
The Influence of Markov Decision Process Structure on the Possible Strategic

Use of Working Memory and Episodic Memory

Appendix S2

Eric A. Zilli∗ and Michael E. Hasselmo

∗ Corresponding author. E-mail: zilli@bu.edu.

Center for Memory and Brain

2 Cummington St.

Boston University

Boston MA, 02215 USA

Appendix S2

The sequence disambiguation task consists of two sequences of states, each of which overlap at one or more

observations. Figure 1 shows one simple example of this type of task. In this case, the two sequences are

red → green → magenta and blue → green → yellow. The agent receives a positive reward when entering

the appropriate final observation given the observation at which the current trial began. On each trial, one

of the red or blue starting positions is selected randomly.

Figure 1: Aliased sequence disambiguation task. This shows the structure of the sequence disambiguation
task as observed by the agent. Transition arrows colored magenta indicate transitions that may provide
either positive or negative rewards (depending on where the agent started the present trial).

To further demonstrate the CASR memory analysis, we consider an AMDP where the third observation

in the agent’s history, instead of the second observation as in alternation, is needed to disambiguate the

states at the choice point.

This task is sequence disambiguation. The task is the same as the alternation task, except for the presence

of additional transitions from states {e3, e4, e7, e8} to states {e1, e5}, as shown in Figure 2. The transition

matrix N for this environment under a random policy is

1



N =



0 1 0 0 0 0 0 0

0 0 0.5 0.5 0 0 0 0

0.5 0 0 0 0.5 0 0 0

0.5 0 0 0 0.5 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0.5 0.5

0.5 0 0 0 0.5 0 0 0

0.5 0 0 0 0.5 0 0 0



.

Figure 2: Underlying state-space of the sequence disambiguation task. The eight states are labeled with
vectors e1, . . . , e8. The five observations are identified by color. Solid arrows indicate transitions that result
from any action. Action-specific transitions are indicated by dotted and dashed lines. Red arrows indicate
transitions producing negative rewards; blue arrows indicate transitions with positive rewards. This chain
differs from that of alternation only in the addition of new transitions from the top states back to the bottom
states. These transitions out of the top states have equal probability of being taken..

Once again, we are concerned with the agent being able to disambiguate the green observation. The obser-

vation that may follow a green state are given by the non-zero entries in (e2 +e6)N , which are {e3, e4, e7, e8}.

As before, from this we find R+
1 =

 (e3 + e7)/2

(e4 + e8)/2

. Setting the green states to be absorbing give us Nabs

which we use to calculate

B =



1 0

1 0

0.5 0.5

0.5 0.5

0 1

0 1

0.5 0.5

0.5 0.5



.

Finally, we find E1[green] using these two matrices:

2



E1[green] = R+
1 B

=

 (e3 + e7)/2

(e4 + e8)/2

B

=

 0.5 0.5

0.5 0.5

 .

Here the rows observations are yellow and magenta, and the columns correspond to states e2 and e6.

Figure 3: Possible paths/episodes from green to green in the sequence disambiguation task. The first step
into the CASR memory does not predict whether the agent will be in e2 or e6. The second step, however,
always predicts the agent’s current state (end of the episode).

With all rows here equal, we find that the structure of the task results in a lack of disambiguation of green

when using only one step of CASR memory. In simulations of this task [1], an agent using CASR memory

was able to perform this task. The agent learned to step its CASR memory past the reward location and

back to its starting location. In this simplified version of the task, this strategy corresponds to advancing

CASR memory retrieval by two steps.

The rows used for the submatrix E1[green] were the nonzero entries in (e2 +e6)N . To find the submatrix

E2[green], we use the nonzero entries in (e2 + e6)NNabs. These are rows corresponding to states {e1, e5}

(notice that each is aliased to a separate observation, so no averaging of rows is done here).

3



E2[green] = R+
2 B

=

 e1

e5

B

=

 1 0

0 1

 .

Here the rows observations are red and blue, and the columns correspond to states e2 and e6.

We see that by using two CASR memory retrieval advancing actions, the two green states are perfectly

disambiguated. This is verified by examining all possible CASR memories in this task, shown in Figure 3,

where the third observation, but not the second observation, predicts the final state.

Finally, the interested reader may verify the following values for 1 and 2 steps using working memory:

W1[green] = R−
1 NrandC

=

 e1

e5

Nrand

(
eT
2 eT

6

)

=

 1 0

0 1

 .

W2[green] =

 0.5 0.5

0.5 0.5


Unlike alternation, sequence disambiguation here can only be solved by holding the observation imme-

diate before green in working memory. Holding an observation that occurs two steps before green fails to

disambiguate the green states.

4


