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Performance of LCA models in free-response paradigm for multiple 
alternatives with all accumulators receiving equal noise 
Figures S1a and S1b compare the performance of bounded and unbounded-linear 
models for levels of inputs I1 and I2 used in Figures 3a and 3b, respectively. In the case 
of larger inputs (relative to the noise-variance, c) of Figure S1a, the bounded model 
outperforms the unbounded model, while in the case of lower inputs of Figure S1b the 
bounded model has longer DTs than the unbounded model. To help understand this 
difference, Figures S1c and S1d show sample time courses of accumulators’ activity for 
the same parameters used in Figures S1a and S1b. Note that in Figure S1c, 
accumulators y1 and y2 grow faster (due to larger input) than in Figure S1d. Hence in 
Figure S1c, the other accumulators y3, y4 and y5 receive larger inhibition from y1 and y2 
than in Figure S1d. As a result, in Figure S1c the activity levels of accumulators y3, y4 
and y5 are very close to zero and they are unlikely to compete with y1 and y2, while in 
Figure S1d the activity levels of accumulators y3, y4 and y5 are higher and compete with 
y1 and y2. 

This analysis may suggest that in the case of Figure S1b, the balance of inhibition and 
decay is not optimizing the performance, but rather it may be more profitable to increase 
the inhibition parameter w, which would increase inhibition of accumulators y3, y4, y5 
and thus prevent them from the competition with y1 and y2. Figure S1e shows that this 
reasoning is indeed correct, as for N = 5 alternatives, increasing inhibition to a certain 
point decreases DT of the bounded LCA model, and DT of the bounded LCA model for 
the value of the inhibition optimizing performance decreases below DT of the race 
model. 

The input/noise ratio used in Figure S1b is similar to that used in simulations by 
(McMillen & Holmes, 2006) (end of Subsection 2.7), where the bounded LCA model is 
slower than the unbounded model at an equivalent ER. This corresponds to a low 
input/noise ratio. When the input noise ratio increases, corresponding to the case of 
Figures 5a, 5b and S1a, the nonlinear bounded model is faster than the unbounded 
model at an equivalent ER. It seems likely that the latter reflects better choice situations 
of the type illustrated in Figure 6, where there is strong evidence for a subset of the 
alternatives. 
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Figure S1. Performance and dynamics of choice models with only two accumulators receiving 
inputs with positive mean and all accumulators receiving equal noise. Methods of simulations as 
in Figure 5. (a), (b) Decision time (DT) for a threshold resulting in error rate of 10% of different 
choice models as a function of the number of alternatives N (shown on x-axis). Three models 
are shown: the race model, the unbounded (i.e. linear) LCA model, and the bounded LCA model 
(see key). The parameters of the LCA model are equal to w = k = 10. The parameters of the two 
first inputs were chosen such that c1 = c2 = 0.33, I1-I2 = 1.41 (as in Figure 5); the other 
accumulator received input with mean equal to 0, I3 = … = IN = 0, and standard deviation equal 
to that of the first two inputs, c3 = … = cN = 0.33. The panels differ in the total mean input to the 
first two accumulators: in panel (a) I2 = 3, while in panel (b) I2 = 1. (c), (d) Examples of the 
evolution of the bounded LCA model, showing yi as functions of time for the same parameters 
as in panels (a), (b) respectively, and for N = 5 alternatives. Panels (c) and (d) were simulated 
for the same initial seed of the random number generator hence in both cases the networks 
received exactly the same inputs. (e) DT for a threshold resulting in error rate of 10% of 
unbalanced bounded LCA model as a function of inhibition (shown on x-axis). The model was 
simulated for the same parameters of inputs as in panel (b), and for N = 5 alternatives. In the 
simulations, the sum of decay and inhibition was kept constant at w + k = 20, while the relative 
values of decay and inhibition was different for each data point. Thus the most left data point 
correspond to the balanced model (w = k = 10) and shows the same value as in panel (b) for N = 
5. The short dashed and dotted lines on the left of the panel indicate the DT of the balanced 
unbounded LCA and race models. 



A stronger version of St Petersburg paradox 
One may contend, that it is possible to construct a new St Petersburg paradox, which 
will not be solved even by such diminishing-return value function (as long as it is 
unbounded), by increasing the gains for the head in ith toss to  (Weirich, 1984). 
Although the price that  people would offer for such a game is still not infinite (though 
much larger than the one in the classical St Petersburg), this is likely to reflect the fact 
that people are right to doubt that such gains would be paid, or that there are practical 
bounds on the number of tosses (Jeffrey, 1983). 
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Weber law and logarithmic utility function 
The Weber law, states that in order to discriminate between two stimuli, x, and x+dx, the 
value of dx needs to be proportional to x, itself. This Section shows that one can satisfy 
this law, by assuming that there are neural representations that transform their inputs x 
(which corresponds to objective value) under a logarithmic type of nonlinearity 
u(x)=log(x) and that the output is subject to additional independent noise of constant 
variance c2. This will require to show that for dx proportional to x, the ability to 
discriminate the two sample x, and x+dx is a constant (which depends on c2). 

Consider a choice between two alternatives with objective values x1 and x2=x1+dx. Their 
subjective values are equal to yi=u(xi)+N(0,c), where N(0,c) denotes a number sampled 
from normal distribution with mean 0 and standard deviation c. We now show that if the 
difference between x1 and x2 is proportional to x1 (let ε denote the proportionality 
constant so that dx=εx1), then the probability of choosing second (i.e., correct) 
alternative is independent of objective values x1 and x2, i.e., the Weber law is satisfied. 
The probability of choosing second alternative is equal to: 
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where Φ denotes the normal standard cumulative distribution function. Note that the 
probability does not depend on either x1 or x2. 

Derivation of probability of choosing the sure alternative 
If we assume for simplicity that the boundaries are not present, then the balanced LCA 
model in the interrogation paradigm chooses the alternative which has received more 
input by time T. Hence let us calculate the probability that the input to the unit 
corresponding to the sure alternative (until time T) is larger than to the risky alternative. 

First let us denote the inputs to units corresponding to the sure and the risky alternatives 
at time t by st and rt. Let us calculate their distributions. st come from the normal 
distribution with mean I0+u(W) and standard deviation SD: 

 st ~ N(I0+u(W), SD) 

The mean of rt is equal to ( )ppWuI /0 + . The variance of rt is equal to 
. ( ) ( ) 2222 // SDppWuppWu +−

Let us denote the input until time T to the units by S and R. According to the central 
limit theorem they come from the following distributions: 
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Hence the probability of choosing the sure alternative is: 
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where Φ denotes the normal standard cumulative distribution function. 

Hence in summary, the probability of choosing the sure alternative increases with 
square root of deliberation time until it saturates. 
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