
The Ecology of Action Selection:
Insights from Artificial Life.

Electronic Supplementary Material

Anil K. Seth12

1The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA
2The University of Sussex, Brighton, BN1 9QH, UK

Supplementary Material S1:
Minimal action selection

(a) Description of the model

The simulated environment is a spatially continuous
unbounded area within which 3 types of objects can exist
- ‘grey food’, ‘black food’, and ‘traps’ - in addition to the
agent itself. Each object is a circle of radius 16 units, except
for the agent which is a circle of radius 5 units. All objects
appear within a 200 by 200 unit area of the environment
(the agent is not constrained to remain within this area).
There are 3 items of grey food, 3 of black food, and 9 traps.

The agent (figure 3A in the main text) possesses 2 wheels,
and 3 sensor pairs, with each sensor pair responding to a
different object type. It also possesses 2 internal batteries
- one for grey food (Bg) and one for black food (Bb) -
which diminish at a steady rate during the lifetime of the
agent. Encounters with grey or black food replenish the
corresponding battery, but if both reach zero, or if the agent
encounters a trap, then it will die. The 3 sensor pairs respond
to the distance from the agent to the nearest instance of each
type of object, with each sensor ranging linearly from 100 (at
the object) to 0 (200 or more units distant). If an object is to
the left of the agent, the corresponding sensor on the left of
the agent will respond with 20% greater activation (subject
to the maximum output value of 100) than the sensor on
the right, and vice-versa if the object is to the right of the
agent.

The links between the sensors and the motors transform
the sensor input signal (range [0,100]) into an output signal
(range [-1, 1]) in a manner specified by a transfer function
(figure 3B in the main text). It is the shape of this transfer
function that is evolved, and it is also possible for this shape
to be modified during the lifetime of the agent by the values
of either Bg or Bb, as described below. Each connection illus-
trated in figure 3B of the main text represents 3 independent
and concurrently active links, and left/right symmetry is
imposed such that both sets of 9 links are identical to each
other. The link outputs are combined at the wheels; for each
wheel the relevant link outputs are summed, passed through
a sigmoid function, and then scaled to the range [-10,10] to
set the wheel speed.

†Author for correspondence anil.k.seth@gmail.com.

The model is initialised by placing the objects and the
agent randomly within the environment. The movement of
the agent is then calculated on the basis of the wheel speeds:
if both wheel speeds are set to 10 the agent moves forward at
a maximum speed of 2.8 units per time-step. Each battery
has a maximum (and initial) level of 200, which decreases by
a single unit each time-step. If the agent encounters a food
object, the appropriate battery level is restored to 200, and
the object is replaced at a different random location. The
agent has a maximum lifetime of 800 time-steps.

(b) Genetic encoding scheme and algorithm

As mentioned above, 9 links need to be specified for each
agent. Each genotype consists of 83 integers in the range
[0,99]; thus 9 integers for each of the 9 links, and one integer
each for the left wheel and right wheel sigmoid threshold
values. Figure 1 illustrates how the 9 integers for each
link specify the shape of the transfer function. The offset
and thresholds are set by scaling the first 6 integers onto
the range [-100,100], with the restriction that the second
threshold must follow the first. Note that all scaling is linear
and maps onto continuous values. The gradients are set by
scaling the relevant integers to the range [−π/2, π/2], and
then taking the tangent. The sigmoid thresholds are set
by scaling to the range [-3,3]. Specifying the influence of
the battery levels on the shape of the transfer function is
accomplished as follows. If the 9th integer is even, then the
shape of the function can be influenced by Bg, and otherwise
by Bb. The relevant battery level modifies the shape of
the transfer function in two ways. First, through ‘offset
modulation’ γ, where γ is obtained by scaling the 8th integer
to the range [-1,1]. Second, through ‘slope modulation’ α,
where α is obtained by scaling the 7th integer to the range
[0,1]. Let the output of the transfer function at time t, prior
to battery modulation, be s(t). Offset modulation is applied
first:

s′(t) = s(t) +
γBr(t)

2
. (1)

where Br(t) represents the level of the relevant battery at
time t. Slope modulation is applied next:

s′′(t) = s′(t)
(
1 +

α

100
(Br(t)− 100)

)
(2)



2 Electronic Supplementary Material Anil K. Seth

2.gradient 1

3. threshold 1

5. threshold 2

6. gradient 3

1. init. offset

input

output

(9. battery number)

8. offset modulation

7. slope modulation

4. gradient 2

1000
-1

1

987654321

Figure 1. Genetic encoding scheme. Each sensorimotor link
requires 9 integers to specify the various link parameters.
The first 6 integers specify the basic shape of the transfer
function transforming the sensor input into an output signal,
and the final 3 integers specify how this shape can be
modified by battery levels. The shape of each link can be
modified by either Bg (if integer 9 is even) or Bb (if integer 9
is odd), and the level of this battery can then influence both
the overall gradient of the function (to a degree specified by
integer 7), and the offset (to a degree specified by integer 8).

where s′′ represents the final link output. Note that there is
no requirement that any given transfer function, connecting
a particular sensor type to a wheel, should be influenced by
the battery corresponding to the object type that its sensor
responds to.

To evolve the shapes of transfer functions, we employed
a distributed GA with a population size of 100. The fitness
function rewards a high average battery level and is cal-
culated incrementally for each time-step that the agent is
alive:

F =
Bg + Bb

400
(3)

This function rewards agents that live long (by keeping at
least one battery level above zero and by avoiding traps),
and that visit food items as often as possible.

The details of the GA are as follows. A population of
100 random genotypes is arranged on a 10 by 10 toroidal
grid and the fitness of each assessed. The following cycle
then repeats. A random grid position is chosen, and a ‘pool’
of nine genotypes constructed from the 3 by 3 sub-grid
surrounding this position. Two of the fittest members from
this pool are chosen as parents using stochastic rank-based
selection (with replacement) and used to generate a new
genotype by means of crossover and mutation. The new
genotype is placed back into the population in place of the
weakest pool member (again chosen using a stochastic rank-
based scheme) and evaluated; the parents are re-evaluated
with a probability of 0.8. Crossover probability is set at
0.5, with a 0.04 probability of point mutation per allele.
Each point mutation shifted the value of the allele by
value selected from the (integer) range [-5,5] according to a
Gaussian distribution; if the shift transgresses the allowable
range [-100,100], the post-mutation value is set by selecting
a random value between the pre-mutation value and the
bound in question. One generation of the GA corresponds
to 100 repetitions of this cycle. Fit individuals consistently
evolved in about 200 generations.

Supplementary Material S2:
Probability matching

(c) Description of the model

The environment comprises an infinite plane containing 4
grey and 4 black food items (radius 8). Both food items and
agents (radius 2.5) are initialised within a 200 by 200 ‘patch’
centered at the origin. Each item type is associated with a
probability that encounter will lead to full replenishment of
the agent’s internal battery. These probabilities (Pgry, Pblk)
represent the resources available from each item type; black
food items always replenish the battery (Pblk = 1.0), and
Pgry is experimentally manipulated. Each time an agent
encounters a food item, the item disappears to be imme-
diately replaced in another random location in the patch,
thus ensuring a constant density of available resources. The
agent’s battery level depletes at a rate of one unit per
time-step; if the battery level reaches zero the agent dies.
Encounters with conspecifics (if any) have no effect.

Each agent possesses 5 sensors, 4 of which are sensitive
to food items (in 2 left/right pairs) and one of which reflects
the battery level. The internal architecture of each agent
comprises a feedforward neural network. We use a neural
network architecture because such architectures are known
to be flexible and, in contrast to the transfer function archi-
tecture of the previous section, require little introduction.
In the present network, input units scale sensor values to
the range [0,1], with all interconnecting weights in the range
[-1,1]. Each unit applies a sigmoid function to the sum of
its inputs (plus a threshold value), with each output scaled
to the range [0,1]. Motor outputs are scaled to the range
[-10,10] to set wheel speeds; a value of 10 on both wheels
translates to a speed of 2.8 distance units per time-step. A
genotype of length 46 is required in this model, 42 loci to
specify the weights and thresholds of the network (5 input
units, 5 hidden units, and 2 output units), and 4 to specify
how well the agent is able to discriminate between the food
types, as described in the following.

In the general case each agent has i sensor pairs, each
of which is associated with a set {dgry, dblk, ..., dg}, with
g indexing resource types. Each d lies in the range [0,1],
and specifies the probability with which the associated
sensor will perceive an item of type g; all d values are
genetically specified. In the present case, with 2 sensor pairs
and 2 d values per pair, 4 additional loci are required.
The scheme functions in the following way. Every time an
item is initialised it is tagged with the identity of each
sensor pair that can perceive it. For example, if an agent
has [dgry = 1, dblk = 0] for its first sensor pair (s1) and
[dgry = 0.5, dblk = 1] for its second (s2), then a grey food
item initialised within the range of the agent will be tagged
as perceivable by s1, and also by s2 if (and only if) R< 0.5
(where R is a random number in the range [0,1]). During
each sensorimotor cycle, each sensor pair of each agent
responds to its nearest perceivable item (if any), ranging
linearly from 100 (at an item) to 0 (≥ 200 distance units
away). This sensor scheme was designed to provide a source
of stochasticity in agent behavior which would allow agents
to generate flexible behaviour (see [1] for further details).

(d) Experimental details

A distributed GA was used to evolve populations of geno-
types in each of 8 conditions; 4 involving a single isolated
agent (the S - single agent - condition set) and 4 involving
3 agents derived from the same genotype (the M - multiple

2



Electronic Supplementary Material Anil K. Seth 3

agent - condition set). The fitness function used - in all
conditions - was:

F =

800∑

t=1

B
200

, (4)

where t indexes time-steps and B represents the battery level
(at time t), with each evaluation lasting for a maximum of
800 time-steps. This function rewards agents that live long
and forage efficiently. Each genotype was evaluated 4 times
each generation.

Both the S and M condition sets involved evolving
and testing agents in environments distinguished by the
value of Pgry. Four values of Pgry were employed in each
condition set; 1, 0.66, 0.33, and 0, with Pblk = 1 in all
conditions. Genotypes of high fitness, in both S and M
condition sets, reliably evolved after about 400 generations
in each condition, but in each case the population was
left until 1000 generations had been completed. The fittest
genotypes from each condition were then evaluated, in the
same conditions as experienced during evolution in each
case, with the average number of responses to grey and black
items (over 1000 evaluations) being recorded. The entire set
of evolutions (and analyses) was repeated 12 times to obtain
overall averages.

S-agents and M -agents were also assessed in a ‘forced-
choice’ task. In this analysis, the fittest genotype from each
condition was decoded into a single agent, which was then
assessed in isolation by being placed equidistant from a
single grey food item and a single black food item; no other
items were present. Each trial was stopped as soon as one
or other of the items had been visited, and again each agent
was tested 1000 times. It is important to emphasise that
these tests always involved a single agent, even if evolution
had occurred in a multi-agent environment. The trial-to-trial
variability in behavior during this analysis is accounted for
by the stochastic nature of the sensors, as described above.

Supplementary material S3:
Matching and the ideal free distribution

(e) Forager intake

Consider two patches, A and B. Following [2] and [3], we
define the per forager intake rate Wi (s−1) to both the
forager density Ni and the resource availability Fi on each
patch i as:

Wi =
QFiF

∗

Ni
m , (5)

in which Q (ms−1) is a measure of patch-independent
forager efficiency, Fi ∈ [0, 1] (dimensionless) represents the
resource fraction in patch i, F ∗ (=200) represents the total
resources available, and m (dimensionless) is the interference
constant, which varies between 0 (no interference) and 1
(high interference). Across two patches A and B, assuming
WA = WB [the ideal free distribution (IFD) condition]:

log
NA

NB
=

1

m
log

FA

FB
, (6)

Taking the total forager number to be NT (= NA + NB),
it is possible to predict both NA and NB directly [4]:

NA =
NT

(10−c + 1)
, c =

log FA
FB

m
. (7)

In the model, we used equation 7 to assess the fit of a
population to the IFD, and equation 5 to determine the
per-agent intake rate.

(f ) Description of the model

The full definition of ω-sampling is provided in Appendix A
of the main text. It will not be repeated here.

To assess fit to the IFD, we recorded the equilibrium
distribution (after 1000 time-steps) of populations of 100
ω-samplers, for each of 9 different resource distributions
across two patches A and B. Two separate populations
were analysed, corresponding to two different levels of
interference (m = 1.0 and m = 0.3). In each case, agents
were initially randomly allocated to either A or B. Then,
each time-step, the resource obtained by each agent was
calculated (equation 5), the ω-sampling heuristic applied
for each agent, and the new agent distribution determined.
The final equilibrium distributions were compared with the
predictions of the IFD (equation 7).

The action selection behavior of isolated agents was
assessed under the four reinforcement schedules described in
the main text (basic, VR VR, VI VI, and VI VR). For the
each schedule, single ω-samplers foraged in isolation for 1000
time-steps under each of 9 different resource distributions.

For the basic schedule, forager intake was determined -
as in the IFD experiments - by equation 5.

For the VR VR schedule, Fi was interpreted as specifying
a probability that patch i will yield the fixed resource quan-
tity F ∗. Under this assumption, agent intake is determined
by the random variable:

Wi =

{
QF∗
Ni

m , p(Fi)

0, p (1− Fi)
(8)

VI VI was implemented by using Fi to set delay intervals
(Di) such that Di = 20(1.0− Fi) + r, with r ∈ [−2, 2] an
integer random number. The first response to option i on
each evaluation procured the full reward F ∗ and initialised
Di. Subsequent responses to i went unrewarded until Di

time-steps had elapsed, after which a response would again
procure F ∗ and re-initialise Di, with the incorporation of r
ensuring that the schedule was indeed ‘variable interval’.

VI VR was implemented by applying VI to one option
(A), and VI to the other (B).

Both the IFD analysis and the matching law analysis
were repeated 30 times each, enabling means and standard
deviations to be calculated.

(g) Parameter values

Analysis of ω-samplers required selecting values for ε and
γ (see Appendix A in the main text). We chose these
parameters in two different ways: (i) by selecting fixed values
(ε = 0.052 and γ = 0.427), and (ii) by evolving parameter
values for each condition separately. The results obtained
did not depend on the method used, and were robust to
variations in the fixed set [5, 6]. The motivation for the
evolutionary approach was to identify parameter values that
would enable an agent to perform as well as possible in
a given condition [7]. For completeness, we describe this
approach below.

Random initial populations (size 100) were evolved in two
conditions (m = 1.0 and m = 0.3). Each agent (in each con-
dition) possessed a genome of 2 real numbers (range [0,1])
specifying ε and γ. Each condition applied a tournament

3



4 Electronic Supplementary Material Anil K. Seth

GA for 100 generations (mutation rate 0.01, each muta-
tion drawn from Gaussian distribution radius 0.13; range
transgressions were truncated). Fitness was averaged over
10 separate evaluations. Each evaluation randomly assigned
values for FA and FB (FA + FB = 1.0, total resource F ∗ =
200.0 in all conditions), and randomly allocated agents
between A and B. The fitness of each agent was determined
by total accumulated resources after 1000 cycles. The entire
GA process was repeated 10 times in each condition, from
which average (condition-specific) parameter values were
computed (see table S1).

m = 1 m = 0.3

ε .061 .040
γ 0.21 0.65

Table S1: Evolved parameters. Columns labelled by inter-
ference level m

REFERENCES

[1] A.K. Seth. Modeling group foraging: Individual sub-
optimality, interference, and a kind of matching. Adap-
tive Behavior, 9(2):67–91, 2001.

[2] W.J. Sutherland. Aggregation and the ‘ideal free’
distribution. Journal of Animal Ecology, 52:821–828,
1983.

[3] M. Milinski and G.A. Parker. Competition for
resources. In J.R. Krebs and N.B. Davies, editors,
Behavioural ecology, pages 137–168. Blackwell Scien-
tific Publishers, Oxford, 1991. 3rd edition.

[4] T. Tregenza, G.A. Parker, and D.J. Thompson. Inter-
ference and the ideal free distribution: Models and
tests. Behavioral Ecology, 7(4):379–386, 1996.

[5] A.K. Seth. On the relations between behaviour, mech-
anism, and environment: Explorations in artificial evo-
lution. PhD thesis, University of Sussex, 2000.

[6] A.K. Seth. Competitive foraging, decision making,
and the ecological rationality of the matching law.
In B. Hallam, D. Floreano, J. Hallam, G. Hayes,
and J.-A. Meyer, editors, From animals to animats 7:
Proceedings of the Seventh International Conference on
the Simulation of Adaptive Behavior, pages 359–368,
Cambridge, MA, 2002. MIT Press.

[7] A.K. Seth. Agent-based modeling and the environ-
mental complexity thesis. In B. Hallam, D. Floreano,
J. Hallam, G. Hayes, and J.-A. Meyer, editors, From
animals to animats 7: Proceedings of the Seventh Inter-
national Conference on the Simulation of Adaptive
Behavior, pages 13–24, Cambridge, MA, 2002. MIT
Press.

4


