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Ultimately, the results of these analyses are disambiguation matrices where the important information is

whether a given entry is zero or nonzero. Of particular interest are rows with a single nonzero entry. Because

the values of these nonzero entries are not important, there can be many different m-by-n matrices that

contain the same qualitative disambiguation information. We can say two nonnegative matrices X and Y

are equivalent, written X ∼ Y , if X(r, c) > 0 ⇐⇒ Y (r, c) > 0 for all r and c and if the row and column

labels (i.e. the corresponding states and observations) of the matrices agree. We define an analogous relation

on vectors. This equivalence relation captures the information that is most relevant for the question of the

disambiguation of states.

Theorem 1. X1 ∼ X2, Y1 ∼ Y2 =⇒ iX1Y1 ∼ jX2Y2 for i, j > 0

Proof. The value at row r and column c of iX1Y1 is given by i
∑

k X1(r, k)Y1(k, c), which is only zero

if one or both of X1(r, k), Y1(k, c) = 0 for all k (because these are nonnegative matrices). But because

X1 ∼ X2, Y1 ∼ Y2, one or both of X2(r, k), Y2(k, c) = 0 for all k and so iX1Y1 ∼ jX2Y2.

Corollary 1.1. Xn
1 ∼ Xn

2 . By induction, since X1 ∼ X2, if Xn−1
1 ∼ Xn−1

2 then Xn−1
1 X1 ∼ Xn−1

2 X2.

Theorem 2. X1 ∼ X2, Y1 ∼ Y2 =⇒ (iX1 + jY1) ∼ (kX2 + lY2) for i, j, k, l > 0

Proof. Since these matrices and coefficients are nonnegative, the value at row r and column c of iX1 +jY1

is only zero if X1(r, c) = Y1(r, c) = 0. If that is true, then by equivalence we know X2(r, c) = Y2(r, c) = 0

and so iX1 + jY1 ∼ kX2 + lY2.

Corollary 2.1. Ai ∼ Bi, 1 ≤ i ≤ n =⇒
∑n

i=1Ai ∼
∑n

i=1Bi. Again, by induction if
∑n−1

i=1 Ai ∼
∑n−1

i=1 Bi

then (
∑n−1

i=1 Ai +An) ∼ (
∑n−1

i=1 Bi +Bn).

Theorem 3. Let A be a set of states and X1 ∼ X2 be two matrices, both with absorbing states A. Write

X1 and X2 in canonical form [17] and calculate the mean absorption matrix of each: B1 = (I − Q1)−1R1

and B2 = (I −Q2)−1R2 (where Q1, Q2 are the transition probabilities between transient states and R1, R2
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are the transition probabilities from transient states to absorbing states). Then B1 ∼ B2.

Proof. X1 ∼ X2 means that Q1 ∼ Q2 and R1 ∼ R2. Expanding B1 = R1 + Q1R1 + Q2
1R1 + · · · . We

see that the ith term of B1 is Qi−1
1 R1 and of B2 is Qi−1

2 R2. By Corollary 1.1, Qi−1
1 R1 ∼ Qi−1

2 R2, so, by

Corollary 1.2, B1 ∼ B2.

Theorem 4. X ∼ Y =⇒ Xabs ∼ Yabs for any set of states made absorbing in both.

Proof. Let I be a set of indexes into the rows of X. Recall that Xabs is formed by setting row i of X to

ei for all i ∈ I. X ∼ Y means that for each row r, X(r, ·) ∼ Y (r, ·). Let rx = Xrev(r, ·) and ry = Yrev(r, ·).

Then either r ∈ I and so rx ∼ ry because rx = ry or r 6∈ I in which case rx = X(r, ·) ∼ Y (r, ·) = ry. Thus

Xabs ∼ Yabs.

Theorem 5. X ∼ Y =⇒ Xrev ∼ Yrev.

Proof. Recall that Xrev is formed by transposing X and then normalizing the row sums of the nonzero

rows, which is equivalent to multiplying each row by the reciprocal of that row’s sum (if nonzero). Each

row of Xrev is then either the 0 vector or is a row of XT multiplied by some nonzero constant. This means

XT ∼ Xrev and, since clearly X ∼ Y =⇒ XT ∼ Y T , by transitivity Xrev ∼ Yrev.

Now, let us consider CASR memory: Ei = R+
i B. In creating matrix R+

i , rows aliased to the same

observation were averaged. However, any linear combination of the rows using nonzero coefficients will

produce a row equivalent to the averaged row. That is, let r be a row of R+
i . Then r is the average of a

number of vectors: r = (ei + ej + · · ·+ ez)/n, so the kth element of r is either 0 or (1/n). As long as n > 0,

r ∼ (a1ei + a2ej + · · ·+ anez) when aj > 0 for all j.

Similarly, we initially defined

N(s, s′) =

∑
a∈TA

TP (s, a, s′)
|TA|

.

But we see

N(s, s′) ∼
∑

a∈TA

π(s, a)TP (s, a, s′)

where π(s, a) is the agent’s policy: a unique probability for each state-action pair, when π(s, a) > 0 for all s

and a.

We see then that any nonzero linear combination of states in making R+
i and any nonzero policy used

in determining N results in an equivalent matrix Ei. Specifically, let R ∼ R′ be the results of two different

linear combinations of states when making R+
i and let N ∼ N ′ be two equivalent transition matrices derived

using different policies. Then Ei = RB ∼ R′B′ = E′i by Theorems 1, 3, and 4.

A similar argument applies to the case of working memory. Briefly, we can see that Wi = RNrevC ∼

R′N ′revC = W ′i by Theorems 1 and 5.
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Thus the seemingly arbitrary choices of averaging rows when calculating R and assuming a random

policy in calculating N do not affect the ultimate results as long as some linear combination of the respective

elements is used.
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