Appendix from P. A. Hohenlohe and S. J. Arnold, "MIPoD: A Hypothesis-Testing Framework for Microevolutionary Inference from Patterns of Divergence"

(Am. Nat., vol. 171, no. 3, p. 366)

Construction of the Phylogenetic Divergence Matrix

To further illustrate the construction of the phylogenetic divergence matrix **A**, we combine the **G** matrix shown in figure 1A and the phylogeny shown in figure 2A. We thus have m = 2 traits and n = 3 taxa, so **A** will be a 6-by-6 matrix. First, the **G** matrix shown in figure 1A is parameterized by

$$\begin{pmatrix} \Sigma \\ \varepsilon \\ \varphi \end{pmatrix} = \begin{pmatrix} 5 \\ 0.6 \\ 0.8 \end{pmatrix},$$
 (A1)

so the 2-by-2 G matrix is

$$G = \begin{bmatrix} 2.49 & 0.50\\ 0.50 & 2.51 \end{bmatrix}.$$
 (A2)

The matrix of shared ancestry **T** for the taxa x, y, and z is

$$\mathbf{T} = \begin{bmatrix} t_{xx} & t_{xy} & t_{xz} \\ t_{yx} & t_{yy} & t_{yz} \\ t_{zx} & t_{zy} & t_{zz} \end{bmatrix} = \begin{bmatrix} 1,000 & 200 & 200 \\ 200 & 1,000 & 800 \\ 200 & 800 & 1,000 \end{bmatrix},$$
(A3)

with time in generations. Each element in **T** becomes a 2-by-2 block in **A** by using equation (3), with $N_e = 100$, as follows:

$$\mathbf{A} = \begin{bmatrix} (1,000/100)\mathbf{G} & (200/100)\mathbf{G} & (200/100)\mathbf{G} \\ (200/100)\mathbf{G} & (1,000/100)\mathbf{G} & (800/100)\mathbf{G} \\ (200/100)\mathbf{G} & (800/100)\mathbf{G} & (1,000/100)\mathbf{G} \end{bmatrix}.$$
 (A4)

Thus, the final 6-by-6 A matrix is

$$A = \begin{bmatrix} 24.85 & 5.00 & 4.97 & 1.00 & 4.97 & 1.00 \\ 5.00 & 25.15 & 1.00 & 5.03 & 1.00 & 5.03 \\ 4.97 & 1.00 & 24.85 & 5.00 & 19.88 & 4.00 \\ 1.00 & 5.03 & 5.00 & 25.15 & 4.00 & 20.12 \\ 4.97 & 1.00 & 19.88 & 4.00 & 24.85 & 5.00 \\ 1.00 & 5.03 & 4.00 & 20.12 & 5.00 & 25.15 \end{bmatrix}.$$
(A5)

For example, the variance of the distribution of the expected mean of trait 1 in taxon x is 24.85, the covariance between trait 1 in taxon x and trait 1 in taxon y is 4.97, and the covariance between trait 1 in taxon x and trait 2 in taxon z is 1.00.

The vector of trait means at the root of the phylogeny in figure 2A is

$$\bar{\mathbf{z}}_0' = (0, 0).$$
 (A6)

Therefore, under a neutral model of evolution by drift, the vector of expected trait means across all taxa at the tips of the phylogeny is given by

$$\boldsymbol{\mu}' = (0, 0, 0, 0, 0, 0). \tag{A7}$$

The population trait means at the tips of the phylogeny are thus a sample from the six-dimensional multivariate normal distribution with mean vector μ and variance/covariance matrix A (eq. [10]).

Table A1

Estimates of	species	and	regional	population	means	for	body	and	tail	vertebral	counts	in
Thamnophis	and Ner	odia	ı									

Species	Subspecies or population	Body	Tail	n	Reference
T. melanogaster	chihuahuaensis	145.20	72.50	10	Tanner 1959
T. melanogaster	canescens	143.70	60.50	37	Conant 1963
T. validus	celaeno	141.10	71.00	64	Conant 1969
T. validus	thamnophisoides	133.60	68.70	63	Conant 1969
T. errans	Chihuahua and Durango	158.73	73.30	11	Smith 1942; Tanner 1959
T. exsul	Coahuila and Nuevo Leon	145.00	53.40	8	Rossman et al. 1989
T. godmani	Rangewide	141.75	65.56	12	Smith 1942
T. mendax	Rangewide	141.50	58.00	7 ^a	Rossman et al. 1996
T. sumichrasti	Rangewide	152.50	62.50		Rossman et al. 1996
T. scalaris	Rangewide	140.00	59.79	15	Smith 1942
T. nigronuchalis	Rangewide	156.53	66.57	15	Tanner 1985
T. rufipunctatus	Rangewide	164.68	70.21	25	Tanner 1985
T. atratus	San Francisco Peninsula	147.00	71.00	57ª	Fox 1951
T. elegans	Lassen Co., CA	167.52	80.59	708	Arnold and Phillips 1999
T. elegans	Humboldt Co., CA	151.73	71.25	481	Arnold and Phillips 1999
T. couchii	Feather River, CA	174.00	82.00	16	Fitch 1940
T. gigas	San Joaquin Valley, CA	161.00	73.00	13	Fitch 1940
T. ordinoides	Del Norte Co., CA	144.93	63.63	128	Fox 1948
T. hammondii	San Diego Co., CA	162.60	73.00	62 ^a	Fitch 1940; McGuire and Grismer 1993
T. brachystoma	Pennsylvania	136.60	59.30	34	Barton 1956
T. butleri	Ohio	137.50	56.60	19 ^a	Conant 1938
T. radix	Radix	151.00	65.00	400	Smith 1949
T. radix	haydeni	157.20	67.00	233	Smith 1949
T. eques	virgatenuis	157.26	71.97	57	Conant 1963
T. eques	megalops	157.50	71.13	48	Conant 1963
T. marcianus	nigrolateris	156.80	68.20	60	Mittelman 1949
T. marcianus	marcianus	149.10	68.60	79	Mittelman 1949
T. cyrtopsis	collaris	153.40	88.70	61ª	Webb 1966
T. pulchrilatus	Rangewide	162.70	76.10	15 ^a	Webb 1966
T. cyrtopsis	cyrtopsis	167.90	78.30	196 ^a	Milstead 1953
T. chryseocephalus	Rangewide	145.00	73.00		Rossman et al. 1996
T. fulvus	Rangewide	140.69	62.73	40	UMMZ, UTA
T. proximus	Rangewide	163.89	100.86	782	Rossman 1963
T. sauritus	Rangewide	156.75	112.08	549	Rossman 1963
T. sirtalis	Lassen Co., CA	160.12	78.73	199	OSCMNH
T. sirtalis	Humboldt Co., CA	151.70	79.95	268	OSCMNH
N. erythrogaster	neglecta	152.60	65.00	7	Conant 1949

Species	Subspecies or population	Body	Tail	n	Reference
N. erythrogaster	flavigaster	150.00	66.60	8	Conant 1949
N. fasciata	North Carolina and Virginia	129.57	69.50	213	Osgood 1978

Note: Sample sizes (*n*) are numbers of female specimens. Midpoints of ranges, rather than means, are reported for *T. chrysocephalus*, *T. mendax*, and *T. sumichrasti*. Data for *T. fulvus* and *T. sirtalis* were taken from museum specimens (UMMZ, University of Michigan; UTA, University of Texas, Arlington; OSCMNH, Oregon State University).

^a Cases in which only the total number of both sexes was reported, so the number of female specimens was estimated by dividing the total sample size in half.

Table A2

Results of hypothesis testing with the garter snake test case, starting from four different direct estimates of G and a single estimate of P

Additional MI	G mat				р		
parameter estimate	Σ	З	φ	$\ln L(\theta)$	LR	df	value
Thamnophis elegans mean G matrix:							
None	15.51	.629	.843	-408.37			
Size (Σ)	.308 (.228428)	.629	.843	-293.71	229.33	1	<.0001
Shape (ε)	.338 (.251471)	.793 (.677862)	.843	-290.57	6.28	1	.0122
Orientation (φ)	.338 (.251471)	.871 (.793–.914)	.513	-283.20	14.74	1	.0001
T. elegans coastal G matrix:							
None	14.68	.534	1.376	-407.62			
Size (Σ)	.342 (.254477)	.534	1.376	-299.14	216.96	1	<.0001
Shape (ε)	.338 (.251471)	.442 (.306595)	1.376	-298.47	1.33	1	.248
Orientation (φ)	.338 (.251471)	.871 (.793914)	.513	-283.20	30.55	1	<.0001
T. elegans inland G matrix:							
None	16.33	.731	.785	-406.99			
Size (Σ)	.304 (.226423)	.731	.785	-289.90	234.17	1	<.0001
Shape (ε)	.338 (.251471)	.817 (.712878)	.785	-288.73	2.35	1	.125
Orientation (φ)	.338 (.251471)	.871 (.793914)	.513	-283.20	11.06	1	.0009
Thamnophis sirtalis G matrix:							
None	7.44	.851	.993	-369.53			
Size (Σ)	.468 (.347652)	.851	.993	-298.19	142.67	1	<.0001
Shape (ε)	.338 (.251471)	.712 (.569807)	.993	-294.87	6.64	1	.0100
Orientation (φ)	.338 (.251471)	.871 (.793914)	.513	-283.20	23.35	1	<.0001
T. elegans mean P matrix:							
None	30.59	.636	.770	-434.33			
Size (Σ)	.301 (.224419)	.636	.770	-292.73	283.19	1	<.0001
Shape (ε)	.338 (.251471)	.822 (.720882)	.770	-288.26	8.95	1	.0028
Orientation (φ)	.338 (.251471)	.871 (.793914)	.513	-283.20	10.12	1	.0015

Note: Direct estimates of the parameters of the **G** matrix or **P** matrix are shown in the first row of each analysis (all estimates for *T. elegans* from Arnold and Phillips 1999; estimate for *T. sirtalis* from Dohm and Garland 1993). In each subsequent row, parameter values in bold were estimated by maximum likelihood (ML) from divergence data. The remaining parameters were fixed at the direct estimates. Marginal 95% confidence intervals around ML estimates for Σ and ε are given in parentheses. Estimates of Σ are scaled to $\overline{N_e} = 500$; $\ln L(\theta)$ gives the log_e likelihood of the parameter values in each row of the table. LR gives the likelihood ratio test statistic (LR = $2 \times [\ln L(\theta_1) - \ln L(\theta_0)]$), where subscripts denote rows in the table. The statistical significance of LR (*P* value) was evaluated with a χ^2 distribution with the indicated degrees of freedom (df).

Table A3

Results of hypothesis testing of the effect of two taxa and the alignment of \mathbf{d}_{\max}^* with estimates of ω_{\max} from two different selection surfaces

	G mat						
Alternative hypothesis	Σ	ε	φ	$\ln L(\boldsymbol{\theta})$	LR	df	P value
ML best fit	.338 (.251471)	.871 (.793914)	.513	-283.20			
Reduced data set best fit	.331 (.244465)	.910 (.854941)	.473	-285.11	3.83	3	.2804
Thamnophis elegans $\boldsymbol{\omega}_{\max}$.338 (.251471)	.866 (.786911)	.430	-283.82	1.25	1	.2638
Thamnophis radix ω_{\max}	.338 (.251471)	.804 (.693869)	.817	-289.76	13.12	1	.0003

Note: The ML best fit represents the maximum likelihood estimate of all three parameters (with marginal 95% confidence limits for Σ and ε) using the full garter snake data set. The remaining rows of the table each represent a likelihood ratio test against the parameter values in the first row. The reduced data set best fit represents the ML estimate of all three parameters to the data set with *Thannophis proximus* and *Thannophis sauritus* removed. In the last two rows, φ was held constant at the direct estimate from ω_{max} estimated from growth rate in *T. elegans* and crawling speed in *T. radix.* All parameter values in bold were estimated by maximum likelihood, while others were held constant. Statistics as in table A2.

Literature Cited in Appendix

- Barton, A. J. 1956. A statistical study of *Thamnophis brachystoma* (Cope) with comments on the kinship of *T. butleri* (Cope). Proceedings of the Biological Society of Washington 69:71–82.
- Conant, R. 1938. The reptiles of Ohio. American Midland Naturalist 20:1-200.

——. 1949. Two new races of *Natrix erythrogaster*. Copeia 1949:1–15.

- ———. 1963. Semiaquatic snakes of the genus *Thamnophis* from the isolated drainage system of the Rio Nazas and adjacent areas in Mexico. Copeia 1963:473–499.
- ———. 1969. A review of the water snakes of the genus *Natrix* in Mexico. Bulletin of the American Museum of Natural History 142:1–140.
- Fitch, H. S. 1940. A biogeographical study of the *ordinoides* Artenkreis of garter snakes (genus *Thamnophis*). University of California Publications in Zoology 44:1–150.
- Fox, W. 1948. The relationships of the garter snake *Thamnophis ordinoides*. Copeia 1948:113–120.
- ———. 1951. Relationships among the garter snakes of the *Thamnophis elegans* Rassenkreis. University of California Publications in Zoology 50:485–530.
- McGuire, J. A., and L. A. Grismer. 1993. The taxonomy and biogeography of *Thamnophis hammondii* and *T. digueti* (Reptilia: Squamata: Colubridae) in Baja California, Mexico. Herpetologica 49:354–365.
- Milstead, W. W. 1953. Geographic variation in the garter snake, *Thamnophis cyrtopsis*. Texas Journal of Science 5:348–379.
- Mittelman, M. B. 1949. Geographic variation in Marcy's garter snake, *Thamnophis marcianus* (Baird and Girard). Bulletin of the Chicago Academy of Sciences 8:235–249.
- Osgood, D. W. 1978. Effects of temperature on the development of meristic characters in *Natrix fasciata*. Copeia 1978:33–37.
- Rossman, D. A. 1963. The colubrid snake genus *Thamnophis*: a revision of the *sauritus* group. Bulletin of the Florida State Museum 7:99–178.
- Rossman, D. A., E. A. Liner, C. H. Treviño, and A. H. Chaney. 1989. Redescription of the garter snake *Thamnophis exsul* Rossman, 1969 (Serpentes: Colubridae). Proceedings of the Biological Society of Washington 102:507–514.
- Smith, A. G. 1949. The subspecies of the Plains garter snake, *Thamnophis radix*. Bulletin of the Chicago Academy of Sciences 8:285–300.
- Smith, H. M. 1942. The synonymy of the garter snakes (*Thamnophis*), with notes on Mexican and Central American species. Zoologica 27:97–123.
- Tanner, W. W. 1959. A new *Thamnophis* from western Chihuahua with notes on four other species. Herpetologica 15:165–172.
 - ——. 1986. Snake of western Chihuahua. Great Basin Naturalist 48:499–507.
- Webb, R. G. 1966. Resurrected names for Mexican populations of black-necked garter snakes, *Thamnophis cyrtopsis* (Kennicott). Tulane Studies in Zoology and Botany 13:55–70.