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SUPPLEMENTAL MATERIAL

There are five sections in this supplemental material.
The first section, “SCUMBLE”, contains additional de-
tails/discussions about our algorithm and its properties.
The next two sections, “Artifacts 1” and “Artifacts 2”,
discuss particular weaknesses of the algorithms we have
compared SCUMBLE to. The fourth section concerns
weaknesses of the specific implementation of CA/RSCU
in the much-used program CodonW. The last section,
“More prokaryote results”, contains a number of results
from SCUMBLE that did not make the main paper.

SCUMBLE

There are two distinct levels of the MLE algorithm:
Given a set of preference functions, it is easy to find
the optimal offsets, as this can be done gene by gene.
Finding optimal preference functions, however, is diffi-
cult. SCUMBLE starts with a randomly generated pref-
erence function—as mentioned in the main text, only one
preference function is added at a time—and uses a com-
bination of gradient ascent and Newton’s method to find
the optimum; at every step of this algorithm the new op-
timal offsets are calculated. The current implementation
typically requires from 10 minutes to an hour to esti-
mate the preference functions for a prokaryote genome
for models with up to 10 trends, on a single regular pro-
cessor. If only models with a few trends are desired, it
is much faster. Once the preference functions have been
estimated, the optimal offsets can be calculated for any
gene, whether or not it was in the gene set used to esti-
mate the preference functions.

SCUMBLE searches for a local maximum of the likeli-
hood function, which is not guaranteed to be the global
maximum. Indeed, different runs of the algorithm may
produce different results (differing by more than a trivial
change of sign), but this seems to only happen when there
is little or no bias in the first place. We have never seen
different results from replicate runs in the presence of
strong bias [for the trend(s) corresponding to the strong
bias].

When applied to unbiased random data, our algorithm
tends to pick preference functions corresponding to indi-
vidual codons. This can be used to limit the number of
trends worth considering: Once a preference function (to-
gether with the preceding preference functions) matches
the ideal preference function for a single codon, this in-
dicates that there are no biases left in the data that are
strong enough to overcome the very slight natural pref-
erence of the algorithm to pick such preference functions.

There is no guarantee that the individual trends found
by our algorithm will correspond directly to separate bi-
ases. However, even if this is not the case, the trends
describe the directions in which the genome shows the

greatest variance in a way that is far more statistically
accurate than PCA. When the biases do separate well,
the preference functions for the weaker biases are con-
strained to be orthogonal to those of the stronger biases.
This is well illustrated by B. subtilis: From Fig. 7, it is
clear that the real expression level bias contains a fair bit
of GC bias, which is absorbed into the first offset. Thus,
the genes of different expression levels resemble a slanted
line in that plot.

Our approach avoids a bias inherent in CAI: In CAI,
the different amino acids have very different contribu-
tions to the index, thus proteins with different compo-
sitions will tend to have different CAIs, even if the pro-
teins’ relative synonymous codon usage (RSCU) values
are identical for the different proteins. For instance, us-
ing directly the frequencies from the CAI, a ”protein”
with only Leucine residues will have a CAI of 0.68, while
a ”protein” with only Glutamine will have a CAI of
> 0.96, even though both have synonymous codon usage
exactly matching the reference set of highly expressed
genes. Our algorithm, on the other hand, will on average
assign the same betas regardless of the amino-acid com-
position; only the statistical accuracy is affected by the
composition.

On the other hand, while it is not an optimal estimate
of the degree of codon bias in a gene, the CAI is likely
an as good or better predictor of how well a protein can
be expressed in an organism, as our offsets. For this
purpose, the above-mentioned biases related to amino
acid composition are real effects: For some amino acids
it doesn’t really matter what codon you use, while for
others the right choice is critical.

Contrary to selection pressures, changes in mutational
rates do not naturally lead to exponential changes in the
relative frequencies of synonymous codons, thus the off-
sets will not be linearly related to the mutational pres-
sures. However, if the mutations act independently on
the nucleotides in a codon, the exponential form allows us
to decompose the probability of the codon into the proba-
bilities of the nucleotides—if the probability of a codon is
the product of the probabilities of the nucleotides in that
codon, that corresponds directly to the preference Ei(c)
being the sum of preferences for each nucleotide; the off-
set will be identical for all 3 nucleotides in a codon. This
guarantees that as long as a mutational pressure only
differentiates between two groups of nucleotides (e.g. AT
vs. CG, or A vs. CGT), we can model arbitrarily strong
mutational pressures with a single trend, with no distor-
tion of the preference function. General single-nucleotide
mutational pressures may require up to 3 trends, while
if there are nearest neighbor correlations, we can not ex-
pect to model them precisely with only a few trends. Of
course, weak mutational pressures can always be mod-
elled accurately with a single trend.

Figure S6 shows β1 for yeast plotted against the num-
ber of codons in a gene for the real genome and for a
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randomized, unbiased genome. The accuracy of the esti-
mated offset is better the longer the gene is.

SCUMBLE has the same chance to yield either sign for
a preference function during each run; Supplemental Ta-
bles S1 and S2 contain the signs directly given by SCUM-
BLE. In the main text, we have when necessary changed
the signs of offsets and their preference functions to yield
positive correlations with expression/GC/GT/CT con-
tent.

Artifacts 1: Amino acid frequencies

Methods

To demonstrate certain weaknesses of the different cor-
respondence analysis methods, we generated several sets
of data that share the same synonymous codon usage
probabilities, but have different amino acid distributions.
We used the yeast genome as a template, i.e., we used
that number of genes with their respective lengths. For
each gene we first randomly assigned an amino acid to
each position, according to the desired distribution. We
then assigned codons to each amino acid using our two-
trend model for the yeast genome, using either the offsets
estimated for that gene in yeast by SCUMBLE or—if a
weaker bias was desired—some constant fraction thereof.
For our “unbiased” model we use uniform distribution of
all codons, i.e., the expected frequency of an amino acid
is proportional to the number of codons encoding that
amino acid.

Results

Correspondence analysis on relative synonymous
codon usage (CA/RSCU) values has long been one of
the most popular approaches to analysis of codon usage,
but this approach is known to be prone to artifacts [1].
Due to the lack of proper statistical weighting, noise from
rare amino acids can dominate actual signals, as shown
in Fig. S9. It also does not consider the length of a gene,
and thus a weak but clear signal in long genes might be
overwhelmed by noise from short genes that are given too
high statistical weight.

Within-block correspondence analysis (WCA) has
been suggested as a better method [2], although it has
not yet been widely used for analysis of codon usage.
However, although it solves those specific problems ex-
chibited by CA/RSCU, also WCA is at some risk for
artifacts and other problems. First, although WCA is
not improperly sensitive to the overall amino acid dis-
tribution the way CA/RSCU is, it is somewhat sensi-
tive to correlations between gene length and amino acid
distribution: amino acids that are present at a higher
rate in long genes will on average get too high statistical
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FIG. S9: Artifacts from rare amino acids. The codon weights
for the first and second axes, determined by each method, are
shown. Black (circles) and red (squares): Unbiased amino
acid distribution. Green (diamonds) and blue (triangles):
Cystein is only 1/10th as common (per codon) as the other
amino acids. Synonymous codon biases are weak (1/5th of
strength in yeast). The results from CA/RSCU are dominated
by the artifact for cystein (2nd and 3rd panel), while WCA
and SCUMBLE are largely unaffected by the rare amino acid.

weight, while amino acids that primarily are present in
short genes get too low weight (Fig. S10). As the ratio of
hydrophilic to hydrophobic residues tends to depend on
the protein (domain) size, this effect could distort esti-
mates of synonymous codon usage bias in real organisms.

Second, while correspondence analysis is often said to
produce axes that are orthogonal to each other, they
are in reality only orthogonal in the space in which the
eigenvalue decomposition in CA takes place. For WCA,
the transformation between this space and synonymous-
codon-usage-probability space depends on the amino acid
distribution, thus the a.a. distribution can indirectly
affect the directions of at least all but the first axis
(Fig. S11). While this is a weak effect, it is indepen-
dent of the signal to noise ratio, i.e., it can be relevant
even in the presence of very strong synonymous codon
bias.

Artifacts 2: Nonlinearities

Often, only a small fraction of the genes are subject
to a given bias to a significant extent. We simulated
this situation using our probabilistic model for a pure
GC bias (this gives exactly the same RSCU values as
a randomly generated nucleotide sequence with different
GC fractions). Figure S12 shows results for a synthetic
genome where 90% of the genes have the same expected
codon usage, with a high GC fraction, while 10% of the
genes have lower, varying GC fractions but otherwise the
same expected codon usage.

Both WCA and CA/RSCU show a clear nonlinear re-
lationship between the 1st and 2nd axis. The codon



3

-0.2

0

0.2 W C A

1 s t a x is

-0.2

0

0.2 W C A

2n d  a x is

-0.2

0

0.2 R S C U

1 s t a x is

-0.2

0

0.2 R S C U

2n d  a x is

-3

0

3
S C U M B L E

1 s t a x is

-3

0

3
S C U M B L E

2n d  a x is

A
A

A
A

A
C

A
A

G
A

A
T

A
C

A
A

C
C

A
C

G
A

C
T

A
G

A
A

G
C

A
G

G
A

G
T

A
T
A

A
T
C

A
T
G

A
T
T

C
A

A
C

A
C

C
A

G
C

A
T

C
C

A
C

C
C

C
C

G
C

C
T

C
G

A
C

G
C

C
G

G
C

G
T

C
T
A

C
T
C

C
T
G

C
T
T

G
A

A
G

A
C

G
A

G
G

A
T

G
C

A
G

C
C

G
C

G
G

C
T

G
G

A
G

G
C

G
G

G
G

G
T

G
T
A

G
T
C

G
T
G

G
T
T

T
A

A
T
A

C
T
A

G
T
A

T
T
C

A
T
C

C
T
C

G
T
C

T
T
G

A
T
G

C
T
G

G
T
G

T
T
T

A
T
T

C
T
T

G
T
T

T

FIG. S10: Artifacts from length-dependent amino acid fre-
quencies. The codon weights for the first and second axes,
determined by each method, are shown. Black (circles) and
red (squares): Unbiased amino acid distribution. Green (dia-
monds) and blue (triangles): The frequency of aspartic acid is
negatively correlated with gene length, while the frequency of
cystein is positively correlated with gene length. Both correla-
tions are strong but reasonable. Synonymous codon biases are
weak (1/5th of strength in yeast). For WCA, the weights for
cysteine along the first axis change significantly (top panel,
circled in magenta), and aspartic acid shows up as a clear
artifact for the second axis (2nd panel, circled in orange).
For CA/RSCU, the second axis for the biased distribution
is entirely an artifact dominated by cysteine (4th panel)—
although cysteine is not overall rare, it is rare in short genes,
which cause the greatest statistical fluctuations. The results
from SCUMBLE are unaffected by the amino acid distribu-
tion (bottom two panels); there are no systematic differences.
All these results are highly reproducible.

weights (the position of a codon on a given axis) for
the 2nd axis are shown in Fig. S13(b), and are clearly
dominated by two codons, namely AGA (arginine) and
TTA/UUA (Leucine). These are precisely the two codons
that have two fewer G/Cs than some of their synonymous
codons, and they will thus experience a stronger initial
GC bias, but will saturate earlier than other GC-poor
codons. SCUMBLE shows no nonlinear relationship be-
tween β1 and β2, as these nonlinearities are captured by
the probabilistic model.

The codon weights from WCA and CA/RSCU for the
1st axis are distorted by these nonlinearities. For a
weak GC bias, WCA, CA/RSCU and SCUMBLE all
yield similar preference functions/codon weights [after
rescaling WCA and CA/RSCU; Fig. S13(c)], but these
are clearly different from the codon weights from WCA
and CA/RSCU for the strong bias, above. SCUMBLE,
however, yields almost identical preference functions for
strong and weak bias.

In WCA and CA/RSCU, deviations from average
codon usage is scaled according to that average codon
usage. However, if there is a large deviation along one
axis (e.g. GC bias), that will affect the expected devi-
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FIG. S11: Artifacts from amino acid-dependent orthogonality.
The codon weights for the first and second axes, determined
by each method, are shown. Black (circles, solid line): Un-
biased amino acid distribution. Red (squares, dashed line):
A selected subset of the amino acids are 3-4 times as com-
mon as the others (per codon). Blue (diamonds, dotted line):
A different selected subset of the amino acids are 3-4 times
as common as the others. Synonymous codon biases are as
strong as in yeast; statistical fluctuations are negligible. For
WCA, the second axis differs due to different requirements
for orthogonality (2nd panel). Both CA/RSCU and SCUM-
BLE give essentially identical results for all three amino acid
distributions.
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FIG. S12: Synthetic genome where 90% of the genes have
identical, high-GC codon usage, while 10% have varying GC
bias. The position of each gene on the first two axes are plot-
ted for each algorithm. In all cases, the first axis corresponds
to GC content.

ations in other directions, and WCA and CA/RSCU do
not compensate for this. This is illustrated in Fig. S14:
the standard deviation for WCA2 or RSCU2 is more than
twice as large for genes left of the dashed red line as for
the main bulk of genes to the right of the dashed line.
This effect can be much larger for biases primarily in-
volving amino acids with only 2 synonymous codons, as
these are far more constrained by GC bias.

All of these artifacts can be observed for the genome of
Pseudomonas aeruginosa (Fig. S15. To make sure that
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FIG. S13: (a), (b): Synthetic genome where 90% of the genes
have identical, high-GC codon usage, while 10% have varying
GC bias. The position of each codon on the first and second
axes are plotted for WCA and RSCU. (c) Synthetic genome
where 90% of the genes have uniform codon usage, while 10%
have random, weak GC bias. The position of each codon on
the first axis is plotted for all three methods, as are the results
from SCUMBLE for the data used in (a) and (b).
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FIG. S14: Synthetic genome where 90% of the genes have
high-GC codon usage, 10% have varying GC bias, and all
genes have a small secondary bias (random direction in codon
space). The position of each gene on the first two axes are
plotted for each algorithm. In all cases, the first axis corre-
sponds to GC content. The same number of genes are to the
right of the dashed red line for each algorithm.

these were indeed artifacts, and the result of some bias
that SCUMBLE failed to detect, we generated a ran-
domized version of the P. aeruginosa genome using the 2-
trend model from SCUMBLE. The results were very sim-
ilar when we applied WCA to this randomized genome,
except that the axes were not in the exact same order
(data not shown). Results are very similar for RSCU
as for WCA. SCUMBLEdoes not display these artifacts.
Furthermore, the probabilistic model makes it easy to
test whether a trend is indeed an artifact in SCUMBLE,
by checking if it appears also in randomly generated data
(with that trend absent from the model used to generate
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FIG. S15: Results for WCA applied to the Pseudomonas
aeruginosa genome. (a) The 4th axis shows a clear nonlin-
ear relationship with the GC content, which is captured by
the 1st axis. (b) The codon weights of the 4th axis are dom-
inated by AGA (9th codon) and TTA (61st codon). (c) For
the 3rd axis, the standard deviation is much larger for genes
with low GC content than for the bulk of the genes (riboso-
mal proteins have high values because this axis captures the
expression bias).

the data).

CA/RSCU in CodonW: Analysis of synonymous
codon usage?

The algorithm most commonly used to analyze
codon usage is correspondence analysis on rela-
tive synonymous codon usage (CA/RSCU), as imple-
mented in the program CodonW (available from URL
http://codonw.sourceforge.net/culong.html). There are,
however, two problems with the algorithm used in
CodonW.

First, CodonW includes the first codon of a gene
in its analysis. However, many prokaryotes use alter-
native start codons, such as UUG, which in the con-
text of a start codon codes for methionine (or rather
N-formylmethionine). CodonW mistakenly treats this
codon as a codon for leucine. SCUMBLE, as well as
our implementations of WCA and CA/RSCU, ignore the
start codon.

Second, when a gene does not contain a given amino
acid, CodonW sets the RSCU values for the correspond-
ing codons to zero. This, however, means that the RSCU
values contain information on whether or not a gene con-
tains a given amino acid, which means the results can de-
pend (in a very crude way) on the amino acid content of
genes. To eliminate this problem in our implementation
of CA/RSCU, and ensure that the results depend only
on synonymous codon usage, we set the RSCU values for
codons encoding a missing amino acid to the averages of
the RSCU values for the same codons in all genes that do
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FIG. S16: Maximal square correlations between βi / WCAi /
RSCUi and a ribosomal indicator (1 for identified ribosomal
genes, 0 for all other genes). The correlations for WCA [(a)
and (c)] or CA/RSCU [(b) and (d)] are plotted against the
correlations for SCUMBLE for all the prokaryote genomes
studied.

contain the amino acid. This ensures that missing amino
acids contribute to neither the eigenvalue calculations nor
the gene scores.

More prokaryote results

There are several different ways to compare the results
from two different algorithms. If we were to compare
correlations between βi / WCAi / RSCUi and the genes’
GC3 or GT3 values, then SCUMBLE would be at a clear
disadvantage, since the nonlinear relationships between
the βs and codon usage frequencies in SCUMBLE would
yield lower correlations than the linear relationships of
WCA and CA/RSCU, even if the underlying biases were
identical. When comparing preference functions/codon
weights, however, none of the algorithms should be at sig-
nificant disadvantage. Figure S8 shows that not only does
SCUMBLE perform better than WCA and CA/RSCU
on average, but there are barely any genomes for which
WCA or CA/RSCU outperforms SCUMBLE. The per-
formance difference is clearly greater for GT content
than for GC content, suggesting that SCUMBLE is rela-
tively better at uncovering weaker biases. In both cases,
CA/RSCU is the weakest method of the three.

To evaluate the algorithms’ performance on discover-
ing expression-related codon bias, we compare the corre-
lations between βi / WCAi / RSCUi and the ribosomal
indicator, which is 1 for ribosomal genes and 0 for all
other genes. As shown in Fig. S16, SCUMBLE again
beats CA/RSCU easily, but there is no clear winner be-
tween SCUMBLE and WCA; each method outperforms
the other significantly for a number of genomes (the av-
erage correlation is slightly higher for SCUMBLE).

Figure S17 shows the results for Bacillus subtilis.
The first trend for B. subtilis corresponds to GC bias
[Fig. S17(a)]: the square correlation between β1 and the
GC3 value is 0.889, and the preference function corre-
lation is r2

P(E1, EGC) = 0.760. The second trend corre-
sponds to expression level [Fig. S17(b)]: Ribosomal genes
have average β2 values of 1.33, whereas the genomic aver-
age is zero. This is only about half the strength of riboso-
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FIG. S17: A 4-trend model of Bacillus subtilis. (a)-(c) GC3
or GT3 plotted against the first, second and third offset for
each gene. Genes for ribosomal proteins are circled in red. (d)
β3 plotted against the number of the gene along the genome,
with genes on different strands in different colors. The green
and blue lines are 50-point running averages for strand 1 and
2, respectively.
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FIG. S18: Average (black) and median (red) normalized vari-
ance for named genes in B. subtilis, for models with up to 10
trends. Full models (circles, solid lines) and models with E0

set to zero (squares, dashed lines) are compared to results for
a randomized genome (diamonds, dotted lines).

mal gene bias in yeast, but is among the stronger biases
for ribosomal genes in prokaryotes, although extremely
fast-growing prokaryotes such as Clostridium perfringens
and Vibrio parahaemolyticus have significantly stronger
biases (Table S1). β3 corresponds well to GT bias
[r2

P(E3, EGT) = 0.769] and exhibits significant strand
asymmetry [Fig. S17(c,d)]. These observations agree
with previous studies of codon usage in B. subtilis and
of the strength of selected codon usage bias in various
bacteria [8].

As in budding yeast, the two first trends explain most
of the excess variance. However, unlike for budding
yeast, the models for B. subtilis with a moderate number
of trends can not explain the overall codon bias of the
genome when E0 is set to zero (Fig. S18).

Borrelia burgdorferi has long been a prime example of
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FIG. S19: A 2-trend model of B. burgdorferi: the first trend
plotted against the gene number along the genome, with genes
on different strands in different colors.
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FIG. S20: Average and median normalized variance for mod-
els with up to 7 trends for B. burgdorferi.

a prokaryote with very strong strand asymmetry of codon
usage [3]. The results from SCUMBLE support this:
the first offset almost perfectly separates the genes on
the leading and lagging strands (Supplemental Fig. S19),
and the preference function E1 is highly correlated with
EGT—r2

P(E1, EGT) = 0.856. Even more significantly, the
first trend seems to explain essentially all the codon us-
age variation in the B. burgdorferi genome: The excess
variation for the model with 1 trend is reduced by 95%
(leaving it on the order of the sampling error), and there
is no evidence for excess variation for the models with 2
or more trends (Supplemental Fig. S20). The absence of
competing biases would explain why it for B. burgdorferi
is exceptionally easy to distinguish genes on the leading
and lagging strands by their sequence [4].

Burkholderia mallei has a genomic GC content of 68%
and an average GC3 value of 87%. Recently, it was
claimed that the main source of codon usage variation
in this organism is translational selection, and that all
translationally optimal codons end in C or G [5]. To
test this claim, we applied SCUMBLE to the B. mallei
genome. The first temperature corresponds very well to
GC content—r2

P(E1, EGC) = 0.828—suggesting that the
main source of codon usage variation is mutational bias,
not translational selection. The second temperature, on
the other hand, is completely unrelated to GC content,
but has high values for all the ribosomal proteins, indi-
cating that it corresponds to expression level (Fig. S21).
CA/RSCU, on the other hand, yields little to no signal
for the ribosomal proteins.
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FIG. S21: Scatter plot of the first two axes from the two-trend
model found by SCUMBLE (a) and CA/RSCU (b) for the
genes of Burkholderia mallei. Genes for ribosomal proteins
are circled in red.
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FIG. S22: Preference functions for the 4-trend model of
Burkholderia mallei. ‘Ideal’ preference functions are shown
in red.

Looking at the energies E2, we find that many of the
favored codons do not end in C or G (Fig. S22)—for in-
stance, GAA is strongly favored over GAG for glutamate.
Indeed, the ribosomal proteins have lower GC3 values
than most proteins in B. mallei. We attribute the dis-
crepancy with prior results to the prior authors’ reliance
on CAI—defined by ribosomal proteins—to estimate ex-
pression level: Even though C/G-ending codons are often
not translationally optimal, many of them are neverthe-
less the most common codons in ribosomal proteins, due
to the strong overall GC bias. CAI thus mistakenly iden-
tifies proteins with high GC3 values as highly expressed
proteins. This problem has been noted before [7], al-
though the issue is more clear in [5] than in the article
discussed there, [6]: In [5], it is clear that the CAI was
appropriately defined, using ribosomal genes (which are
indeed highly expressed), but CAI is still a poor estima-
tor for gene expression level.

While the ribosomal bias in A. dehalogenans is clear,
we found a curious feature: While several of the genes ex-
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pected to be highly expressed, such as chaperonin GroEL
and translation EF-G, show similar bias as the ribosomal
genes, translation EF-Tu has a highly significant opposite
bias (p < 10−6): the two near-identical genes have the
4th and 5th lowest values of β2. This is quite unusual: in
most other prokaryotes examined, EF-Tu shares the bias
of the ribosomal genes.
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