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Abstract

As a result of genome, EST and cDNA sequencing projects, there are huge numbers of

predicted and/or partially characterised protein sequences compared with a relatively small

number of proteins with experimentally determined function and structure. Thus, there is a

considerable attention focused on the accurate prediction of gene function and structure

from sequence by using bioinformatics. In the course of our analysis of genomic sequence

from Fugu rubripes, we identified a novel gene, SAND, with significant sequence identity to

hypothetical proteins predicted in Saccharomyces cerevisiae, Schizosaccharomyces pombe,

Caenorhabditis elegans, a Drosophila melanogaster gene, and mouse and human cDNAs.

Here we identify a further SAND homologue in human and Arabidopsis thaliana by use of

standard computational tools. We describe the genomic organisation of SAND in these

evolutionarily divergent species and identify sequence homologues from EST database

searches confirming the expression of SAND in over 20 different eukaryotes. We confirm

the expression of two different SAND paralogues in mammals and determine expression of

one SAND in other vertebrates and eukaryotes. Furthermore, we predict structural

properties of SAND, and characterise conserved sequence motifs in this protein family.
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Introduction

Many prokaryotic genomes have now been fully
sequenced, as well as several eukaryotic genomes
including: Saccharomyces cerevisiae (Goffeau et al.,
1996; The yeast genome directory, 1997), Caenor-
habditis elegans (The C.elegans sequencing consor-
tium, 1998), Drosophila melanogaster (Adams et al.,
1999) and that of the first plant genome Arabidopsis
thaliana (Lin et al., 1999; Mayer et al., 1999;
Salanoubat et al., 2000; Tabata et al., 2000;
Theologis et al., 2000). The first complete vertebrate
genomic sequence, that of man, is available but at
this time is not fully assembled (Venter et al 2001;
International human genome sequencing con-
sortium, 2001). Many gaps in the sequence remain
to be filled and only two chromosomes are in a
finished state (Dunham et al., 1999; Hattori et al.,

2000). It is now becoming apparent that the anno-
tation of these genomic sequences relies heavily on
gene prediction programs, of which the best only
fare reasonably. Continuous sequence similarity
searches of large genomic sequences against an
increasing pool of cDNAs and ESTs is proving to
be costly. A feature of the analysis of these genomes
is the number of unknown proteins that they are
predicted to encode. For example, in the relatively
small genome of C. elegans, 60% of predicted genes
encoded proteins of unknown function (The C.
elegans sequencing consortium, 1998). In this study,
we have identified a novel gene in the model
vertebrate Fugu rubripes, which we have called
SAND, as its location is next to the plasminogen
related growth factor receptor (PRGFR) thought
to be the orthologue of SEA (EMBL : AJ010317)
(Cottage et al., 1999). BLAST (Altschul et al., 1997)
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searches of cDNA and EST sequences have
revealed that the SAND gene product is expressed
in diverse eukaryotes, in various developmental
stages in plants, and in many tissue types in
vertebrates. We have identified two SAND para-
logues in mammals, which appear to be the result of
a taxonomy class specific duplication. In an attempt
to assign function to this new protein family, we
have carried out a computational analysis including
similarity searches, multiple sequence alignments,
domain identification and characterisation, second-
ary structure predictions, solvent accessibility pre-
dictions and automatic protein fold recognition
analyses.

Materials and methods

Characterisation of the F. rubripes cosmid
165K09

The F. rubripes cosmid 165K09 (EMBL : AJ010317)
had previously been identified as encoding a
PRGFR. The cosmid was sequenced and annotated
as reported (Cottage et al., 1999). Additionally, RT
PCR was used to verify the predicted SAND gene
product.

Bioinformatic analysis of SAND nucleic acid
sequences

BLASTn (version 2.0.12) and tBLASTx (version
2.0.12) (Altschul et al., 1997) searches of EMBL
release 66 (EMBL) (Stoesser et al., 2001) (and un-
finished human genome contigs (http://www.ncbi.
nlm.nih.gov/BLAST/) and BLASTx (version 2.0.12)
(Altschul et al., 1997) searches of SWISS-PROT
release 39 (SP) and SWISS-PROT TrEMBL release
16 (SPTR) (Bairoch and Apweiler, 2000) with
F. rubripes SAND were used to identify homo-
logous sequences. Where gene sequences had not
been identified, these were determined from geno-
mic sequences using NIX, a WWW tool to view the
results of many DNA analysis programs (Williams,
G., Woollard, P. and Hingamp P. unpublished
data, http://www.hgmp.mrc.ac.uk/Registered/Webapp/
nix/). Analysis of the promoter regions, in order to
determine potential TATA boxes and conserved
transcription factor binding sites, was facilitated by
the use of Theatre. Theatre is a tool for obtaining
the results for a set of DNA sequences, from
various DNA sequence analysis programs (with
emphasis of finding transcription factor binding

sites), and producing a clear graphical display
of this information in a comparative context
(Edwards and coworkers; http://www.hgmp.mrc.
ac.uk/Registered/Webapp/theatre/). tBLASTn ver-
sion 2.0.12 (Altschul et al., 1997) searches of EST
databases were used to generate an in silico
expression profile of SAND homologues.

Bioinformatic analysis of SAND protein
sequences

When gene sequences had been determined, the
derived protein sequences were aligned, together
with the mRNA and EST translations using
ClustalW version 1.74 (Thompson et al., 1994).
Percentage sequence identity and specific conserved
residues were determined by the use of Belvu, an
alignment viewer written by Erik Sonnhammer
(http://www.cgr.ki.se/cgr/groups/sonnhammer/Belvu.html).
Composite analysis of each protein was performed
using PIX, a WWW tool to view the results
of many protein analysis programs for a query
sequence (http://www.hgmp.mrc.ac.uk/Registered/
Webapp/pix/). Further database searches using PSI
BLAST version 2 (Altschul et al., 1997) were used
to identify potential domains by accepting the
default and running several iterations. SAND was
also submitted for PSI BLAST analysis in over-
lapping contigs of 100 residues. A consensus
secondary structure and associated solvent access-
ibility was generated using Jpred2 (Cuff et al., 1998)
from a ClustalW (Thompson et al., 1994) alignment
of seven full length SAND sequences in MSF
format. The protein fold recognition program
Threader (Jones et al., 1992) was used to score
protein sequence compatibility against known pro-
tein folds. Sequence threading against a structural
databank of 1902 known protein folds was per-
formed for the seven SAND sequences. Threadings
were computed in terms of 1. pairwise interaction
energies, 2. solvation potential energies and 3. their
weighted sum, in order to evaluate the fit of each
sand sequence to a particular fold conformation,
and represented as Z-scores (=(Energy – Mean)/
Standard Deviation). Provided there is greater than
50% sequence and structure matching, the Z scores
were sorted for input into a program called
SumThreader (Edwards and Perkins, 1996) in
order to summarise the outcome of the searches.
For each of the three Z scores, the average rank of
each fold was calculated from the seven values
determined for the individual SAND sequence
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threadings. The average ranked position for each
fold for seven sequences were calculated.

Results and discussion

Identifying sequence homologues

The Japanese puffer fish, F. rubripes, was chosen as
a suitable vertebrate model in which to identify
genes of interest. Evidence suggests that the F.
rubripes gene complement is about the same as that
of mammals, and that gene order and structure may
be preserved, but within a remarkably compact
genome of only 400 Mbp (Brenner et al., 1993).
Several gene families have been studied in this
vertebrate, including the Hox genes (Aparicio et al.,
1997), the pheromone receptors (Naito et al., 1998)
and the surfeit genes (Armes et al., 1997). Analysis
of the genomic sequence from the F. rubripes cos-
mid 165K09 (EMBL : AJ010317) identified a novel
sequence, SAND (Fr_SAND) (SPTR : Q9YGN1),
with sequence identity to hypothetical proteins
predicted in S. cerevisiae (Sc_SAND) (SP : P53129)
and Sz. pombe (Sp_SAND) (SP : Q10150), and to
part of a hypothetical protein predicted in
C. elegans (Ce_SAND) (SPTR : Q20298). The F.
rubripes sequence also has sequence identity to
the D. melanogaster CG11926 gene product
(Dm_SAND) (SPTR : Q9VR38) and a mouse
cDNA clone (Mm_SAND1) (EMBL : AK013387).
tBLASTx searches of A. thaliana’s chromosome 2
sequences identified a sequence with similarity to
SAND (At_SAND) (EMBL : AC006283). Two
human SAND homologues were identified: a
cDNA clone KIAA0872 (Hs_SAND2) (SPTR :
O94949), and a predicted open reading frame on
chromosome 3p21 (Hs_SAND1) (EMBL:
AC068701). Whilst BLAST (Altschul et al., 1997)
searches reveal the expression of at least two SAND
genes in a number of mammals (see Table 1A and
1B), including human, mouse, pig and cow, only
one SAND gene can be detected in any non-
mammalian organism (see Table 1C).

Intron/exon structure

SAND1 is predicted to comprise two exons in Sz.
pombe (see Table 2A) and one in S. cerevisiae,
however the hypothetical protein produced from
the reported S. cerevisiae prediction introduces gaps
into an alignment with other SAND proteins. The
S. cerevisiae sequence is approximately 644 residues

by comparison to the 520 residues encoded by the
other sequences. A better alignment with the other
SAND sequences was achieved by removing 54
residues from the N terminus and introducing an
intron which removes residues 537–577 (SP :
P53129), experimental confirmation is needed of
this prediction and this sequence was not used for
secondary structure predictions.

Gene sequences were determined from the C.
elegans genomic data by Genefinder (P. Green and
L. Hillier unpublished software). These predictions
were confirmed or adjusted to account for protein,
cDNA and EST matches (The C. elegans sequen-
cing consortium, 1998). The C. elegans SAND

Table 1. Expression profile of SAND generated by
EST database searches

1A. Expression profile of SAND1 in mammals

Organism
EMBL
Accession number Expression

Homo sapiens CNSLT1EA9 Placenta

CNSLT1FVF T cells/T cell leukemia
BE793894 Lung

Mus musculus BF321829 Mammary infiltrating

ductal carcinoma
BF179283 Mammary, gross tissue

BF584835 Colon

AI853696 Brain

AU06752 Brain
Rattus norvegicus AI237869 Normalized spleen

BE111711 Cardiac tissue

Sus scrofa BE234656 Pooled

BF193484 Pooled
Bos taurus AW655266 Pooled

AW653632 Pooled

BF664794 Pooled

1B. Expression profile of SAND2 in mammals

Organism EMBL Accession number Expression

Homo sapiens BE785702 Lung
BF313087 Neuroblastoma

BE885699 Leiomyosarcoma

CNSLTOYVF T cell leukemia

AK023374 Ovarian tumour
Mus musculus AW626447 Lung

AW322902 Lung

Sus scrofa AW785756 Pooled

AW322902 Pooled
Bos taurus BF602206 Pooled
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protein (F41H10.4 SP : Q20298) is predicted by
Genefinder to be encoded by 13 exons; however it
would appear that exons 1–4 belong to a neigh-
bouring gene and it is this sequence that shows
similarity to a Plasmodium yoelii rhoptry protein as
specified in the annotation. Residues encoded by
exon 8 introduced a gap in an alignment with other
SAND proteins, so this was removed from the gene
prediction. We therefore expected that C. elegans
SAND is encoded by 6 exons, although the exact
gene start could not be determined from the given
sequence, possibly due to sequencing/assembly
errors and so is not shown in Figure 1.

The predicted gene structure of D. melanogaster
did not require further adjustment. The D. melano-
gaster genome annotation used Genscan (Burge and
Karlin, 1997), and a version of Genie that uses
expressed sequence tag data (Reese et al., 2000), plus
the results of cDNA and protein database searches,
followed by review by human annotators (Adams
et al., 2000). D. melanogaster SAND is encoded by

three exons. In contrast, SAND is encoded by 12
exons in A. thaliana; the genes small intron and exon
sizes, coupled with low G+C content (42%), may
explain why this gene was missed by the gene
prediction programs used in this genomic project,
even though the annotation involved both DNA and
protein database searches and gene prediction with
the programs Genscan (Burge and Karlin, 1997),
Genefinder (P. Green and Hillier unpublished) and
Grail (Uberbacher et al., 1991).

Human and mouse SANDs have the highest
G+C content (>60%), followed by F. rubripes
(53%) and D. melanogaster. C. elegans, both yeast
and A. thaliana all have a lower G+C composite at

1C. Expression profile of SAND in non mammalian
eukaryotes

Organism

EMBL

accession

number Expression

Gallus gallus GGA395913 Bursa of fabricus

GGA392697 Bursa of fabricus

Danio rerio AW343114 Mixed tissue
AW115566 Mixed tissue

Drosophila melanogaster AI294091 Larvae

AI516700 Embryo 0–24 hrs

AI389145 Head
Caenorhabditis elegans CE12C12 Mixed

AU111676 Whole

AU112292 Whole
Dictyostelium discoidium DDC4407 Gamete

DDC4408 Gamete

Arabidopsis thaliana BE522449 Developing seeds

AV536086 Flower buds
AV555362 Green siliques

Glycine max AW201401 Cotyledons

Lycopersicon esculentum AI777002 Callus

AW222181 Pericarp
AW222182 Fruit

AI487936 Ovary

Medicago truncatula CN506BLP Arbuscular mycorrhiza

Solanum Tuberosum BF459706 Tuber
Pinus taeda BG318737 Xylem

Secale cereale BE588169 Root tip

Gossypium hirsutum AWI87646 Cotton fibre
Hordeum vulgare BG300416 Seedling shoot

Table 2. Comparison of intron/exon sizes and exon
phase between SAND sequences in A. thaliana (At), C.
elegans (Ce), F. rubripes (Fr), Human (Hs), D. melano-
gaster (Dm), S. cerevisiae (Sc) and S. pombe (Sp). The
question mark indicates unresolved or ambiguous
boundaries in gene annotation

2A. Size of exons in base pairs

Ex. At Ce Fr Hs1 Hs2 Dm Sc Sp

1 186 155? 124 127 148 593 1449? 1295

2 101 213 384 486 327 152 204 247

3 106? 155 766 766 820 842
4 72 371 148 148 148

5 166 407 143 141 201

6 122 277
7 233

8 83

9 263

10 92
11 65

12 96

2B. Size of introns in base pairs

Ex. At Ce Fr Hs1 Hs2 Dm Sc Sp

A 57 269? 146 1208 1818 66 120 86
B 66 58 89 637 557 56

C 122 298 129 718 380

D 249 50 439 98 2425

E 96 51
F 366

G 162

H 251

I 81
J 90

K 103
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around 40%. Analysis of the promoter regions by
the use of Theatre (Edwards and coworkers;
unpublished material) determined that the promoters
appear to be largely TATA-less; no significant
sequence identity could be determined between
them. Comparisons between the promoter regions
proved difficult due to the variable length of the N
terminus of the encoded proteins and the lack of
sequence identity between them across this region.

Both intron/exon number and size, as well as
intron phase, show no conservation between yeasts,
fly, worm and plant (see Table 2). Analyses of
SAND in these organisms may elucidate some
interesting clues to the dynamics of intron forma-
tion/loss. Vertebrate evolution, however, appears to
have taken a more concerted route: F. rubripes
SAND and human SAND1 and SAND2 are all
encoded in five exons, and the intron phases of the
three genes are conserved (see Table 2C). Exon 4 is
the same size in all three genes Fr_SAND (148 bp),
Hs_SAND1 (148 bp) and Hs_SAND2 (148 bp) (see
Table 2A).

Genomic loci

The orientation of genes neighbouring SAND and
their accession numbers are given in Table 3.
Human SAND2 protein KIAA0872 has been
mapped to chromosome 16 (Nagase et al., 1998).
BLAST (Altschul et al., 1997) searches of the
human SAND2 locus (EMBL : AC009139) have
shown its 5k neighbour on the direct strand to be a
putative pheromone receptor, whilst its 3k neigh-
bour on the reverse strand encodes a hypothetical
protein. Hypothetical proteins are also predicted as
neighbours to SAND in D. melanogaster, C.
elegans, and A. thaliana, but these sequences do

not appear to be homologous. Of interest are the
ribosomal proteins predicted 5k to SAND and on
the opposite strand in both D. melanogaster and S.
cerevisiae. The 5k neighbour (on the reverse strand)
of F. rubripes SAND is the TRAF interacting
protein TRIP. The 3k neighbour, on the direct
strand, is the plasminogen related growth factor
receptor (PRGFR3). This gene organisation is
conserved on the genomic segment of chromosome
3p21 encoding human SAND1. Human TRIP
(SPTR : O00467) is on the reverse strand 5k of
SAND1, and the plasminogen related growth
factor receptor (SP : Q04912) is approximately
10Kbp on the direct strand 3k to it. Considerable
interest has been focused on 3p21 in man as a
cancer hot spot; it is particularly implicated in all
major types of lung cancer (Kok et al., 1987).

Expression profile

Expression of the human SAND protein KIAA0872
has been assayed by means of RT PCR from
mRNA derived from heart, brain, lung, liver,
smooth muscle, kidney, pancreas, spleen, testis and
ovary. KIAA0872 was shown to be expressed
predominately in brain, kidney and ovary (Nagase
et al., 1998). In this study, RT PCR analysis
confirmed expression of F. rubripes SAND in
brain, kidney and ovary, reflecting the expression
profile seen in human. Although some expression
was seen in other tissues assayed such as heart,
lung, liver, smooth muscle, spleen and testis. An
expression profile was generated for the SAND
transcripts by BLAST (Altschul et al., 1997)
searches with all identified SAND sequences and is
shown in Tables 1A, 1B and 1C. Human SAND2
(KIA00872) had been identified in pooled tissues as
well as lung. The transcript had also been identified
in four neoplastic tissues, of particular interest is the
lack of exon 3 from EMBL : AK023374 identified
from an ovarian tumour. Expression of Hs_SAND1
appears more widespread and includes neurological,
lymphatic and cardiac tissue, whilst once again
neoplastic tissues are also represented. The express-
ion of SAND in other eukaryotes appears to occur
at various developmental stages, and even in
specialised tissues such as the bursa of fabricus
in chicken. In plants, expression of SAND is seen in
both monocots and dicots, and is even to be found
expressed in the xylem of pine. SAND is expressed
in many different tissue types in plants, including:
flowers, seeds, tubers, leaves, shoots and roots.

2C. Phase of introns

At Ce Fr Hs1 Hs2 Dm Sc Sp

0 II I I I II 0 II

II II I I I I
II I II II II

II 0 0 0 0

0 II
II

I

0

II
I

0
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Protein structure and function

Inferring function from sequence data is the new
dogma in DNA research, and the main focus of
molecular biologists and bioinformaticians follow-
ing in the wake of the large genomic projects.
Despite current innovations in bioinformatics, this
endeavour is non trivial and requires validation.

Search for a structural homologue using basic
search methods

In order to determine if SAND has sequence
similarity to proteins with known 3D structures,
BLASTP (version 2.0.12) (Altschul et al., 1997) was
used to search NRL-3D (http://pir.georgetown.
edu/pirwww/dbinfo/nrl3d.html), a databank of pro-
tein sequences whose structures have been experi-
mentally determined (Garavelli et al., 2001). No
structural homologues were identified by searches
with the seven full SAND sequences reported in this
communication.

PSI-BLAST (Altschul et al., 1997) – Position
Specific Iterated BLAST uses an iterative search in
which sequences identified in the first round of
searching are used to build a score model for the
next round. PSI BLAST has been used to success-
fully identify homologous protein sequences that
have known 3D structures, even when the query

and subject sequences have less than 20% sequence
identity overall (Bork et al., 1999). Successive PSI
BLAST 2 iterations with the seven full length
SAND protein sequences resulted in convergence
after the 4th iteration.

Search against the databank of Pfam profiles

Profile Hidden Markov Models (HMMs) built from
Pfam alignments can be useful for automatically
recognising that a new protein contains an existing
protein domain, even if the sequence similarity is
weak. Pfam HMMs (Sonnhammer et al., 1998) were
searched with the nine SAND sequences using the
search package HMMER; no significant matches
were reported. A seed alignment of SAND is
available in PfamB (pfam b8448) but only contains
5 partial sequences from H. sapiens (SAND2), F.
rubripes, C. elegans, Sz. pombe and S. cerevisiae. No
homologous structural domains are reported for
these proteins.

PIX analysis of the nine SAND protein
sequences

Composite analysis of the SAND proteins for
protein motifs and structural elements was facili-
tated by using PIX (http://www.hgmp.mrc.ac.
uk/Registered/Webapp/pix/). Matches to various

Figure 1. A ClustalW alignment of seven full length SAND amino acid sequences. The following abbreviations are used Hs
(H. sapiens), Fr (F. rubripes), Dm (D. melanogaster), At (A. thaliana) Mm (Mus musculus) and Sp (S. pombe). Shown below
the alignment is the Jpred2 consensus secondary structure prediction (H – helix, E – strand, – loop) and solvent accessibility
(b – buried, e – exposed). Shown in bold underlined type are two cysteines located on helix A10 and strand B12, they are
present only in vertebrates and yeast, they may form a disulphide bridge in the mature peptide. SAND has 13 conserved
sequence motifs. Motif 3 contains 4 and 6 hydrophobic residues which coincide with beta strands B4 and B5. Motif 5 contains
the conserved residues NYDLRRL encoded on loop L9 which are also present in 1pii. Motif 13 contains charged C terminal
residues predicted on loop L26

Table 3. Characterisation of SAND loci

5k 3k

Accession number Identification Accession number Identification

Fr_SAND SPTR : Q9YGN2 TRIP (x) SPTR : Q9YGN0 PRGFR3 (+)
Dm_SAND SPTR : Q9VR37 Ribosomal protein S2 (x) SPTR : Q9VR39 Hypothetical protein (+)

Ce_SAND SPTR : Q20297 Hypothetical protein (+) SPTR : Q20299 Similarity to GRM5 (+)

Sc_SAND SP : P25443 Ribosomal protein S4 (x) SP : P53128 Met1 (x)
Sp_SAND SPTR : Q10147 Probable T complex protein (+) EMBL : Z69239.1 p65 (+)

At_SAND SPTR : AAD20686 Hypothetical protein (+) SPTR : AAD20658 Hypothetical protein (+)

Hs_SAND2 EM: AC009139 Probable pheromone receptor (+) EM: AC009139 Hypothetical protein(x)

Hs_SAND1 SPTR : O00467 TRIP (x) SP : Q04912 MSP Receptor RON (+)

The orientation of the gene neighbouring SAND is given in parenthesis, (+) for the leading strand and (–) for the reverse strand.
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features, for example transmembrane domains,
coiled coils, signal peptides and peptide cleavage
sites were reported in individual sequences, but the
threshold at which these features were determined
was not significant. Furthermore, these features
were not present in the majority of the sequences.
With the exception of A. thaliana, PSORT kNN
predictions only marginally predict SAND as a
nuclear localised protein ahead of the prediction as a
cytoplasmic protein. The A. thaliana SAND is
predicted as a plasma membrane located protein
with a score of 42%. There were no significant
matches to domain databases, e.g. SBASE (Murvai
et al., 2001), ProDom (Corpet et al., 1998), BLOCKS
(Henikoff et al., 1999), PRINTS (Attwood et al.,
1997) and PROSITE (Hofmann et al., 1999).
Although comprehensive protein database searches
have not revealed a possible function for the SAND
proteins, they firmly establish SAND as a new
protein family.

Alignment and prediction of secondary
structure and solvent accessibility

The C. elegans and S. cerevisiae SAND sequences
were not included in the alignment (Figure 1) due
to problems with their annotations as outlined in
this manuscript. The alignment comprises seven
sequences that have low sequence identity overall,
this typically being less than 30% between pairs of
sequences. There is no shared sequence similarity at
their N terminus (sequence lengths vary between
104–151 residues). However, following the N
terminus, several regions of highly conserved
residues are apparent (see Figure 1). These provide
evidence for at least two domains within the SAND
proteins.

Jpred2 was used to predict the secondary structure
and solvent accessibility of the SAND proteins. Three
types of input can be supplied to Jpred; a single protein
sequence, an unaligned set of protein sequences, or a
multiple protein sequence aligned in MSF format. The
ClustalW alignment shown in Figure 1 was used as
input to Jpred. The Jpred2 consensus secondary
structure and solvent accessibility predictions are
also shown in Figure 1. The N terminal region
described previously is predicted not to contain
either alpha helices or beta strands. The SAND
proteins are predicted to contain thirteen alpha
helices and thirteen beta strands, plus a total of 27
loops. All beta strands are predicted to be largely
solvent inaccessible, as well as four helices A2, A7,

A8 and A9. Eight of the thirteen helices display an
amphipathic pattern (A3, A4, A5, A6, A10, A11,
A12 and A13); these helices are likely to be located
on the outer surface of the protein with one side of
the helix facing the solvent and the other the
hydrophobic interior. The lengths of secondary
structure elements predicted are typical of those
observed in known protein structures and A3 is the
only helix predicted to be over 20 residues. Given
that the proteins share a low level of sequence
identity, the accuracy of the prediction will be
affected. The Jpred secondary structure prediction
is expected to be about 70% accurate at the amino-
acid residue level (Cuff et al., 1998).

Automatic protein fold recognition

The identification of a protein fold was attempted
using Threader (Jones et al., 1992). SumThreader
(Edwards and Perkins, 1996) was used to summa-
rise the outputs. The sequences in Figure 1 minus
the N terminal residues with the absence of regular
secondary structure predicted were used as input for
threading analysis.

The SAND sequences were matched ‘favourably’
with protein structures (protein structure codes and
domain annotations are given and the average
Z score are given in parentheses): 1pii00(2.65),
1pdz02(2.65), 1eedP0(2.62), 2exo00 (2.56), 1mpp00
(2.55) and 1hpm00(2.52). The Z scores of these
matches approach the threshold score of 2.7. In the
Threader user guide, this score is specified as
‘‘borderline significant, possibly correct’’. 1pii
consists of two alpha beta TIM barrel domains.
1pii is the experimentally determined structure of
the bifunctional E. coli enzyme phosphoribosyl-
anthranilate isomerase: indoleglycerolphosphate
synthase. The 1pdz lyase and the 2exo hydrolase
structures both adopt an alpha beta TIM barrel
fold. 1hpm is a heat shock protein ATPase
fragment adopting an open alpha beta alpha sand-
wich structure. 1eedP0 and 1mpp00 are aspartate
proteinases, adopting beta barrel structures. This
beta barrel structure is not compatible with the
SAND secondary structure prediction results, that
comprise equal numbers of alpha helices and beta
strands. The predicted secondary structure of
SAND is only a fair match with the largely
alternating pattern of helices and strands of 1pii.
However, the secondary structure and solvent
accessibility predictions for SAND indicate mostly
amphipathic helices and predominately solvent
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inaccessible strands, these characteristics are typical
properties observed in known alpha beta protein
fold types like the alpha beta sandwich structures or
the closed alpha beta TIM barrels.

Conclusions

Lack of conformity and standards in annotation
has resulted in variability between genomes in how
accurately genes are predicted. In this example,
SAND has been partially missed from the A.
thaliana genome annotation, mis-predicted in C.
elegans and S. cerevisiae, whilst Hs_SAND1 has
been not annotated in the human genome. Whilst
there are at least two mammalian SAND genes, and
at least one SAND gene is present in all eukaryotes,
the function of these genes’ products is still
completely unknown. It is possible that at least
one of the mammalian paralogues may play a role
in neoplastic disease following loss of exon 3. Using
bioinformatic analyses, this study has illustrated the
complexities of determining what the structure and
function of these proteins might be. When faced
with a totally new gene coding for a protein product
of unknown function, this task is non trivial and in
this example after considerable database searching
and analysis we have made only small advances in
this endeavour. SAND is only one gene product in
approximately 60% of the 19, 000 in C. elegans that
have an unknown function. A complete eukaryotic
genome sequence is today’s achievement, but a
functional understanding of it is still a distant goal.
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