Genotype ^a	PsinI-lacZ activity
	$(MU)^{b}$
Wild type	5.8 <u>+</u> 0.4
epsH	7 <u>+</u> 2
abrB epsH	3.8 <u>+</u> 0.1

Supplemental Table 1. AbrB does not repress sinI

a. The following P_{sinI} -lacZ containing strains were used FC149, FC321, FC346.

b. β -Galactosidase activity, calculated in Miller Units (MU), was measured from lateexponential phase cells grown in MSgg and is the average of at least three replicates.

Table S2. Strains^a

Strain	Genotype	
3610	Undomesticated wild strain	
FC13	$\Delta epsH::tet; amyE::P_{eps}-lacZ$ (cat)	Kearns et al., 2005
FC14	$\Delta sinR::spec; \Delta epsH::tet; amyE::P_{eps}-lacZ(cat)$	Kearns et al., 2005
FC26	$\Delta slr::tet$	
FC37	$\Delta slr::tet; \Delta sinR::spec$	
FC134	$\Delta epsH::tet; amyE::P_{yqxM}-lacZ$ (cat)	Chu et al., 2006
FC135	$\Delta sinR::spec; \Delta epsH::tet; amyE::P_{yqxM}-lacZ$ (cat)	Chu et al., 2006
FC149	$amyE::P_{sinI}-lacZ$ (cat)	
FC171	$\Delta sipW$::tet	Chu et al., 2006
FC280	$\Delta abrB::kan$	
FC315	$\Delta yoaW$::tet	
FC321	$\Delta epsH::tet; amyE::P_{sinI}-lacZ(cat)$	
FC346	$\Delta epsH::tet; \Delta abrB::kan; amyE::P_{sinI}-lacZ(cat)$	
FC413	$\Delta spo0A::spec; amyE::P_{eps}-lacZ$ (cat)	
FC414	$\Delta spo0A::spec; amyE::P_{yqxM}-lacZ(cat)$	
FC415	$\Delta epsH::tet; \Delta abrB::kan; amyE::P_{eps}-lacZ$ (cat)	
FC416	$\Delta epsH::tet; \Delta abrB::kan; amyE::P_{yqxM}-lacZ$ (cat)	
FC444	$\Delta epsH::tet; \Delta spoOA::spec; \Delta abrB::kan; amyE::P_{eps}-lacZ$	(cat)
FC445	$\Delta epsH::tet; \Delta spoOA::spec; \Delta abrB::kan; amyE::P_{yqxM}-lack$	Z(cat)
FC480	$\Delta epsH::tet; \Delta sinR::spec; \Delta abrB::kan; amyE::P_{eps}-lacZ$ (cat)
FC481	$\Delta epsH::tet; \Delta sinR::spec; \Delta abrB::kan; amyE::P_{yqxM}-lacZ$	(cat)
FC488	amyE::-112 P _{yqxM} -lacZ (cat)	
FC495	amyE::-64 P _{yqxM} -lacZ (cat)	
FC503	$\Delta slr::tet; \Delta abrB::kan$	
FC504	$\Delta slr::tet; \Delta abrB::kan; amyE::P_{yqxM}-lacZ$ (spec)	
FC513	$\Delta slr::tet; \Delta abrB::kan; amyE::P_{eps}-lacZ$ (cat)	

FC518	<i>amyE</i> ::P _{slr} -lacZ (cat)	
FC519	$\Delta epsH::tet; amyE::P_{slr}-lacZ$ (cat)	
FC520	Δ <i>epsH::tet</i> ; Δ <i>sinR::spec</i> ; <i>amyE</i> ::P _{slr} -lacZ (cat)	
FC522	$\Delta epsH::tet; \Delta abrB::kan; amyE::P_{slr}-lacZ(cat)$	
FC525	$\Delta slr::mls$	
FC526	ΔepsH::tet; Δslr::mls; amyE::P _{eps} -lacZ (cat)	
FC527	$\Delta epsH::tet; \Delta sinR::spec; \Delta slr::mls; amyE::P_{eps}-lacZ$ (cat)	
FC529	$\Delta epsH::tet; \Delta sinR::spec; \Delta slr::mls; amyE::P_{yqxM}-lacZ$ (cat)	
FC536	$\Delta slr::mls; amyE::P_{slr}-slr$ (cat)	
FC591	$amyE::P_{yqxM}-lacZ$ (cat)	Chu et al., 2006
FC593	$\Delta slr::mls; amyE::P_{yqxM}-lacZ$ (cat)	
FC600	$\Delta slr::mls; yqxM \Omega P_{IPTG}-yqxM-sipW-tasA (spec)$	
ALM16	amyE::-100 P _{yqxM} -lacZ (cat)	
ALM35	<i>amyE</i> ::5'site mutation P_{yqxM} - <i>lacZ</i> (cat)	
ALM36	<i>amyE</i> ::3'site mutation P_{yqxM} - <i>lacZ</i> (cat)	
ALM37	<i>amyE</i> ::heptad repeat mutation P_{yqxM} - <i>lacZ</i> (cat)	
DS1674	$\Delta epsH::tet; \Delta sinR::kan$	

a. All strains are derivatives of 3610

Table S3. Primers^a

Primer	Sequence $(5' \rightarrow 3')$
-499sinI	tggcGAATTCagttttcactgacgtctcaaatatgt
-2sinI	gccaGGATCCagtttctcctcctaaaatacttgttta
Slr1F	tttgcatgtatcatcgagaaaatgca
Slr2R	caattcgccctatagtgagtcgtacggtacaaacggataattcttcca
Slr2_tetR	gaacaacctgcaccattgcaagaacggtacaaacggataattcttcca
Slr3F	ccagcttttgttccctttagtgagtgtctgtccatgaagtcaaatcctt
Slr3_tetF	ttgatcctttttttataacaggaattctgtctgtccatgaagtcaaatcctt
Slr4R	aattaatagcggaataccggaagca
slrcomp_F	cgcGGATCCgtattcatagccttcagcctt
slrcomp_R	ccgGAATTCaacgttagccctttaaccgatca
yoaW1_F	agaacaagggcataagaatagaatca
yoaWP2_R	caattcgccctatagtgagtcgttaaaagctaacatcaacatctttttcaa
yoaWP3_F	ccagcttttgttccctttagtgagacggttttcagtttgatcagccaga
yoaW4_R	ttgcgatgaaagtaggaattcatga
Pslr-F1	gtcGAATTCctagacaatcgcatataattctttg
Pslr-R1	gtcGGATCCctagaaattctcctctattcctgtcg
+1slr	gttcCATATGattggaagaattatccgtttgtac
+339slr	aggcCTCGAGgtaagaggcagtttcaggctgtt
-302yqxM	tggcGAATTCatagacaaatcacacattgtttgatca
-26yqxM	gccaGGATCCatcttacctcctgtaaaacactgtaa
-175yqxM	gttcGAATTCtgagcaatactgagcaagactttgt

-160yqxM	gttcGAATTCagcaagactttgtaatatgatga
-126yqxM	gttcGAATTCaacgaacaaaatgagcgatttcggt
-270yqxM	tggcGAATTCtgtcaccctttctttgtttattattac
+14yqxM	gccaGGATCCaacaatcgaaacatatcttacctcct
-21yqxM_R	gccaGGATCCtgtaacttgatatgacaatcgttctc
-244yqxM_F	gttcGAATTCaccaaataataatgggatatgcatttaa
ALM1	gttcCTCGAG agactttgtaatatgatgaaaacattct
ALM2	gttcCTCGAGgtatgaagtgttttttcaattttttagaaatttttggga
ALM3	gttcCTCGAGgtattgctcattttttcaattttttagaaatt
ALM4	gttcCTCGAGatactgagcaagactttgtaatatgat
ALM5	gttcCTCGAGttttttcaattttttagaaatttttggga
ECH318	ggGGAATTCatatgtttatgaaatctactggtattgta
ECH336	accgCTCGAGtcatttaaggttttgaagctggttttgga
ECH341	aaactcactggcagcgatatcg
ECH342	tctatttgtttaagagccatatctaag
ECH343	cggttatacaaggattcatcgagc
ECH344	caattgttgcgccgttcacttcat
-246epsA	gttcGAATTCtaatatgaaattctcctctattcctgt
+4epsA	gccaGGATCCtcatgtattcatagccttcagcctt
JSK362	ggcAAGCTTacataaggaggaactactatgagtaaaggagaagaacttttcac
JSK445	ggcGGATCCttatttgtatagttcatccatgccatg

^aCapital letters designate restriction enzyme sites added to the primers

Supplementary Figure legends

Figure S1. **Effects of AbrB-regulated genes on biofilm formation.** 'Colony' column depicts 16 X images of colonies grown on MSgg semi-solid agar medium for 3 days at 22°C. Scale bar is 1 mm. 'Pellicle' column depicts top-down images of 6-well microtitre plates in which cells have been grown statically in MSgg medium for 3 days at 22°C. Scale bar is 1 cm. The indicated wild type and mutant strains were as follows: wild type (3610), *sipW* (FC171), and *yoaW* (FC315).

Figure S2: Antibodies generated to SinR cross-react with Slr. Western blot using α -SinR as primary antibody. Whole cell lysates of the strains were loaded as follows: wild

type (3610); <u>*slr*</u> (FC26); *sinR slr* (FC37); *sinR* (DS1674). Lanes were loaded and normalized to 0.1 OD600 cell equivalents.

Figure S3. A *sinR* mutation, but not an *abrB* mutation, is partially epistatic to the effects of an *slr* mutation. A) 'Colony' column depicts 16 X images of colonies grown on MSgg semi-solid agar medium for 3 days at 22°C. Scale bar is 1 mm. 'Pellicle' column shows top-down images of 6-well microtitre plates in which cells have been grown statically in MSgg medium for 3 days at 22°C. Scale bar is 1 cm. The indicated wild type and mutant strains were as follows: wild type (3610), *sinR slr* (FC37), *abrB slr* (FC503). B,C) The indicated strains were grown at 30°C in MSgg and β-galactosidase was measured in Miller Units. B) β-galactosidase expression of P_{eps}-lacZ in wild type (♦)(FC13), *slr* (■) (FC526), *sinR* (▲)(FC14), *abrB* (□)(FC415), *sinR slr* (X)(FC527), *abrB slr* (○)(FC513). C) β-galactosidase expression of P_{sqxM}-lacZ in wild type (♦) (FC134), *slr* (■) (FC528), *sinR* (▲)(FC135), *abrB* (□)(FC416), *sinR slr* (X)(FC529), *abrB slr* (○)(FC504).

Figure S4. SIr is a DNA-binding protein. EMSA in which radiolabeled DNA's (denoted below each panel) were mixed with purified N-terminal SIr at the indicated concentrations. Sizes of the DNA fragments containing *gfp* and P_{yqxM} , were 741 and 284 base pairs, respectively. The horizontal arrow indicates the position of free probe.

Figure S1

Figure S2

Figure S3

A

OD₆₀₀

Figure S4

