SUPPLEMENTARY INFORMATION

Gene	Allele	Odds ratio References	
HLA class II	DR2 (serotype)	1.8-2.7	64, 65, 67
	DRB1*1501 (DR2 subtype)	2.7–7.9	42, 50, 58, 61
	DQB1*0503	N/A ¹	66
IFN-γ	+874A	1.6-3.8	32, 35, 52
TAP	TAP2*0201	2.4-4.3	17, 48

Supplementary Table 1. Antigen presentation-relevant polymorphisms associated with TB susceptibility.

¹This polymorphism was not detected in the control population.

A more complete list of polymorphisms associated with TB susceptibility can be found elsewhere (3, 15, 22). Odds ratios represent a measure of the relative risk associated with each allele.

APC Model Equations

Equations 1-16 constitute the APC model and are identical to the equations presented in Chang *et al.* (8).

$$dG/dt = [-k_{\text{on-IFN-}\gamma}G R_{\text{G}} + k_{\text{off-IFN-}\gamma}C_{\text{G}}] [n_{\text{cells}} / (N_{\text{A}} v_{\text{medium}})] - k_{\text{deg-IFN-}\gamma}G$$

$$[1]$$

$$dR_{\text{G}}/dt = -k_{\text{on-IFN-}\gamma}G R_{\text{G}} + k_{\text{off-IFN-}\gamma}C_{\text{G}} + k_{\text{recyc}}C_{\text{G}}$$

$$[2]$$

$$dC_{\text{G}}/dt = k_{\text{on-IFN-}\gamma}G R_{\text{G}} - k_{\text{off-IFN-}\gamma}C_{\text{G}} - k_{\text{recyc}}C_{\text{G}}$$

$$[3]$$

$$dC_{2m}/dt = k_{\text{txn-C2}} (1 + \alpha_{\text{C2}}C_{\text{G}}) - k_{\text{deg-C2m}}C_{2m}$$

$$[4]$$

$$dC_{2}/dt = k_{\text{tsl-C2}} C_{2m} - k_{\text{deg-C2}} C_{2}$$

$$[5]$$

$$dM_{\text{m}}/dt = k_{\text{txn-M}} C_{2} - k_{\text{deg-Mm}} M_{\text{m}}$$

$$[6]$$

$$dA^{*}/dt = -(k_{\text{pino}} n_{\text{cells}} / v_{\text{medium}}) A^{*} - k_{\text{deg-A}^{*}} A^{*}$$

$$[7]$$

$$dA/dt = (k_{\text{pino}} / v_{\text{MIIC}}) A^{*} - k_{\text{deg-A}} A - k_{\text{lys}} A$$

$$[8]$$

$$dE/dt = k_{\text{deg-A}} A + (-k_{\text{on-MHC}} M E + k_{\text{off-MHC}} M_{\text{E}}) [1 / (N_{\text{A}} v_{\text{MIIC}})] - k_{\text{lys}} E$$

$$[9]$$

$$dS/dt = k_{\text{source}} + [k_{\text{deg-MHC}} (M_{\text{S}} + M_{\text{S}}^{*}) - k_{\text{on-MHC}} M S + k_{\text{off-MHC}} M_{\text{S}}]$$

$$[10]$$

$$[11/ (N_{\text{A}} v_{\text{MIIC}})] - k_{\text{lys}} S$$

$$dM/dt = k_{\text{tsl-M}} (1 + \alpha_{\text{M}} C_{\text{G}}) M_{\text{m}} - k_{\text{odg-MHC}} M S + k_{\text{off-MHC}} M_{\text{S}} - k_{\text{on-MHC}} M E$$

$$[11]$$

$$dM^{*}/dt = k_{\text{out}} M - k_{\text{in}} M^{*} - k_{\text{deg-MHC}} M^{*}$$

$$[12]$$

$$dM_{\text{S}}/dt = k_{\text{out}} M - k_{\text{in}} M_{\text{S}} - k_{\text{deg-MHC}} M_{\text{S}}$$

$$[13]$$

$$dM_{\rm E}/dt = k_{\rm on-MHC} M E - k_{\rm off-MHC} M_{\rm E} - k_{\rm out} M_{\rm E} + k_{\rm in} M_{\rm E}^* - k_{\rm deg-MHC} M_{\rm E}$$
^[15]

$$dM_{\rm E}^{*}/dt = k_{\rm out} M_{\rm E} - k_{\rm in} M_{\rm E}^{*} - k_{\rm deg-MHC} M_{\rm E}^{*}$$
[16]

Descriptions of the terms in each equation are provided in Chang *et al.* (8). Variables and parameters are defined, and values provided, in Supplementary Tables 2 and 3.

TCR Internalization Model Equations

Equations 17-27 constitute the T cell model and are approximated from the PDEs of Coombs *et al.* (10) that pertain to the contact zone.

$$dM_{\rm E}^{\rm C}/dt = -k_{\rm on-B} \left(T^{\rm C} + T_{\rm activ}^{\rm C}\right) M_{\rm E}^{\rm C} + k_{\rm off-B} \left(B_0 + B_1 + B_2 + B_3 + B_4 + B_5 + B_{\rm N}\right)$$

pMHC-TCR association
$$+ \lambda_{\rm B} B_{\rm N} - k_{\rm deg-MHC,C} M_{\rm E}^{\rm C}$$

internalization degradation
$$T^{\rm C}_{\rm C} t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + t = -T^{\rm C}_{\rm C} M_{\rm C}^{\rm C} + T^{\rm C}_{\rm C} + T$$

$$dT^{\rm C}/dt = -k_{\rm on-B} T^{\rm C} M_{\rm E}^{\rm C} + k_{\rm off-B} (B_0 + B_1 + B_2 + B_3 + B_4 + B_5 + B_{\rm N})$$
(18)
activation
(18)

$$dB_0/dt = k_{\text{on-B}} T^C M_E^C - k_p B_0 - k_{\text{off-B}} B_0$$
activation
deactivation
[19]

$$dB_1/dt = k_p B_0 - k_p B_1 - k_{\text{off-B}} B_1$$
activation deactivation [20]

$$\frac{dB_2}{dt} = k_p B_1 - k_p B_2 - k_{\text{off-B}} B_2$$
activation deactivation [21]

$$\frac{dB_3}{dt} = k_p B_2 - k_p B_3 - k_{\text{off-B}} B_3$$
activation deactivation [22]

$$\frac{dB_4}{dt} = k_p B_3 - k_p B_4 - k_{\text{off-B}} B_4$$
activation deactivation [23]

$$\frac{dB_5}{dt} = k_p B_4 - k_p B_5 - k_{\text{off-B}} B_5$$
activation deactivation [24]

$$dB_{\rm N}/dt = k_{\rm on-B} T_{\rm activ}^{\rm C} M_{\rm E}^{\rm C} + k_{\rm p} B_5 - k_{\rm off-B} B_{\rm N}$$
association activation deactivation [25]

$$dT_{\text{activ}}^{C}/dt = -k_{\text{on-B}} T_{\text{activ}}^{C} M_{\text{E}}^{C} + k_{\text{off-B}} B_{\text{N}} - \lambda_{\text{T}} T_{\text{activ}}^{C}$$

$$(26)$$

$$dissociation \quad \text{internalization}$$

$$dT_{\rm int}/dt = \lambda_{\rm T} \left(T_{\rm activ} + T_{\rm activ}^{\rm T} \right) + \lambda_{\rm B} B_{\rm N}$$
internalization (free) internalization (bound) [27]

Briefly, Equations 17-19 describe the processes by which free pMHC complexes on the APC surface and free TCRs on the T cell surface bind and form pMHC-TCR trimolecular complexes. Equations 20-25 describe the progressive activation of pMHC-TCR tri-molecular complexes that occurs during kinetic proofreading. Finally, Equations 26 and 27 describe the association and dissociation of fully activated TCRs to and from pMHC complexes and the internalization of activated TCR in free or bound forms. In this model, only the contact zone of Coombs et al. (10) was represented, and therefore terms representing diffusion between the contact zone and other zones in the Coombs model were excluded. Variables and parameters are defined, and parameter values provided, in Supplementary Tables 4 and 5. The model recapitulated major features of the model of Coombs *et al.* (10) and Gonzalez *et al.* (18) such as the existence of an optimal pMHC-TCR half-life for TCR internalization (data not shown).

Cytokine Production Model Equations

Equations 28-31 describe the cytokine production portion of the T cell model.

$$dF_{\text{activ}}/dt = k_{\text{resp}} \left(T_{\text{activ}} + B_{\text{N}} \right) F - k_{\text{decay}} F_{\text{activ}}$$
activation de-activation [28]

$$F = 1 - F_{\text{activ}}$$
^[29]

$$\frac{dG_{\rm m}}{dt} = k_{\rm txn-IFN-\gamma} F_{\rm activ} - k_{\rm deg-Gm} G_{\rm m}$$
transcription degradation
[30]

$$\frac{dG_2/dt = k_{\text{tsl-IFN-}\gamma} G_{\text{m}} [n_{\text{cells}} / (N_{\text{A}} v_{\text{medium}})] - k_{\text{deg-IFN-}\gamma} G_2}{\text{translation}}$$
[31]

Briefly, Equation 28 represents the first-order activation and deactivation of a transcription factor for cytokines produced by the T cell, e.g., NF- κ B, in units of fraction total transcription factor. Equation 29 represents the pool of un-activated transcription factor. Equation 30 represents the first-order synthesis (i.e., transcription) and degradation of cytokine mRNA and in particular the absolute dependence of the synthesis of cytokine mRNA on the presence of activated transcription factor. Equation 31 represents the first-order synthesis (i.e., translation) and degradation of cytokine protein in the model is dependent on the presence of its activator, cytokine mRNA. Variables and parameters are defined, and parameter values provided, in Supplementary Tables 4 and 5.

Variable	Description	Initial value ⁽¹⁾	
G	IFN-γ concentration in medium	Varies by experiment	
R _G	Free IFN-γ receptors per cell	1×10^{3}	
C _G	IFN-γ/IFN-γ receptor complexes per cell	0	
$C_{2\mathrm{m}}$	CIITA mRNA as fraction of basal level	1	
<i>C</i> ₂	CIITA protein as fraction of basal level	1	
M _m	MHC ⁽²⁾ mRNA per cell	1×10^{5}	
A*	Antigen concentration in medium	Varies by experiment	
Α	Antigen concentration within MIIC	0	
Ε	Peptide concentration within MIIC	0	
S	Self peptide concentration within MIIC	$4 \times 10^{-4} \mathrm{M}^{(3)}$	
М	Free intracellular MHC per cell	$p_{\rm in} \left(1 - p_{\rm bound}\right) M_{\rm tot} \approx 6.7 \times 10^3$	
<i>M</i> *	Free surface MHC per cell	$[(1 - p_{\rm in}) / p_{\rm in}] M_0 \approx 1.3 \times 10^4$	
M _S	Intracellular self-MHC complexes per cell	$[p_{\text{bound}} / (1 - p_{\text{bound}})] M_0 \approx 2.7 \times 10^4$	
M _S *	Surface self-MHC complexes per cell	$[(1 - p_{\rm in}) / p_{\rm in}] M_{\rm S,0} \approx 5.3 \times 10^4$	
M _E	Intracellular peptide-MHC complexes per cell	0	
$M_{\rm E}^*$	Surface peptide-MHC complexes per cell	0	

Supplementary Table 2. Initial values in the APC model

⁽¹⁾When used in the definition of another parameter or variable, the subscript 0 refers to the initial value of a particular variable such that, e.g., M_0 refers to the initial value of M. Units are numbers of molecules per cell (APC or T cell) unless otherwise indicated. ⁽²⁾MHC in this and following entries refers to MHC class II.

⁽³⁾This value was estimated from $[k_{deg-Mm} (M_{S,0} + M_{S,0^*}) + k_{off-MHC} M_{S,0}] / k_{on-MHC} M_0$ (8).

Parameter	Description	Value ⁽¹⁾	
$k_{ m on-IFN-\gamma}$	IFN-γ / IFN-γR association rate constant	$3 \times 10^9 \mathrm{M}^{-1} \mathrm{h}^{-1}$	
$k_{\rm off-IFN-\gamma}$	IFN- γ / IFN- γ R dissociation rate constant	$7 \times 10^{-1} \text{ h}^{-1}$	
<i>n</i> _{cells}	Number of APC in medium	Varies by experiment	
V _{medium}	Volume of culture medium	Varies by experiment	
$k_{ m deg-IFN-\gamma}$	IFN-γ degradation rate constant	$1 \times 10^{-2} \mathrm{h}^{-1}$	
k _{recyc}	IFN-γ receptor recycling rate constant	$1 \times 10^{1} \text{ h}^{-1}$	
k _{txn-C2}	CIITA transcription rate constant	$k_{\text{deg-C2m}} C_{2\text{m},0} = 2 \times 10^{-1} \text{ h}^{-1}$	
$\alpha_{\rm C2}$	IFN-γ-dependent CIITA scaling factor	1×10^{-1}	
k _{deg-C2m}	CIITA mRNA degradation rate constant	$2 \times 10^{-1} \text{ h}^{-1}$	
k _{tsl-C2}	CIITA mRNA translation rate constant	$k_{\text{deg-C2m}} C_2 / C_{2m,0} = 1.4 \times 10^0$ h ⁻¹	
k _{deg-C2}	CIITA degradation rate constant	$1.4 \times 10^{0} \mathrm{h^{-1}}$	
k _{txn-M}	MHC transcription rate constant	$k_{\rm deg-Mm} M_{\rm m,0} \approx 4 \times 10^3 {\rm h}^{-1}$	
k _{deg-Mm}	MHC mRNA degradation rate constant	$4 \times 10^{-2} \text{ h}^{-1}$	
k _{pino}	Pinocytosis rate	$1 \times 10^{-13} \mathrm{L} \mathrm{h}^{-1}$	
k _{deg-A*}	Antigen degradation rate constant in medium	$1 \times 10^{-2} \text{ h}^{-1}$	
V _{MIIC}	Volume of MIIC compartment	$4 \times 10^{-16} L$	
k _{deg-A}	Antigen processing rate constant	$4 \times 10^{0} \mathrm{h^{-1}}$	
k _{lys}	Lysosomal degradation rate constant	$6 \times 10^{0} \text{ h}^{-1}$	
<i>k</i> _{source}	Self peptide synthesis rate constant	$k_{\rm lys} S_0 \approx 2.4 \times 10^{-3} \mathrm{M}^{-1} \mathrm{h}^{-1}$	
k _{deg-MHC}	MHC degradation rate constant	$2 \times 10^{-2} \text{ h}^{-1}$	

Supplementary Table 3. Parameters in the APC model

k _{on-MHC}	Peptide-MHC association rate constant	$7.2 \times 10^8 \mathrm{M}^{-1} \mathrm{h}^{-1}$
k _{off-MHC}	Peptide-MHC dissociation rate constant	$7.2 \times 10^4 h^{-1}$
k _{tsl-M}	MHC mRNA translation rate constant	$k_{\text{deg-MHC}} (M_0 + M^*_0 + M_{\text{S},0} + M_{\text{S}}^*_0) \approx 2 \times 10^{-2} \text{ h}^{-1}$
$lpha_{ m M}$	IFN-γ-dependent MHC scaling factor	1×10^{-1}
k _{out}	MIIC-to-surface trafficking rate constant	$4 \times 10^{0} \mathrm{h}^{-1}$
k _{in}	Surface-to-MIIC trafficking rate constant	$[p_{\rm in}/(1-p_{\rm in})] k_{\rm out} - k_{\rm deg-MHC} \approx 2 \times 10^0 \rm h^{-1}$
$p_{ m in}$	Proportion of MHC intracellular at time 0	1/3
$p_{\rm bound}$	Proportion of MHC bound to self at time 0	4/5
M _{tot}	Total number of MHC per cell	1×10^5

⁽¹⁾When used in the definition of another parameter or variable, the subscript 0 refers to the initial value of a particular variable such that, e.g., M_0 refers to the initial value of M.

Variable	Description ⁽¹⁾	Initial value
$M_{\rm E}^{\rm C}$	Peptide-MHC complexes within contact zone	0
T ^C	Free TCR within contact zone, inactive	$(\sigma_{\rm C}/\sigma_{\rm tot-Tcell}) T_{\rm tot} \approx 4.2 \times 10^3$
B ₀	Peptide-MHC-TCR complex, inactive	0
<i>B</i> ₁	Peptide-MHC-TCR complex, state 1	0
<i>B</i> ₂	Peptide-MHC-TCR complex, state 2	0
<i>B</i> ₃	Peptide-MHC-TCR complex, state 3	0
B_4	Peptide-MHC-TCR complex, state 4	0
<i>B</i> ₅	Peptide-MHC-TCR complex, state 5	0
B _N	Peptide-MHC-TCR complex, activated	0
$T_{\rm activ}^{\rm C}$	Free TCR within contact zone, activated	0
T _{int}	Internalized TCR	0
F	Inactive NF-κB as fraction of total NF-κB	1
F _{activ}	Activated NF-κB as fraction of total NF- κB	0
G _m	IFN-γ mRNA	0
<i>G</i> ₂	IFN-γ secreted	0

Supplementary Table 4. Initial values in the T cell model

⁽¹⁾Units are numbers of molecules per cell (APC or T cell) unless otherwise indicated.

Parameter	Description	Value ⁽¹⁾
$\sigma_{\rm C}$	Surface area of APC-T cell contact zone	$7 \times 10^{-11} \text{ m}^2$
$\sigma_{ m tot-APC}$	Total surface area of APC	$5 \times 10^{-10} \text{ m}^2$
k _{on-B}	pMHC-TCR association rate constant	$3.6 \times 10^{-2} \text{ h}^{-1} \text{ molecule}^{-1}$
k _{off-B}	pMHC-TCR dissociation rate constant	$3.6 \times 10^1 \text{h}^{-1}$
$\sigma_{ m tot-Tcell}$	Total surface area of T cell	$5 \times 10^{-10} \text{ m}^2$
μ	TCR deactivation rate constant	0 h ⁻¹
k _p	TCR activation rate constant	$9 \times 10^2 \mathrm{h}^{-1}$
$\lambda_{ m T}$	Free TCR internalization rate constant	$1.08 \times 10^1 \text{ s}^{-1}$
$\lambda_{ m B}$	Bound TCR internalization rate constant	$1.08 \times 10^0 \text{ s}^{-1}$
k _{resp}	NF-κB activation rate constant	$5 \times 10^{-3} \text{ h}^{-1} \text{ molecule}^{-1}$
k _{decay}	NF-κB deactivation rate constant	$1 \times 10^{-1} \text{ h}^{-1}$
k _{txn-IFN-γ}	IFN-γ transcription rate constant	$k_{ m deg-Gm} G_{ m m,0} pprox 1 imes 10^2 m h^{-1}$
k _{deg-Gm}	IFN-γ mRNA degradation rate constant	$1 \times 10^{-2} \text{ h}^{-1}$
$k_{ m tsl-IFN-\gamma}$	IFN-γ translation rate constant	6×10^1
T _{tot}	Total number of TCR per cell	3×10^4

Supplementary Table 5. Parameters in the T cell model

⁽¹⁾When used in the definition of another parameter or variable, the subscript 0 refers to the initial value of a particular variable such that, e.g., M_0 refers to the initial value of M.

The values of most parameters are identical to the parameters in Coombs et al. (10), including surface areas of the APC and T cells, surface area of the contact zone, TCR activation and de-activation rate constants, and TCR internalization rate constants. Association and dissociation rate constants for the pMHC-TCR complex were estimated from values measured *in vitro* (reviewed in ref. 12). The NF- κ B activation rate constant was estimated by summing constituent rate constants d4, d5, d6, r4, r5, and r6 from Hoffmann *et al.* (23). The NF- κ B de-activation rate constant was estimated by fitting the

time course of activated NF- κ B in the model to an experimentally observed peak in NF- κ B levels occurring approximately 1 h after activation (23). The IFN- γ transcription rate constant and mRNA degradation rate constant were estimated by fitting the time course of cytokine IFN- γ mRNA to match an experimentally observed peak in expression approximately 20 hours after exposure to APC (33). The IFN- γ translation rate constant was estimated by fitting the time course of cytokine IFN- γ to match an experimentally observed peak in protein levels detected by ELISA approximately 96 hours after exposure to APC (33).

Biological process / factor	No II	No IFN-γ initially present			IFN- γ initially present		
	pMHC ¹	TCR ²	IFN- γ^3	pMHC ¹	TCR ²	IFN- γ^3	
IFN-γ dose ⁴	N/A	N/A	N/A	0.64	0.14	0.15	
MHC expression ⁵	0.41	0.19	0.15	0.29	(0.07)	(0.05)	
pMHC affinity ⁶	-0.80	-0.44	-0.40	-0.65	-0.29	-0.28	
Ag dose	0.97	0.70	0.68	0.97	0.71	0.72	
Ag processing ⁷	0.66	0.17	0.16	0.62	0.21	0.24	
pMHC export to surface	0.53	(0.06)	(0.08)	0.16	(0.05)	(0.06)	
pMHC deg. within contact	N/A	-0.26	-0.20	N/A	-0.25	-0.20	
TCR expression	N/A	0.55	0.42	N/A	0.55	0.34	
pMHC-TCR affinity ⁸	N/A	-0.58	-0.60	N/A	-0.56	-0.60	
pMHC-TCR activation ⁹	N/A	0.51	0.49	N/A	0.46	0.46	
Act'd, freeTCR internal. ¹⁰	N/A	(-0.10)	-0.15	N/A	(0.07)	(0.01)	
Act'd, bound TCR internal. ¹¹	N/A	(0.08)	-0.24	N/A	(0.07)	-0.23	
IFN-γ signaling ¹²	N/A	N/A	0.56	N/A	N/A	0.66	
Trans. factor deactivation	N/A	N/A	(-0.04)	N/A	N/A	(-0.07)	
IFN-γ mRNA synthesis	N/A	N/A	0.56	N/A	N/A	0.66	
IFN-γ mRNA degradation	N/A	N/A	(0.03)	N/A	N/A	(0.03)	

Supplementary Table 6. PRCC values for all 16 parameters that were varied during sensitivity analysis

Parameters corresponding to processes in which genetic polymorphisms have been observed are indicated in bold. Non-significant PRCC values (α =0.05, Bonferroni-adjusted) are shown in parentheses. N/A is indicated for parameters representing processes that occur later in the antigen presentation pathway than the indicated output and therefore do not affect output value.

¹Number of pMHC on the APC surface 4 h after Ag exposure ²Number of TCR internalized by the T cell 5 h after APC-T cell contact

³Amount of IFN- γ produced by the T cell 24 h after APC-T cell contact ⁴Amount of IFN- γ to which APCs are exposed 24 h prior to Ag exposure ⁵Number of MHC molecules initially expressed on the APC

⁶As pMHC K_D when peptide-MHC dissociation rate constant was varied

⁷Rate constant for antigen processing

⁸As pMHC-TCR K_D when pMHC-TCR dissociation rate constant was varied ⁹Rate constant for progressive activation of pMHC-TCR complexes ¹⁰Rate constant for internalization of bound, activated TCR ¹¹Rate constant for internalization of free, activated TCR

¹²Rate constant for TCR-induced IFN- γ transcription

Parameters for Figures and Tables

Parameter values and initial conditions used in solving Equations 1-31 of the model were as provided in Supplementary Tables 2-5 with the following exceptions:

For Fig. 2: (a)-(c) $n_{\text{cells}}=1 \cdot 10^6$, $v_{\text{medium}}=1 \cdot 10^{-3}$ L, $G_0=0$, $A_0=1 \cdot 10^{-5}$ M, $k_{\text{off-MHC}}=2 \cdot 10^{-3}$ s⁻¹, $k_{\text{on-TCR}}=1 \cdot 10^{-6}$ molecule⁻¹s⁻¹. (d) $n_{\text{cells}}=8 \cdot 10^6$, $v_{\text{medium}}=1 \cdot 10^{-3}$ L. (e) $k_{\text{on-TCR}}=1 \cdot 10^{-6}$ molecule⁻¹s⁻¹. (f) $n_{\text{cells}}=2 \cdot 10^4$, $r_{\text{vol}}=2 \cdot 10^{-4}$ L.

For Table 1: $n_{\text{cells}}=1 \cdot 10^6$, $v_{\text{medium}}=1 \cdot 10^{-3}$ L, $k_{\text{off-MHC}}=2 \cdot 10^{-3}$ s⁻¹, $k_{\text{on-TCR}}=1 \cdot 10^{-5}$ molecule⁻¹s⁻¹.

For Fig. 3: $n_{\text{cells}}=1 \cdot 10^6$, $v_{\text{medium}}=1 \cdot 10^{-3}$ L, $G_0=0$, $A_0=1 \cdot 10^{-5}$ M, $k_{\text{off-MHC}}=2 \cdot 10^{-3}$ s⁻¹, $k_{\text{on-TCR}}=1 \cdot 10^{-6}$ molecule⁻¹s⁻¹.

For Fig. 4: $n_{\text{cells}}=1 \cdot 10^6$, $v_{\text{medium}}=1 \cdot 10^{-3}$ L, $G_0=0$, $A_0=1 \cdot 10^{-5}$ M, $k_{\text{off-MHC}}=2 \cdot 10^{-3}$ s⁻¹, $k_{\text{on-TCR}}=1 \cdot 10^{-6}$ molecule⁻¹s⁻¹.

For Supplementary Table 6: $n_{\text{cells}}=1 \cdot 10^6$, $v_{\text{medium}}=1 \cdot 10^{-3}$ L, $k_{\text{off-MHC}}=2 \cdot 10^{-3}$ s⁻¹, $k_{\text{on-TCR}}=1 \cdot 10^{-5}$ molecule⁻¹s⁻¹.

Supplementary Figure 1. Experimentally quantified effects of MHC polymorphisms on peptide-binding affinities. IC_{50} data for peptides binding MHC alleles HLA-DR1, -DR3, and -DR4 were collected from the Immune Epitope Database (46) and plotted. n = number of peptides, \bar{x} =mean value, s = standard deviation. Graph for HLA-DR2 shown in main text.

ADDITIONAL REFERENCES

- 64. Bothamley, G.H., Beck, J.S., Schreuder, G.M., D'Amaro, J., de Vries, R.R., Kardjito, T. & Ivanyi, J. Association of tuberculosis and *M. tuberculosis*-specific antibody levels with HLA. *J. Infect. Dis.* **159**, 549-555 (1989).
- 65. Brahmajothi, V., Pitchappan, R.M., Kakkanaiah, V.N., Sashidhar, M., Rajaram, K., Ramu, S., Palanimurugan, K., Paramasivan, C.N. & Prabhakar, R. Association of pulmonary tuberculosis and HLA in south India. *Tubercle* **72**, 123-132 (1991).
- Goldfeld, A.E., Delgado, J.C., Thim, S., Bozon, M.V., Uglialoro, A.M., Turbay, D., Cohen, C. & Yunis, E.J. Association of an HLA-DQ allele with clinical tuberculosis. *JAMA*, **279**, 226-8 (1998).
- 67. Rajalingam, R., Mehra, N.K., Jain, R.C., Myneedu, V.P. & Pande, J.N. Polymerase chain reaction-based sequence-specific oligonucleotide hybridization analysis of HLA class II antigens in pulmonary tuberculosis: relevance to chemotherapy and disease severity. *J. Infect. Dis.* **173**, 669-676 (1996).