APPENDIX A

The derivation of egs. (2) is detailed in Rocheleau et al. (2006) and described in brief
below. The standard chemical kinetics applied to the reactions (1) yields the following dif-

ferential equations characterising the temporal evolution of the metabolites’ concentration:

T3] = 2K,[T,) — kr[pO]|T3] (Ala)
[T)] = —K7[Ty] + kr[pO][T})] (A1b)
L] = ke[pL][Td), (Alc)

where the chemical equilibrium of reaction (1b) has been used through its equilibrium con-
stant K;. Considering that the total concentration of (single-)template can be written as

[T}] = 2[Ty] + [Ts], one can rewrite eqs. (Al) in terms of [T}] as

[T}] = kr[pO][Ty] (A2a)
(L) = ki[pL][T). (A2b)

In addition, as the equilibrium constant satisfies K; = [T]?/[Ty], the following equation
holds:

2T, + K,[T.] - K[T] = 0,

implying that
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where the product inhibition has been taken into account as [T;] < [T,]. With the help of

these approximations, eqs. (A2) can finally be rewritten as egs. (2).

APPENDIX B

Egs. (2) implicitly assume that the protocell’s volume can be approximated as being a

constant. Thus one can also write eq. (2b) as

—— = C[T}]. (B1)

If instead, the volume V; is considered proportional to the number of lipid molecules, i.e.,
Vi = @Q x Ny, with ) being the proportionality constant, then the volume must be considered

as time-varying:

v, dNp,

—Logx—=t

dt dt
Thus, in the changing volume approach, the time derivative of the template concentration

[T;] = Nr/V] is given by:

(B2)
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The first term on the r.h.s of eq. (B3) is considered at constant volume and thus one must

have:
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=T (B4)
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By using the definition of [T}] and eqs. (B4) and (2a), both of which apply at constant
volume, eq. (B3) can be rewritten as
d[T)] (i dVi

= p_ 2
o= ol - S (B5)

Next, we consider the dividing protocells and their concentration, [A] in the entire exper-
imental volume. As the lipid aggregates have a characteristic scale, there exists and average
number my of lipids per average aggregate volume V. Thus, the growth rate of [A] is given

by:



T = A (Vo)
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where [T,] = [A]V,[T}] and eq. (B1) have been used. One can recognise eq. (B7) as being
eq. (7) with v4 = C/my. Applying eq. (B2), one can rewrite eq. (B6) as

dA (4] v
At Qmg dt
[A] dV;
= = B
Vy dt (B8)

where we have used the definition of the average aggregate volume (V4 = Q@my). One can
recognise the last equation as being eq. (5).
Finally, let us recover the evolution of the global concentration of templates. Taking the

derivative of [T] = [A]V4[T;] yields

d[T,] d[A] d[7;]
Slhgl k| AV, 2l
dt dt m]+[ Wa=y "

Using egs. (B8) and (B5) to substitute into the first and second terms on the r.h.s of eq. (B9),

= [L]Va (BY)

we have

AT _ o 1A Vi [
T = mi G twa (et - TG0
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Considering again the approximation V; & V4, the bracketed r.h.s of eq. (B10) becomes zero.

Then using the relation between [T},] and [T}, one obtains

e () —om (5

with vp = Cp/VE™!, which is eq. (6).




