Supplemental Data. Wang et al. (2008). Dual effects of miR156-targeted *SPL* genes and *CYP78A5/KLUH* on plastochron length and organ size in *Arabidopsis thaliana*.

Supplemental Figure 1. MiRNA-dependence of plastochron length.

Supplemental Figure 2. T-DNA insertion mutants and amiRNA targeting SPL4/5.

Supplemental Figure 3. Activity of promoter fusions.

- Supplemental Figure 4. Phenotype of *cyp78a5 cyp78a7* double mutant.
- Supplemental Figure 5. Leaf and cell size in wild-type, mutant and transgenic plants.
- Supplemental Table 1. Leaf initiation rates of different genotypes.

Supplemental Table 2. Flowering time of *cyp78a5* mutants.

Supplemental Table 3. Petal and petal cell size of different genotypes.

Supplemental Table 4. Oligonucleotide primer sequences.

Supplemental Figure 1. MiRNA-dependence of plastochron length, assessed in long days.

- (A) Plastochron phenotype of wild type, *se-1* and *ago1-27* mutants.
- **(B)** Small RNA blot showing expression of miR156 in wild type and *se-1* plants. Total RNA was extracted from 10-day-old seedlings. rRNA is shown as loading control below.
- (C) Rescue of the se-1 plastochron phenotype by miR156 overexpression.

Supplemental Figure 2. T-DNA insertion mutants and amiRNA targeting SPL4/5.

(A) Diagram of SPL transcribed regions, with thin lines indicating introns. Arrowheads mark T-

DNA insertion sites.

(B) Sequence of amiRNA against SPL4 and SPL5.

(C) Expression of SPL4 and SPL5 mRNA in amiRNA plants. Ten 10-day-old T1 seedlings were

pooled and subjected to qRT-PCR analysis.

Bars indicate standard deviation.

Supplemental Figure 3. Activity of promoter fusions.

Ten-day-old transgenic seedlings were stained for GUS activity, sectioned and photographed under dark field illumination. At least ten T_1 seedlings were examined for each construct, with all showing similar staining patterns. Asterisks indicated meristems proper.

Scale bars indicate 50 µm.

Supplemental Figure 4. Phenotype of *cyp78a5 cyp78a7* double mutants grown in long days.

Wild type and the two single mutant plants are 15 days old. The double mutant plant, which germinated later and grew only slowly the first 10 days, is 25 days old. The inset shows a magnified seedling with four cotyledons.

Supplemental Figure 5. Leaf and cell size in wild-type, mutant and transgenic plants.

(A) Outlines of leaves of 20-day-old plants grown in long days. *Pro35S:MIR156f* and *cyp78a5* leaves are smaller than those of the wild type. Numbers indicate order of leaves.

(B) Subepidermal palisade cells from the largest leaves of each genotype, viewed under differential interference contrast. Note similar cell size in all genotypes.

Scale bar indicates 200 µm.

SUPPLEMENTAL TABLES

Genotype	Leaves/day	Range	n
Wild type	0.67 ± 0.033	0.60 - 0.70	11
Pro35S:MIR156f	1.07 ± 0.081	0.93 - 1.17	10
spl9 spl15	0.82 ± 0.017	0.80 - 0.83	11
ProANT:MIR156f	1.05 ± 0.032	1.00 - 1.06	10
ProAS1:MIR156f	1.00 ± 0.065	0.93 - 1.13	10
ProBLS:MIR156f	0.89 ± 0.077	0.76 - 1.00	10
ProLOB:MIR156f	0.68 ± 0.028	0.63 - 0.70	10
ProFD:MIR156f	0.69 ± 0.049	0.60 - 0.77	11
ProSTM:MIR156f	0.68 ± 0.018	0.67 - 0.70	10
ProSUC2:MIR156f	0.89 ± 0.065	0.77 - 0.97	12
Pro35S:rSPL3	0.58 ± 0.029	0.50 - 0.67	10
ProSPL9:rSPL9	0.22 ± 0.014	0.20 - 0.23	10
ProSPL9:rSPL9 Pro35S:MIR156f	0.22 ± 0.016	0.20 - 0.23	10
ProANT:rSPL9	0.30 ± 0.012	0.27 - 0.33	10
ProAS1:rSPL9	0.34 ± 0.016	0.30 - 0.37	10
ProFD:rSPL9	0.30 ± 0.010	0.23 - 0.35	10
ProSUC2:rSPL9	0.39 ± 0.016	0.37 - 0.43	10
Pro35S:rSPL10	0.35 ± 0.023	0.33 - 0.40	10
ProANT:rSPL10	0.37 ± 0.044	0.30 - 0.43	12
cyp78a5	0.99 ± 0.022	0.97 - 1.03	12
ProSPL9:rSPL9 cyp78a5	0.48 ± 0.023	0.43 - 0.50	10
Pro35S:MIR156f cyp78a5	1.23 ± 0.034	1.17 - 1.30	12

Supplemental Table 1. Leaf initiation rates of different genotypes.

Total rosette leaf number was counted on 30-day-old plants in short days, except for the early-

flowering *ProFD:SPL3* and *Pro35S:rSPL3* genotypes, for which 20-day old plants were used. Standard deviation is given. Supplemental Table 2. Flowering time of *cyp78a5* mutants.

Genotype	Rosette leaf number	Days to flowering
Wild type	10.8 ± 0.63 (10 - 12)	18.6 ± 0.7(18 - 20)
сур78а5	14.6 ± 0.70 (14 - 16)	15.0 ± 0.47 (14 - 16)

Standard deviation and range (in parentheses) for 10 long-day grown plants are given. Rosette leaf number is significantly different between the two genotypes (Student's t-test, P < 0.005).

Genotype	Length (mm)	Width (mm)	Cell size (µm²)
Wild type	3.19 ± 0.05	0.97 ± 0.05	731.3 ± 55.2
Pro35S:MIR156f	2.12 ± 0.05**	0.78 ± 0.05**	740.0 ± 33.1
сур78а5	2.23 ± 0.08**	0.68 ± 0.04**	749.7 ± 25.1

Supplemental Table 3. Petal and petal cell size (with standard deviation) of different genotypes.

Student's t-test with Bonferroni correction.

*significantly different from wild type at P < 0.02.

**significantly different from wild type at P < 0.01.

Supplemental Table 4. Oligonucleotide primer sequences.

ID	Gene	Sequence (5'-3')	Purpose
G-7683	SPL4/5	GAT TAA GCG TCT CCT GCA ACT CCT CTC TCT TTT GTA TTC C	amiRNA
G-7684	SPL4/5	GAG GAG TTG CAG GAG ACG CTT AAT CAA AGA GAA TCA ATG A	amiRNA
G-7685	SPL4/5	GAG GCG TTG CAG GAG TCG CTT ATT CAC AGG TCG TGA TAT G	amiRNA
G-7686	SPL4/5	GAA TAA GCG ACT CCT GCA ACG CCT CTA CAT ATA TAT TCC T	amiRNA
N-1461	SPL4	TCC CAT GGC ATG GAG GGT AAG AGA TCA CAA G	qRT
N-1462	SPL4	TCA GAA TTC CTA TCT AAT CTG TGG TCG CTT G	qRT
N-1463	SPL5	TCC CAT GGC ATG GAG GGT CAG AGA ACA CAA C	qRT
N-1464	SPL5	TCA GAA TTC TTA TCT GAT CTG TGG TCG CTT G	qRT
G-8936	ANT	AAA CTG CAG TTG TTT TGG ACT TTT TGG TCT TCG	promoter
G-8937	ANT	AAA TCT AGA CAT GGT TTC TTT TTT TGG TTT CTG	promoter
G-7944	AS1	AAA TCT AGA ACG GAG GGT GTG AGT GAG TAG TGG TA	promoter
G-7945	AS1	AAA GGA TCC CTC CTA CTC CTC CTG ACA TCA CTT CT	promoter
G-9947	BLS	AAA CTG CAG GAT ATA ATT CGT CGG TGG TGT ACT A	promoter
G-9948	BLS	AAA GGA TCC GAG TCT GGT TTT AGA GAG AAA TGT ACG	promoter
G-7812	CYP78A5	AAA CTG CAG ATG TCT CCG GAA GCT TAC GTT CTG TTC	T-DNA, genomic fragmen
G-7813	CYP78A5	AAA CTG CAG ACA AGG ACC ACG CAG GCT TCT AA	T-DNA, genomic fragmen

S11

G-16238	CYP78A5	TGT CGG CGG AAT AAT TGA GAA ACA C	qRT
G-16239	CYP78A5	CAC CCA TTC CAC TAG AAT CGC AAC T	qRT
G-8452	CYP78A7	TCG GTT TAA CGA ACC TCA TTG	T-DNA
G-8453	CYP78A7	GAG GCG ACA TCA GAA TCT CAC	T-DNA
G-9194	FD	AAA CTG CAG GTA GTT ATC CAA GGC CCT CTC TAC TTG	promoter
G-9195	FD	AAA GGA TCC TGG AAA AGA GAA CAG AAG TGA ACC AAC	promoter
G-4815	Histone H4	CAC ATC TTT CTC ACC CAA ATC	probe
G-4816	Histone H4	CGA TTT ATA TTT CAA CCG AAA CTG	probe
G-8957	miR156f	AAA GGA TCC CAG CCA ATG AGC CAA AGA TAA AGA	genomic fragmer
G-8958	miR156f	AAA GAG CTC AGG CTC ATG TTG GAA TTC GAA TC	genomic fragmer
G-8946	LOB	ACG ACG CCA TTT GTT TTT CTT	promoter
G-8945	LOB	AAA CTG CAG TTG CTT GGT CAT CGT GTC TT	promoter
G-8515	SPL15	TGT TGG TGT CTG AAG TTG CTG	T-DNA
G-8516	SPL15	TCC ACC GAG TCT TCT TCA CTC	T-DNA
G-8517	SPL9	TGG TTC CTC CAC TGA GTC ATC	T-DNA
G-8518	SPL9	GCT CAT TAT GAC CAG CGA GTC	T-DNA
G-7981	SPL9	AAA CCC GGG ATG GAG ATG GGT TCC AAC TCG GGT	genomic fragmer
G-7982	SPL9	AAA GAG CTC TCA GAG AGA CCA GTT GGT ATG GTG A	genomic fragmer
G-9908	SPL9	AAA CTG CAG GAA TGA CAA ATT GAC CTG AGG CTT G	promoter

S12

G-7985	SPL9	AAA CCC GGG GTT GGT TTC CTC TTA CTC AGA CAG AAA	promoter
G-1761	SPL9	CGC CTT AAG CTT GTT AAG CAA TCC ACA TCA ACC ACA T	rSPL9
G-1762	SPL9	GCT TAA CAA GCT TAA GGC GCA GTT TGA GTC GCC AAT TC	rSPL9
G-7933	STM	AAA AAG CTT AGA AAT GGC AGT GAA GGC AGT GGC T	promoter
G-7934	STM	AAA GGA TCC ACT AGT ATT ATT ATT CAC TTT GGC T	promoter
G-1588	T-DNA	GCC TTT TCA GAA ATG GAT AAA TAG CCT TGC TTC C	SAIL line
G-7536	T-DNA	GCG TGG ACC GCT TGC TGC AAC T	SALK line
G-8533	T-DNA	TAC GAA TAA GAG CGT CCA TTT TAG AGT GA	SM line
N-0078	β-TUBLIN-2	GAG CCT TAC AAC GCT ACT CTG TCT GTC	qRT
N-0079	β-TUBLIN-2	ACA CCA GAC ATA GTA GCA GAA ATC AAG	qRT

S13