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APPENDIX A

The derivation of eqs. (2) is detailed in Rocheleau et al. (2006) and described in brief

below. The standard chemical kinetics applied to the reactions (1) yields the following dif-

ferential equations characterising the temporal evolution of the metabolites’ concentration:

˙[Ts] = 2Kt[Td]− kT [pO][Ts] (A1a)

˙[Td] = −KT [Td] + kT [pO][Ts] (A1b)

˙[L] = kL[pL][Td], (A1c)

where the chemical equilibrium of reaction (1b) has been used through its equilibrium con-

stant Kt. Considering that the total concentration of (single-)template can be written as

[Tl] ≡ 2[Td] + [Ts], one can rewrite eqs. (A1) in terms of [Tl] as

˙[Tl] = kT [pO][Ts] (A2a)

˙[L] = kL[pL][Td]. (A2b)

In addition, as the equilibrium constant satisfies Kt = [Ts]
2/[Td], the following equation

holds:

2[Ts]
2 + Kt[Ts]−Kt[Tl] = 0,

implying that

[Ts] =
−Kt +

√

K2
t + 8Kt[Tl]

4
≈

√

Kt[Tl]2

[Td] =
[Tl]

2
+
−Kt +

√

K2
t + 8Kt[Tl]

4
≈ [Tl]

2
,
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where the product inhibition has been taken into account as [Ts] � [Td]. With the help of

these approximations, eqs. (A2) can finally be rewritten as eqs. (2).

APPENDIX B

Eqs. (2) implicitly assume that the protocell’s volume can be approximated as being a

constant. Thus one can also write eq. (2b) as

1

VA

dNL

dt
= CL[Tl]. (B1)

If instead, the volume Vl is considered proportional to the number of lipid molecules, i.e.,

Vl = Q×NL, with Q being the proportionality constant, then the volume must be considered

as time-varying:

dVl

dt
= Q× dNL

dt
(B2)

Thus, in the changing volume approach, the time derivative of the template concentration

[Tl] ≡ NT /Vl is given by:

d[Tl]

dt
=

1

Vl

dNT

dt

∣

∣

∣

∣

Vl

− NT

V 2
l

dVl

dt

∣

∣

∣

∣

NT

(B3)

The first term on the r.h.s of eq. (B3) is considered at constant volume and thus one must

have:

d[Tl]

dt

∣

∣

∣

∣

Vl

=
1

Vl

dNT

dt

∣

∣

∣

∣

Vl

(B4)

By using the definition of [Tl] and eqs. (B4) and (2a), both of which apply at constant

volume, eq. (B3) can be rewritten as

d[Tl]

dt
= CT [Tl]

p − [Tl]

Vl

dVl

dt
(B5)

Next, we consider the dividing protocells and their concentration, [A] in the entire exper-

imental volume. As the lipid aggregates have a characteristic scale, there exists and average

number m0 of lipids per average aggregate volume VA. Thus, the growth rate of [A] is given

by:
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d[A]

dt
= [A]

d

dt
(NL/m0)

=
[A]

m0

dNL

dt

=
[A]

Qm0

dVl

dt
(B6)

=
CL

m0
[Tg] (B7)

where [Tg] = [A]Va[Tl] and eq. (B1) have been used. One can recognise eq. (B7) as being

eq. (7) with γA ≡ CL/m0. Applying eq. (B2), one can rewrite eq. (B6) as

dA

dt
=

[A]

Qm0

dVl

dt

=
[A]

VA

dVl

dt
(B8)

where we have used the definition of the average aggregate volume (VA = Qm0). One can

recognise the last equation as being eq. (5).

Finally, let us recover the evolution of the global concentration of templates. Taking the

derivative of [Tg] = [A]VA[Tl] yields

d[Tg]

dt
= [Tl]VA

d[A]

dt

∣

∣

∣

∣

[Tl]

+ [A]VA
d[Tl]

dt

∣

∣

∣

∣

[A]

(B9)

Using eqs. (B8) and (B5) to substitute into the first and second terms on the r.h.s of eq. (B9),

we have

d[Tg]

dt
= [Tl]

[A]

Qm0

dVl

dt
+ [A]VA

(

CT [Tl]
p − [Tl]

Vl

dVl

dt

)

= [A]VACT [Tl]
p − [A][Tl]

dVl

dt

[

1

Vl
− 1

Qm0

]

(B10)

Considering again the approximation Vl ≈ VA, the bracketed r.h.s of eq. (B10) becomes zero.

Then using the relation between [Tg] and [Tl], one obtains

d[Tg]

dt
= CT [Tg]

(

[Tg]

VA[A]

)p−1

= γT [Tg]

(

[Tg]

[A]

)p−1

with γT ≡ CT/V p−1
A , which is eq. (6).
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