effective predation is dependent upon a critical
predator/prey ratio (18, 24). For example, it has
been demonstrated (23) that coliforms are capa-
ble of prolonged survival in estuarine water after
addition of protozoans at a density of 2 x 103
cells per ml. In relatively unpolluted water,
coliforms may survive or even multiply. Hos-
kins and Butterfield (20) pointed out many years
ago that below the confluence of a polluted and a
clean stream, coliform densities were higher
than those in the polluted stream.
Whereas interactions with autochthonous

microorganisms may exert primary control over
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coliform survival in polluted streams, in batch
culture or diffusion chamber experiments, physi-
cochemical factors such as degree of insolation
may exert a stronger influence in waters of low
turbidity. A number of workers have reported a
strong correlation between the degree of insola-
tion and coliform mortality (13, 21, 25). In
addition, sunlight has been shown to cause sub-
lethal injury to E. coli and to act synergistically
with predacious microorganisms in reducing co-
liform numbers (21, 25). Sublethal injury in-
duced by sunlight may result from accumulation
of peroxides, either endogenous or exogenous
(21). Thus, the possibility exists that diffusion
chambers or other closed containers may en-
hance lethal effects of sunlight through accumu-
lation of peroxides or other toxic substances.
Furthermore, sunlight may also react with exog-
enous photosensitizers such as chlorophylls or
with quenching agents such as carotenoids (5)
with corresponding increases or decreases in
anticoliform activity. Diffusion chambers pro-
vide a unique system for the study of such
phenomena in the natural environment.

In summary, this study has demonstrated that
the relative importance of temperature and the
autochthonous microbiota on E. coli survival in
an estuary was seasonally dependent. Survival
duration was directly related to temperature in
the absence of the eucaryote component of the
natural microbiota, and disappearance of E. coli
was most pronounced at warmer temperatures
in its presence. Although these investigations
focused on the effects of temperature and natu-
ral microbiota on E. coli survival, it is recog-
nized that persistence of these allochthonous
bacteria in estuarine environments is affected by
temporally variable, complex interactions of nu-
merous biological and physicochemical factors.
Diffusion chamber experiments, such as those
described in this paper, contribute toward un-
derstanding these relationships.
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