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Abstract
Probabilistic Boolean networks (PBNs) have recently been introduced as a promising
class of models of genetic regulatory networks. The dynamic behaviour of PBNs can
be analysed in the context of Markov chains. A key goal is the determination of the
steady-state (long-run) behaviour of a PBN by analysing the corresponding Markov
chain. This allows one to compute the long-term influence of a gene on another
gene or determine the long-term joint probabilistic behaviour of a few selected genes.
Because matrix-based methods quickly become prohibitive for large sizes of networks,
we propose the use of Monte Carlo methods. However, the rate of convergence to
the stationary distribution becomes a central issue. We discuss several approaches
for determining the number of iterations necessary to achieve convergence of the
Markov chain corresponding to a PBN. Using a recently introduced method based on
the theory of two-state Markov chains, we illustrate the approach on a sub-network
designed from human glioma gene expression data and determine the joint steady-
state probabilities for several groups of genes. Copyright  2003 John Wiley & Sons,
Ltd.
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Introduction

Modelling of genetic regulatory networks is becom-
ing increasingly widespread for gaining insight into
the underlying processes of living systems. The
computational biology literature abounds in various
modelling approaches, all of which have partic-
ular goals along with their strengths and weak-
nesses (de Jong, 2002; Hasty et al., 2001; Smolen
et al., 2000). One important characteristic that is
shared by some models is the ability to capture
dynamic behaviour of the quantities that are being
modelled. Some examples include Boolean net-
works (Kauffman, 1993; Huang, 1999; Somogyi
and Sniegoski, 1996), dynamic Bayesian networks
(Murphy and Mian, 1999; Smith et al., 2002) and

the recently-introduced probabilistic Boolean net-
works (PBNs) (Shmulevich et al., 2002a, 2002b,
2002c, 2002d; Dougherty and Shmulevich, 2003;
Zhou et al., 2003; Kim et al., 2002; Datta et al.,
2003).

A key aspect of the analysis of such dynamic
systems is the determination of their steady-state
(long-run) behaviour. Indeed, much of the power
of prediction stems from this very knowledge.
This paradigm closely parallels the mission of can-
cer professionals who aim to understand the ebb
and flow of molecular events during cancer pro-
gression and to predict how disease will develop
and how patients will respond to certain thera-
pies. A specific example will illustrate this point.
Comparing the gene expression profiles of human
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brain tumours of high grade (glioblastoma), mid-
grade (anaplastic astrocytoma, anaplastic oligoden-
droglioma) and low grade (oligodendroglioma),
a key gene expression event — elevated expres-
sion of insulin-like growth factor binding protein
2 (IGFBP2) occurring only in high-grade brain
tumours — was identified (Fuller et al., 1999). It
can be envisioned that some gene expression events
have been initiated at different stages at the low-
and mid-grade brain tumours and may eventually
have led to the (steady) state when IGFBP2 is acti-
vated. The faster these kinetics are, the faster is the
progression of cancer. The goal is that the use of
gene expression profiles, along with the construc-
tion of the gene networks using models such as
PBNs, will make it possible to predict whether (and
when) the convergence to events such as IGFBP2
activation state will occur.

By the same token, we also envision the abil-
ity to ‘see’ the next gene expression event when
IGFBP2 is activated. Such an endeavour can be
facilitated by laboratory experiments and predic-
tion must be validated by existing knowledge of the
biological system under investigation. For exam-
ple, suppose IGFBP2 is activated by experimental
manipulation. In order to determine the steady state
behaviour of some other gene after IGFBP2 acti-
vation, biologists can select a relatively stable cell
system that has a baseline level of IGFBP2. Then,
IGFBP2 can be transfected into the cells and con-
tinuously expressed in the new or ‘perturbed’ cell
system whose steady-state gene expression levels
are of interest. Both cell systems can be surveyed
in a genomic laboratory for the gene expression
profiles. A comparison will shed light on how and
where in the state space the network shifts, forming
a basis for prediction. In one of the described com-
parisons carried out in our laboratory, cell invasion
genes were activated in IGFBP2 overexpressed
cells. This gene expression event is linked to a cel-
lular attractor state — cell invasion (Wang, 2003).

In this paper, we concentrate on obtaining the
steady-state (equilibrium) distribution of a PBN.
This is a crucial task in many contexts. For
instance, as was shown by Shmulevich et al.
(2002b), the steady-state distribution is necessary
in order to compute the so-called (long-term) influ-
ence, which is a measure of the impact of a gene on
other genes. More ‘influential’ genes may possess
a greater potential to regulate the dynamics of

the network, as their perturbation can lead to sig-
nificant ‘downstream’ effects. Shmulevich et al.
(2002d) developed a methodology for altering the
steady-state probabilities of certain states or sets
of states with minimal modifications to the rule-
based structure of the network. Reliable computa-
tion of steady-state distributions is crucial in this
context as well. As another example, suppose we
are interested in the long-term joint behaviour of
several selected genes, i.e. we would like to obtain
their limiting joint distribution. This information
can supply answers to questions of the type: ‘What
is the probability that gene A will be expressed
in the long run?’ or ‘What is the probability that
gene B and gene C will both be expressed in the
long run?’ Steady-state analysis is necessary for
answering such questions.

In this paper, we advocate the use of Monte Carlo
simulation methods for making reliable inferences
from steady-state analysis. A significant empha-
sis will be placed on the convergence rate of the
Markov chain corresponding to the PBN, as it is
crucial to ensure that the chain reaches stationarity
before collecting information of interest. We also
illustrate our methods by analysing sub-networks
generated from human glioma gene expression data
(the data set is described in Fuller et al., 1999).
The necessary background material, including def-
initions and some results related to PBNs, are avail-
able at http://www3.interscience.wiley.com/cgi-
bin/jabout/77002016/suppmat/index.html.

Steady-state analysis

Most approaches to steady-state analysis use the
state transition matrix in some form or another. For
the case of PBNs, this would consist of constructing
the state-transition matrix A given in Equation (4)
in the Supplementary Material, and then applying
numerical methods. A variety of approaches using
iterative, projection, decompositional and other
methods could potentially be used (Stewart, 1994).
Unfortunately, however, in the case of PBNs, the
size of the state space grows exponentially in
the number of genes and becomes prohibitive for
matrix-based numerical analysis of large networks.
Even matrix-geometric methods, which have been
successfully used for similar problems in non-linear
signal processing (Shmulevich et al., 1999), are
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unsuitable due to the possibly irregular structure
of the transition matrix.

On a more positive note, it should be recognized
that even larger state spaces are commonly encoun-
tered in Markov chain Monte Carlo (MCMC) meth-
ods for many applications, including Markov ran-
dom field modelling in image processing (Win-
kler, 1995), where efficient simulation and estima-
tion are routinely performed. Thus, Monte Carlo
methods represent a viable alternative to numeri-
cal matrix-based methods for obtaining steady-state
distributions. Informally speaking, this consists of
running the Markov chain for a sufficiently long
time, until convergence to the stationary distribu-
tion is reached, and observing the proportion of
time the process spends in the parts of the state
space that represent the information of interest,
such as the joint stationary distribution of several
specific genes. A key factor is convergence, which
to a large extent depends on the perturbation prob-
ability, p. In general, a larger p results in quicker
convergence, but making p too large is not biolog-
ically meaningful.

In order for us to perform long-term analysis
of the Markov chain corresponding to a PBN
using Monte Carlo methods, we need to be able
to estimate the convergence rate of the process.
Only after we are sufficiently sure that the chain
has reached its stationary distribution can we
begin to collect information of interest. Typical
approaches for assessing convergence are based
on the second-largest eigenvalue of the transition
probability matrix A. Unfortunately, as mentioned
above, for even a moderate number of genes,
obtaining the eigenvalues of the transition matrix
may be impractical. Thus, it is advantageous to
be able to determine the number of iterations
necessary until satisfactory convergence is reached.

One approach for obtaining a priori bounds on
the number of iterations is based on the so-called
minorization condition for Markov chains (Rosen-
thal, 1995). The Supplementary Material, which is
available at http://www3.interscience.wiley.com/
cgi-bin/jabout/77002016/suppmat/index.html,
discusses the minorization condition in the con-
text of PBNs. Unfortunately, as we show in the
Supplementary Material, the usefulness of such a
result is rather limited. Even for a moderately small
number of genes, the number of iterations, k , pre-
dicted by the bound is much too large to be useful

in practice. We have also found (see Supplemen-
tary Material) that making any assumptions about
the relative magnitudes of the probabilities of per-
turbation and transition via the selected Boolean
functions is not likely to significantly improve the
bound on convergence, and that it is only by hav-
ing some information about the structure of the
PBN itself that the bound can potentially be low-
ered. Thus, with limited ability to obtain a priori
bounds, we now turn to diagnosing convergence to
the steady-state distribution.

Diagnosing convergence

In a practical situation, it is important to be able to
empirically determine when to stop the chain and
produce our estimates. For this purpose, there are a
number of monitoring methods available (Cowles
and Carlin, 1996; Robert, 1995). Consider, for
example, the Kolmogorov–Smirnov test, a non-
parametric test of stationarity that can be used to
assess convergence.

Kolmogorov–Smirnov test

When the chain is stationary, distributions π(k1)

and π(k2) are the same for arbitrary times k1
and k2. Thus, given a sample x (1), . . . , x (T ), we
can compare the two halves: x (1), . . . , x (T/2) and
x (T/2+1), . . . , x (T ). In order to correct for non-i.i.d.
(correlated) samples, we introduce a ‘batch size’
G , leading to the construction of two (quasi-)
independent samples (Robert and Casella, 1999).
We thus select subsamples x (G)

1 , x (2G)
1 , . . . and

x (G)
2 , x (2G)

2 , . . . and use the Kolmogorov–Smirnov
statistic with the lexicographical ordering to define
the indicator:

K = 1

M
max

η

∣∣∣∣∣∣
M∑

g=1

1[0···0,η)

(
x (gG)

1

)

−
M∑

g=1

1[0···0,η)

(
x (gG)

2

)∣∣∣∣∣∣ , (1)

where the maximum is over the state space, the
vertices of an n dimensional Boolean hypercube.
As

√
M K has the cumulative distribution func-

tion R(x) = 1 − ∑∞
k=1(−1)k−1e−2k2x2

(Robert and
Casella, 1999), the corresponding p value can be
computed for each T until it reaches a desired level.
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This can also be used to assess convergence for
a selected group of genes j1, · · · , jm by replacing
state vectors x (gG)

1 and x (gG)

2 in (1) with just
the vectors of their j1th, · · · , jm th coordinates and
modifying the domain of η into the hypercube over
these coordinates only. For example, if only the
distribution for the first gene is of interest, i.e.
π(x(1) = 0), the maximum in (1) degenerates into
just an absolute difference of the numbers of zeros
in the first coordinate between the two samples.

Two-state Markov chain approach

We also employ a promising approach proposed
by Raftery and Lewis (1992). This method reduces
the study of the convergence of the chain to the
study of the convergence of a two-state Markov
chain. Suppose that we are interested in knowing
the steady-state probability of the event (gene A is
ON and gene B is OFF). Then, we can partition the
state space into two disjoint subsets such that one
subset contains all states on which the event occurs
and the other subset contains the rest of the states.
Consider the two ‘meta-states’ corresponding to
these two subsets. Although the sequence of these
meta-states does not form a Markov chain in itself,
it can be approximated by a first-order Markov
chain if every k state from the original Markov
chain is discarded (i.e. the chain is subsampled). It
turns out in practice that k is usually equal to 1,
meaning that nothing is discarded and the sequence
of meta-states is treated as a homogeneous Markov
chain (see Raftery and Lewis for details) with
transition probabilities α and β between the two
meta-states. Using standard results for two-state
Markov chains, it can be shown that the ‘burn-
in’ period (the number of iterations necessary to
achieve stationarity), m0, satisfies:

m0 ≥ log
(

ε(α + β)

max(α, β)

) /
log (1 − α − β) (2)

We set ε = 0.001 in our experiments. In addition,
it can be shown that the minimum total number of
iterations, N , necessary to achieve a desired accu-
racy, r (we use r = 0.01 in our experiments), is:

N = αβ(2 − α − β)

(α + β)3

(
r

�
( 1

2 (1 + s)
)
)−2

(3)

where �(·) is the standard normal cumulative dis-
tribution function and s is a parameter that we set
to 0.95 in our experiments. For detailed explana-
tions of the ‘precision’ parameters ε, r , and s , see
Raftery and Lewis (1992). The question becomes
how to estimate the transition probabilities α and β,
as these are unknown. The solution is to perform
a test run from which α and β can be estimated
and from which m0 and N can be computed. Then,
another run with the computed burn-in period m0
and the total number of iterations N is performed
and the parameters α and β are re-estimated, from
which m0 and N are recomputed. This can be done
several times in an iterative manner until the esti-
mates of m0 and N are smaller than the number
of iterations already achieved. We have used this
method to determine the steady-state probabilities
of some genes of interest from our gene expression
data set, as described below.

Experimental results

Using a human glioma gene expression data set, as
described in Fuller et al. (1999), we constructed a
small sub-network consisting of 15 genes, shown
in Figure 1. The entire 597-gene network was
inferred using the coefficient of determination
(Dougherty et al., 2000), as described in (Shmule-
vich et al., 2002a). The algorithm for building a
sub-network starting from so-called ‘seed’ genes,
which uses influences of genes (Shmulevich et al.,
2002a) and ensures that the sub-network functions
fairly autonomously from the rest of the genes, is
described by Hashimoto et al. (A direct-graph algo-
rithm to grow genetic regulatory subnetworks from
seed genes based on strength of connection: Sub-
mitted for publication). The numbers next to the
arrows in Figure 1 indicate the influences.

We analysed the joint steady-state probabili-
ties of several combinations of two genes: Tie-2
and NFκB; Tie-2 and TGFβ3; and TGFβ3 and
NFκB. For example, for Tie-2 and NFκB, the two-
state Markov chain method described above, when
applied to an initial run of 10 000 iterations, pro-
duced a burn-in period of m0 = 87 and a total
number of iterations of N = 48 268. The transi-
tion probabilities α and β were both approximately
equal to 0.03. The perturbation probability p was
set to 0.001. When we ran the network for another
38 268 steps, the recomputed values of m0 and N
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Table 1. Steady-state analysis of several pairs of genes

Tie-2 NFκB % Tie-2 TGFβ3 % TGFβ3 NFκB %

OFF OFF 15.68 OFF OFF 14.75 OFF OFF 10.25
OFF ON 41.58 OFF ON 42.50 OFF ON 12.47
ON OFF 9.21 ON OFF 7.96 ON OFF 14.64
ON ON 31.53 ON ON 32.78 ON ON 60.65

000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

001 010 011 100

Tie-2 TGFβ3 NFκB

101 110 111

Figure 2. Steady-state analysis of all three genes: Tie-2,
TGFβ3 and NFκB. The gene combinations are coded in
binary, e.g. 010 means that Tie-2 is OFF, TGFβ3 is ON
and NFκB is OFF. The bars show the joint steady-state
probabilities

were 91 and 50 782, respectively. Running the net-
work for another 3000 iterations was sufficient for
the given accuracy and the steady-state probabili-
ties of these two genes could be determined. The
steady-state probabilities for all pairs of consid-
ered genes are shown in Table 1 as percentages.
Figure 2 shows the joint steady-state probabilities
for all three of these genes using a bar graph.

Tie-2 is a receptor tyrosine kinase expressed on
the endothelial cells. Its two ligands, angiopoietin
1 and 2, bind Tie-2 and regulate vasculogenesis
(Sato et al., 1993), an important process in embry-
onic development and tumour development. Other
related regulators for vasculogenesis are VEGF and
VEGF receptors, which are often overexpressed
in the advanced stage of gliomas (Cheng et al.,
1996). Although no experimental evidence supports
a direct transcriptional regulation of those regu-
lators by the transcriptional factor NFκB, which
is also frequently activated in glioma progression

(Hayashi et al., 2001) as predicted in this analy-
sis, the results show that NFκB, at least indirectly,
influences the expression of Tie-2 expression. Thus,
it may not be surprising that when NFκB is on, Tie-
2 is on about 31.53/(41.58 + 31.53) = 43% of the
time. Because Tie-2 is only one of the regulators
for the important vasculogenesis in glioma progres-
sion, it is consistent that our analysis of long-term
(steady-state) gene expression activities shows that
about 40% of the time Tie-2 is on. In contrast,
NFκB is on 73% of the time, implying that fewer
redundancies exist for NFκB activity.

Interestingly, a similar relationship exists
between Tie-2 and TGFβ3, as can be seen by
comparing the percentages in columns 3 and 6
of Table 1. This suggests that TGFβ3 and NFκB
are more directly linked, which is also shown in
the last three columns of the table (60% of the
time, they are both on). This relationship is very
likely because TGFβ1, a homologue of TGFβ3, was
shown to have a direct regulatory relationship with
NFκB (Arsura et al., 1996).

Concluding remarks

We have focused on the important problem of
steady-state analysis of probabilistic Boolean net-
works. For even n = 20 genes, working with 220 ×
220 matrices becomes cumbersome and quickly
prohibitive for larger n . However, Monte Carlo
techniques can be successfully used as long as we
are sufficiently confident that the Markov chain
corresponding to the PBN has converged to its
equilibrium distribution. Moreover, Monte Carlo
techniques exhibit favorable scaling behaviour with
respect to the number of genes. Despite the fact that
the size of the state space grows exponentially with
n , efficient steady-state analysis can still be car-
ried out. We again note that MCMC methods on
images containing 512 × 512 = 2.6214 × 105 pix-
els, resulting in state spaces on the order of 1078,912
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for binary models, can nonetheless be effectively
performed. The actual inference step, however, is
more challenging. When selecting the best pre-
dictor genes (inputs) for one target gene (output),
using some measure such as the coefficient of deter-
mination, we face a combinatorial explosion: for

600 genes, there are
(

600
3

)
= 3.582 × 107 possi-

ble three-gene predictors to be tested for each of
the 600 genes. So far, we have relied on massively-
parallel supercomputers for carrying out the infer-
ence. However, other sub-optimal efficient meth-
ods are now becoming available (Hashimoto et al.,
2003).

Using a recently developed method for determin-
ing the number of iterations necessary for satisfac-
tory convergence, we have performed steady-state
analysis of several genes of interest in a small PBN
sub-network generated from real gene expression
data. The results seem to be in consonance with
what is known about these genes, especially as it
relates to tumourigenesis. Clearly, such a modelling
approach may prove to be very useful for generat-
ing many valuable hypotheses for biologists to test
in the laboratories, which is one of the goals of
modelling in computational biology.
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