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Abstract
Kernel density smoothing techniques have been used in classification or supervised
learning of gene expression profile (GEP) data, but their applications to clustering
or unsupervised learning of those data have not been explored and assessed. Here
we report a kernel density clustering method for analysing GEP data and compare
its performance with the three most widely-used clustering methods: hierarchical
clustering, K-means clustering, and multivariate mixture model-based clustering.
Using several methods to measure agreement, between-cluster isolation, and within-
cluster coherence, such as the Adjusted Rand Index, the Pseudo F test, the r2 test,
and the profile plot, we have assessed the effectiveness of kernel density clustering
for recovering clusters, and its robustness against noise on clustering both simulated
and real GEP data. Our results show that the kernel density clustering method has
excellent performance in recovering clusters from simulated data and in grouping
large real expression profile data sets into compact and well-isolated clusters, and
that it is the most robust clustering method for analysing noisy expression profile
data compared to the other three methods assessed. Copyright  2003 John Wiley &
Sons, Ltd.

Keywords: clustering analysis; kernel density; smoothing; gene expression; expres-
sion profile; unsupervised learning; robustness; noisy data; pseudo t test; r2; Pseudo
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Introduction

Various types of genome-wide gene expression pro-
filing experiments have been conducted to mea-
sure the differential expression of a large number
of genes (Lockhart and Winzeler, 2000; Schena,
2000). Clustering these genes into groups of similar
expression profiles is the first step in discover-
ing their biological functions. A number of clus-
tering methods for analysing large gene expres-
sion profile (GEP) data have been reported, such
as hierarchical clustering (Eisen et al., 1998), K-
means clustering (Tavazoie et al., 1999), self-
organizing maps (Tamayo et al., 1999), neural net-
works (Herrero et al., 2001), graph-theoretic clus-
tering (Ben-Dor and Yakhini, 1999; Hartuv et al.,
1999), support vector machines (Brown et al.,

2000), quality-based clustering (Heyer et al., 1999;
De Smet et al., 2002) and multivariate mixture
model-based clustering (Yeung et al., 2001; Ghosh
and Chinnaiyan, 2002). Here we report a kernel
density clustering method for gene expression pro-
file analysis. Kernel density classification and dis-
crimination or supervised learning of GEP data
analyses have been reported (Hastie et al., 2001; Li
et al., 2001) but kernel density clustering or unsu-
pervised learning of gene expression data have not
been explored and assessed.

The kernel density clustering method we report
here assumes no parametric statistical models and
does not rely on any specific probability distribu-
tion. Thus, it is particularly suitable to clustering
gene expression patterns from data collected in
large gene expression profiling experiments where
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non-Gaussian distribution, heterogeneous variance
and complex statistical dependence among vari-
ables (e.g. among different tissues and different
sampling time points) are the norm.

In this work, we assess the performance and
robustness of the kernel density clustering method
on grouping simulated and real GEP data, and com-
pare it against the benchmark methods: average-
linkage, K-means and multivariate mixture model-
based clustering. Our results show that the kernel
density clustering method performs among the best
and is the most robust method against noise in data.

Methods

Kernel density estimation, smoothing and
clustering

For a set of observations obtained from a univari-
ate distribution, the oldest and the most widely used
probability density estimator is the histogram. Tak-
ing any observation Xi as an origin, and a bin
or window of width h , which is defined as the
intervals [Xi + mh, Xi + (m + 1)h] for a positive
or negative integer m , the histogram is defined by:

f̂ (x) = 1

nh
(number of observatons Xi

in the same bin as x) (1)

The above function can be generalized into a naive
probability density estimator (Silverman, 1986):

f̂ (x) = 1

nh

n∑
i=1

w

(
x − Xi

h

)
(2)

Where n is the total number of observations in a
data set and w is a weight function. The window
width h in (2) is also called the smoothing param-
eter because it controls the amount of smoothing
inherent in the density estimation procedure. The
density estimate is obtained by placing a ‘box’
of width 2h and height (2nh)−1 on each obser-
vation and then summing. The naive estimator can
be further generalized as a continuous function by
replacing the weight function w with a kernel func-
tion K . The kernel probability density estimator is
then defined as:

f̂ (x) = 1

nh

n∑
i=1

K

(
x − Xi

h

)
(3)

Just as the naive estimator can be viewed as a
sum of ‘boxes’ centred at the observations, the ker-
nel estimator is a sum of ‘bumps’ placed at the
observations. The kernel function K determines the
shape of the bumps, while the bin, or window,
width h determines their widths. Figure 1 illus-
trates the smoothing effect of two different win-
dow widths for a density curve to a histogram.
A smaller window width leads to a decrease in
smoothing effect and an increase in the number
of local maxima (clusters) detected. The defini-
tion of (3) can be extended to multivariate data,
where the window width h becomes radius of a
hypersphere, R. The hypersphere specified by R
at observation Xi is also called the neighbourhood
of Xi in K-nearest neighbourhood density estima-
tion (Silverman, 1986; Scott, 1992). A number of
kernel functions have been proposed (Koontz and
Fukunaga, 1972; Gitman, 1973; Huizinga, 1978;
Wong and Schaack, 1982). We use the hyperspher-
ical uniform kernels of variable radius implemented
in SAS (1999). The density estimate at a data point
Xi is obtained from dividing the number of obser-
vations ni within a hypersphere centred at the point
Xi by the product of the sample size n and the vol-
ume of the hypersphere vi , which can be expressed
as f̂i = ni /nvi . In the SAS implementation, a clus-
ter is defined in terms of the local maxima of a
smoothed probability density or a maximal con-
nected set of local maxima of the neighbourhood
distribution function (SAS, 1999). The distance
or dissimilarity measure between two clusters (or
observations) i and j is computed, using:

d(xi , xj ) =
{

1
2( 1

f (xi )
+ 1

f (xj )
) if d(xi , xj ) ≤ R

∞ otherwise
(4)

where R is the user-specified radius and f (x) is
the estimated density at x (Silverman, 1986; Scott,
1992; SAS, 1999).

To assess both the performance of the ker-
nel density clustering method in discovering clus-
ter structure from profile data and its robust-
ness against noise in data, we compared this
method with three other types of clustering meth-
ods that are most commonly used in GEP anal-
ysis: (a) average-linkage clustering, a hierarchi-
cal Euclidean distance-based clustering algorithm
(Gordon, 1999; SAS, 1999); (b) adaptive K-means
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Figure 1. Histograms of 520 genes and the kernel density curve fitted using two different smoothing windows (h).
(A) h = 150; two local maxima (clusters) are detected; (B) h = 45; four local maxima (clusters) are detected. Bar interval
width = 5 is used for the histogram of A and B. Only the gene expression level at one sampling time point (variable)
from data set D is plotted to illustrate the relationship between smoothing parameter, window width h (equivalently, the
radius R for multivariate data), and the number of local maxima (clusters) of the density curve detected by kernel density
clustering method

clustering, a partitioning clustering algorithm (Gor-
don, 1999; SAS, 1999); and (c) multivariate mix-
ture model-based clustering (Fraley and Raftery,
1999; Yeung et al., 2001; Ghosh and Chinnaiyan,
2002). For kernel density clustering, average link-
age clustering and K-means clustering, we used an
SAS macro that we have developed, which incor-
porates statistical procedures available in the com-
mercial software SAS Version 8.0 (SAS, 1999).
For multivariate mixture model-based clustering,
we used the Mclust procedure implemented in the
R language by Fraley and Raftery (1999), which
is available from http://www.r-project.org/ and
http://www.stat.washington.edu/fraley/Mclust/
soft.shtml. An almost identical implementation is
also available in the commercial software, S-Plus,
Version 6 (S-Plus, 2001).

Assessing performance using simulated signal
data

A widely used methodology for performance
assessment in the clustering literature is called
external validation, i.e. evaluating the performance
of a clustering algorithm against external crite-
ria. The external validation we used proceeds as
follows: (a) a signal (or signature) data set that
has K known clusters is generated using Monte
Carlo simulation, each observation (vector) in the
data set carrying a cluster membership ID (design

ID); (b) the data set is clustered by the cluster-
ing method for assessment into K clusters and
each observation is assigned a new cluster member-
ship ID, called assigned ID. The degree of agree-
ment or similarity between the assigned IDs and
the design IDs is estimated using a match coef-
ficient, called the Hubert–Arabie Adjusted Rand
Index (ARI; Hubert and Arabie, 1985; Rand, 1971),
which has been shown to perform the best among
a number of match coefficients assessed by Milli-
gan and Cooper (1986) and Yeung et al., (2001).
The statistical principle and computation of the
ARI are summarized as follows: let us consider
two partitions of the same data set of n objects
(observation vectors) P1 = [C1i (i = 1, 2, . . .), c1]
and P2 = [C2j (j = 1, 2, . . .), c2], one from a clus-
tering method for assessment and one from either
an external criterion (prior knowledge) or a differ-
ent clustering method. The resemblance between
the two partitions can be assessed using informa-
tion contained in the c1 × c2 cross-classification
table (nij ), where nij denotes the number of objects
in cluster i of partitioning P1 and cluster j of par-
titioning P2. For n objects, there are totally (n

2)

distinct pairs and they fall into three different cat-
egories or types: Type I, pairs that belong to the
same cluster in both partitions, P1 and P2, Type II,
pairs that belong to different clusters in both P1 and
P2, and Type III, pairs that belong to same cluster
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in one partition and to a different cluster in the
other partition. Type I and Type II pairs are those
that agree in the two partitions and Type III are
those that disagree. The ARI of Hubert and Arabie
(1985), which measures the agreement using pairs
of the above three types, is given as:

RHA =

c1∑
i=1

c2∑
j=1

(
nij

2 ) −
c1∑

i=1

(
ni .
2 )

c2∑
j=1

(
n.j

2 )/(n
2)


 c1∑

i=1

(
ni .
2 ) +

c2∑
j=1

(
n.j

2 )


 /

2

−
c1∑

i=1

(
ni .
2 )

c2∑
j=1

(
n.j

2 )/(n
2)

(5)

where ni . = ∑c2
j=1 nij and n.j = ∑c1

i=1 nij , c1 and c2
are the number of clusters in the two partitions.

The RHA = 1 when the two partitions are identi-
cal. In our case, this indicates a perfect performance
of a clustering method in recovering the known
cluster structure from the data, RHA = 0, when the
partitions are selected at random; this would indi-
cate a complete failure of the clustering method in
recovering the known clusters from the data.

Assessing robustness to noise using noisy
simulated data

To assess the impact of noise in a data set on the
performance of the density clustering method, we
compared the performance of the kernel density
method on clustering the signal data sets and clus-
tering the ‘signal + noise’ data set (see Data sets).
By applying the density clustering method (or other
clustering method) to both data sets, we generate
two partitions, as well as two cluster membership
ID assignments. We then estimate the ARI, RHA,
using formula (5) from the two cluster ID assign-
ments. A smaller RHA value indicates a higher
impact of noise on the performance of a cluster-
ing method. The robustness of a clustering method
against noise is measured by examining the change
in the RHA value across five levels of noise. A larger
change in RHA value at different noise levels is an
indication that the clustering method is sensitive to
noise, and thus is not robust. At each noise level,
four random samples (replications) of noise data
are generated, using different random seeds, four
ARIs are then computed and their averages and
standard deviations are shown in Table 2.

Applying kernel density clustering to real data

We further assess the performance of the kernel
density clustering by applying it to the analysis of
two sets of real GEP data. Because in a real data
set, the cluster membership for each gene (object)
is unknown, external validation, such as the ARI,
cannot be employed for performance assessment.
We use two statistical criteria: the Pseudo F test,
and the accumulated between-cluster r2 test to
assess the performance.

The Pseudo F statistic, also called the Calin-
ski–Harabasz test, was first proposed by Calinski
and Harabasz (1974) and is defined as:

Pseudo F

=

[
n∑

i=1

(Xi −X )2−
G∑
k

nk∑
i=1

(Xi − X k )
2

]/
(G − 1)

[
G∑
k

nk∑
i=1

(Xi − X k )
2

] /
(n − G)

(6)

where n is the total number of objects in the
data, nk is the number of objects in cluster k(k =
1, 2, · · · , G), and Xi and X k are the observation
vectors for object i and the centroid (the mean vec-
tor) for group k , respectively, at any level of cluster
joining. The Pseudo F statistic is the best global
statistical criterion among the 15 criteria of cluster
number determination evaluated by Milligan and
Cooper (1985).

The accumulated between-cluster r2, also called
the coefficient of determination in the statisti-
cal literature, measures the proportion of total
variation in the data accounted for by between-
cluster variation:

r2 = 1 − Total within-cluster sum of squares

Total sum of squares

= 1 −

G∑
k

nk∑
i=1

(Xi − X k )
2

n∑
i=1

(Xi − X )2

(7)

As pointed out by Gordon (1999), an objective
criterion for the best clustering method is that
it should produce clusters that show maximum
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between-cluster isolation and within-cluster coher-
ence and compactness. The statistical criteria most
widely used are the Pseudo F test and the r2 test.
We also use a graphical display method, called pro-
file plot (Gordon, 1999), to measure within-cluster
coherence and compactness (see Figures 5, 6).

The ARI, Pseudo F and r2 statistic were com-
puted using an SAS Macro that we have developed
using the SAS Version 8.0 software (SAS, 1999).

Data sets

Simulated signal data

We generated five simulated signal, or signature,
data sets (labelled as A, B, C, D, E) using the
Monte Carlo simulation method of Kuiper and
Fisher (1975). We implemented the method in the S
language and generated the data in S-plus Version
6.0 (Chambers, 1998; S-plus, 1998–2001).

Each of the four data sets A, B, C and D was gen-
erated based on a different mathematical model and

represents and simulates a type of profile pattern
commonly observed in real expression profile data.
Each data set has 520 rows (genes) and 10 columns
(time points, or developmental stages, or variables),
and is comprised of eight clusters, with cluster
size ranging from 20 to 150 genes. Each panel in
Figure 2 shows the profiles of eight clusters for
each data set. We also introduced heteroscedasticity
into the models by holding the coefficient of vari-
ation, CV = σ/µ, constant across different time
points (variables). Heteroscedasticity is also called
heterogeneous error variance among samples in
statistics (Milliken and Johnson, 1992; Zar, 1999).
The type of heteroscedasticity that we modelled,
where the sample error variance (σ 2) increases with
sample mean (µ), is a common phenomenon found
in GEP data. We pooled the four data sets to form
the fifth data set (data set E). The key features of
the five simulated signal data sets are:

• Data set A: Models development stage-specific,
or cell (tissue) type-specific, expression profiles.

1 2 3 4 5 6 7 8 9 10

500

300

100

-100

D

1 2 3 4 5 6 7 8 9 10

230

180

130

80

30

-20

C

1 2 3 4 5 6 7 8 9 10

400

300

200

100

0

A

1 2 3 4 5 6 7 8 9 10

190

140

90

40

-10

B

Figure 2. Four types of gene expression profiles generated by Monte Carlo simulation. (A) Stage-specific profile; (B) cyclic
profile; (C) non-linear profile; (D) linear profile. Each type has eight clusters, only 10 genes per cluster are plotted: x axis,
10 sampling time points; y axis, intensity (level) of gene expression
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The expression levels of all genes only go up
or down once (at one stage) and stay constant
across other stages (520 genes, eight clusters).

• Data set B: Models cyclic (cell cycle type)
expression profiles. The level of gene expression
oscillates according to a biological clock, or cell
division/organ development cycles (520 genes,
eight clusters).

• Data set C: Models non-linear patterns of gene
expression (520 genes, eight clusters).

• Data set D: Models linear or quasi-linear pat-
terns of gene expression (520 genes, eight clus-
ters).

• Data set E: Pool of data sets A, B, C and D
(2080 genes, 32 clusters).

Simulated noise data

Noise data that represent five levels of variation
specified by the coefficient of variation (CV = 0.2,
0.6,1.0, 1.4 and 1.8, respectively) were generated
from the normal distribution N (µ, σ ) using the
Monte Carlo simulation. At each noise level, a data
set of 400 genes, comprising four subsets of 100
genes each, was generated. Each subset takes one
of the four values for location parameter (µ), 20,
60, 100 and 160, so that the range of variation in the
noise data is comparable to that in the signal data
for effective interference. The dispersion parameter
σ is specified based on the same heteroscedastic
variance models used for generating the signal data
sets. The key feature that distinguishes the noise
data from the signal data is that for each subset
of noise data (equivalent to a cluster in a signal
data set), the values of µ and σ are held constant
across variables (different time points), whereas for
each cluster in the signal data set, the values of
both parameters change according to a specified
mathematical model. The variation patterns of the
four noise data sets that represent four noise levels
are shown in Figure 3. At each noise level, four
data sets that represent four random samples, or
replications (rep1, 2, 3, 4), were generated from the
same error models using different random seeds.
The data sets shown in Figure 2 are all from
replication 1.

Real gene expression profile data

Two real gene expression profile data sets, gen-
erated using microarray technology, were used to
evaluate the kernel density clustering method:

• Data set 1 was collected in Antoni Rofalski’s lab
at DuPont. The data set we used for this analysis
has 1130 genes or ESTs, and five variables, cor-
responding to five sampling time points during
maize (Zea mays) embryo development (5, 10,
15, 20, 25 days after pollination; DAP). See Lee
et al. (2002) for details on the data collection
and annotation.

• Data set 2 was collected from a diauxic shift
experiment on the yeast Saccharomyces cere-
visiae by DeRisi et al. (1997). The subset of
this data that was used in this analysis contains
microarray measures of RNA intensity for 2500
genes at seven sampling time points (variables)
after 9 h initial growth in sugar-rich medium (9,
11, 13, 15, 17, 21 h). See DeRisi et al. (1997)
for further details.

Both data sets were standardized using variable
(or column) arithmetic means and standard devia-
tions before undertaking the clustering analysis.

Results

Performance in detecting known clusters from
simulated data

To assess the performance of the kernel density
clustering method on clustering expression profile
data, we applied kernel density clustering to four
simulated signal data sets (A, B, C, D) that rep-
resent four different types of profiles commonly
observed in gene expression profiling experiments
(Figure 2) and a combination of the four data sets
(data set E) (see Data sets for more details). The
ARI, which measures the agreement between the
cluster membership assigned by the kernel density
method and the cluster membership designed or
specified by the data generation model, was com-
puted for each simulated data set and reported in
Table 1. To assess the relative merit of this method
over the clustering methods widely used in pro-
file data analysis, we also computed the ARIs for
three other clustering methods: average linkage, K-
means, and mixture model-based clustering. For
mixture model-based clustering, we assessed the
performances of all six mixture models (EI, VI,
EEE, VVV, EEV and VEV) under two noise set-
tings [with (T ) or without (F ) Poisson noise],
implemented in the Mclust software package of
Fraley and Raftery (1999) (see Methods and legend
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Figure 3. Profiles of noise data from replication 1 generated by Monte Carlo simulation. Four different levels of noise
measured by the coefficient of variation (CV) are: (A) data set 1, CV = 0.2; (B) data set 2, CV = 0.6; (C) data set 3,
CV = 1.0; (D) data set 4, CV = 1.4: x axis is the ID for 400 genes from each data set and y axis is the range of variation in
intensity across 10 time points

to Table 1). The VEV and EI models showed the
best performance, and are reported in Tables 1
and 2.

For clustering the simulated data of single pro-
file type (data sets A, B, C, D), the results in
Table 1 show that the kernel density clustering
method performed better than all of the other clus-
tering methods except for VEV-F in identifying
clusters from non-linear profiles (C) and linear pro-
files (D). It is more efficient than the K-means
method and the mixture model-based EI-T method,
but is marginally less efficient than the average
linkage method and the mixture model EI-F, VEV-
F, and VEV-T methods in finding clusters from
stage-specific profiles (A) and cyclic profiles (B).

For clustering the combined data (data set E),
the results in Table 1 show that both the kernel
density method and the mixture VEV-F method

perform better than average linkage, K-means and
all the mixture model-based clustering methods.
Since real expression profile data sets are likely to
contain profiles of all four types, as demonstrated
in Figure 5, the ARIs from data set E are a
more reliable indicator of the overall performance
of a clustering method. Therefore, the results in
Table 1 indicate that the kernel density method
has excellent overall performance for clustering of
the simulated expression profile data. Table 1 also
shows that the average linkage method performs
very poorly on clustering the combined data set
E (ARI = 0.07), although it performs well in
clustering the four data sets consisting of single-
profile types. The mixture model-based clustering
methods without assuming Poisson noise (VEV-F,
EI-F) perform better than those assuming Poisson
noise (VEV-T, EI-T; Table 1).

Copyright  2003 John Wiley & Sons, Ltd. Comp Funct Genom 2003; 4: 287–299.



294 G. Shu et al.

Table 1. Performance of four clustering methods on clustering four types of simulated expression profile data (ARI∗
between designed and assigned cluster IDs)

Data set Clusters
Kernel
density K-means

Average
linkage

Mixture
(EI-F)

Mixture
(EI-T)

Mixture
(VEV-F)

Mixture
(VEV-T)

A (Stage-specific) 8 0.86 0.78 1.00 1.00 0.32 0.99 0.94
B (Cyclic) 8 0.75 0.70 0.92 0.85 0.28 0.77 0.83
C (Non-linear) 8 0.89 0.88 0.60 0.58 0.77 0.98 0.91
D (Linear) 8 0.91 0.78 0.79 0.74 0.24 1.00 0.81
E (Combined) 32 0.85 0.76 0.07 0.81 0.11 0.89 0.56

∗ ARI, adjusted Rand index; EI and VEV are two mixture models; F, noise = false; T, noise = true; see Methods section for detail.

Table 2. Robustness of four clustering methods against noise in expression profile data (ARI∗ between assigned cluster
IDs from signal data and signal + noise data)

Noise
level CV

Kernel
density K-means

Average
linkage

Mixture
(EI-F)

Mixture
(EI-T)

Mixture
(VEV-F)

Mixture
(VEV-T)

1 0.2 0.95 0.71 0.99 0.97 0.83 0.87 0.66
(0.026) (0.027) (0.0008) (0.042) (0.065) (0.055) (0.037)

2 0.6 0.98 0.69 0.98 0.94 0.64 0.90 0.54
(0.013) (0.020) (0.0063) (0.031) (0.10) (0.037) (0.072)

3 1.0 0.99 0.62 0.63 0.84 0.60 0.87 0.36
(0.0069) (0.060) (0.052) (0.067) (0.071) (0.094) (0.13)

4 1.4 0.99 0.59 0.53 0.93 0.52 0.91 0.47
(0.0068) (0.037) (0.099) (0.048) (0.054) (0.032) (0.083)

5 1.8 0.99 0.56 0.52 0.82 0.51 0.90 0.46
(0.0051) (0.047) (0.096) (0.094) (0.051) (0.081) (0.098)

∗ ARI, adjusted Rand index; CV, coefficient of variation; see Table 1 legend for EI, VEV, F, T.
The data in this table are the mean and standard deviation (in parenthesis) computed from four replicated data sets; see Data sets section for
more detail.

Robustness against noise

As many studies have shown, the data from gene
expression profiling experiments are usually noisy
(Lee et al., 2000; Tseng et al., 2001). In order to
systematically assess the robustness of the kernel
density clustering method against noise in expres-
sion profile data, we examined its performance on
clustering simulated signal + noise data. Table 2
shows the average and the standard deviation of
the ARI from four replicated data sets generated at
every noise level. The results show that the ker-
nel density clustering method is the most robust
method and it assigns 95–99% of the 2080 genes
into correct clusters at all noise levels. The K-
means method performs poorly at all five noise
levels. The clustering effectiveness of the average
linkage method decreases from 0.99 to 0.52 when
the level of noise increases from level 1 to level
5, in contrast to the kernel density method, which
performs better at higher noise levels.

We assessed the robustness of all of the six mix-
ture models implemented in the Mclust software
package of Fraley and Raftery (1999) (see Meth-
ods). Here we only report the results from the
two most robust models, the VEV and EI models
(Table 2), since the other four models all showed
low robustness (0.12–0.68). Table 2 also shows
that the mixture models assuming no Poisson noise
(EI-F, VEV-F) outperform those assuming Poisson
noise (EI-T, and VEV-T) at all five noise levels.

One might have noted that the ARI for the aver-
age linkage method on clustering signal data set E
is very low (ARI = 0.07; Table 1) but it is very
high on clustering signal + noise data (ARI = 1.0
and 0.99 at noise levels 1 and 2, respectively;
Table 2). This apparent discrepancy is due to the
fact that the ARI in Table 1 is estimated by match-
ing the assigned cluster ID and the design ID of
the same signal data. Whereas the ARI in Table 2
is estimated by matching the assigned ID of two
data sets: the signal data and the signal + noise
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data. As pointed out in Methods, the former is suit-
able for assessing the performance, or the rate of
cluster recovery, of a clustering method, and the
latter is suitable for assessing the robustness of a
clustering method against noise. This computation
strategy enables us to assess the performance and
robustness independently. The apparent discrep-
ancy in the ARI for the average linkage clustering
from Tables 1 and 2 can be explained as follows:
the average linkage method is poor in recovering
known clusters from the simulated data, but its per-
formance (although it is poor) is less affected by
low-level noises (but is strongly affected by high-
level noise). Summarizing the results from Tables 1
and 2, we can state that the kernel density clus-
tering method shows excellent performance and
robustness, and that the average linkage method
is poor, and the K-means method is mediocre in
both performance and robustness. The performance
and robustness of the mixture model-based cluster-
ing methods depend on the models specified; the
mixture VEV-F model shows the best overall per-
formance and robustness among all of the mixture
models.

Kernel density clustering of real data

We applied the density clustering method to two
real GEP data sets to assess its performance. Since
the true number of clusters is unknown for a real
data set, the performance of a clustering method
in recovering true cluster structure in a real data
set cannot be assessed using an external validation
method such as the ARI, as reported in the previous

section for the simulated data. In addition, because
the correlation between the expression profile of
a gene (measured by the level of mRNA accu-
mulation in an expression profiling experiment)
and the biological function of the gene (measured
by its protein activity or/and its physiological and
developmental roles) is low and indirect, the perfor-
mance of a clustering method cannot be assessed
accurately by measuring the functional similarity
amongst genes within the same cluster. An objec-
tive criterion of assessing the performance of a
clustering method in real data is to directly mea-
sure the observed data (the expression profile in
this case) for within-cluster similarity, or coher-
ence, and between-cluster isolation (Gordon, 1999).
Here we employ two such statistical criteria, the
Pseudo F test and the r2 test, and one graph-
ical inspection method, the profile plot, for this
task (see Methods). We can see from Figure 4A
that for the kernel density method, there are three
local maxima of the Pseudo F value (y axis) at 9,
14, and 17 clusters (x axis). The r2 value reaches
0.76 at 17 clusters, an indication that 76% of total
variation in the data can be explained as between-
cluster variation, when clustered into 17 clusters
by the kernel density method. We inspected the
compactness of each cluster and the within-cluster
coherence using a profile plot, and the results for
17 clusters are shown in Figure 5. We also applied
the kernel density clustering method to the analy-
sis of the yeast diauxic shift data (see Data sets).
The Pseudo F and r2 value in Figure 4B indicate
that partitioning the data into seven or eight clus-
ters is parsimonious. Figure 6 shows the profile of
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Figure 6. Profile plot of eight clusters in the yeast diauxic shift microarray data: x axis, sampling time point; y axis, level of
expression

each cluster when the data is partitioned into eight
clusters.

We compared our clustering result with the
experimental results of DeRisi et al. (1997). The
authors classify the 35 genes that they studied
into five groups, based on their shared regula-
tory properties in metabolic pathways and their
temporal expression profiles. Seventeen of these
genes are also present in the 2500 genes that
we used for clustering (data set 2 in the Data
sets section). Our kernel density clustering assigns
the 17 genes into five clusters, which com-
pletely agree with the five groups of DeRisi et al.
(ARI = 1).

The profile plots in Figures 5 and 6 show that
the kernel density clustering method performs very
well, that the clusters produced by this method are
compact and coherent, and that genes with similar
trends, or a similar level of abundance, across time
points are grouped into the same cluster. We can
see from Figure 5 that all of the four different types
of profiles that we have modelled in the simulated
data (Figure 2) are present in the real expression
profile data. They are the stage-specific or time
point-specific profile (A, H), the cyclic profile (B,
I and Q), the non-linear profile (J, L and N), and
the linear or quasi-linear profile (C, F and P). The
genes that have quite similar trends across time
points, but different levels of abundance of mRNA
accumulation, such as C, F and H in Figure 5, and

D and E in Figure 6, are grouped into different
clusters.

Discussion

Here we report a kernel density clustering method
for analysis of GEP data and assess its perfor-
mance and robustness on simulated and real expres-
sion profile data. The results from the simulated
data demonstrate that the kernel density method
has excellent performance and is the most robust
method against noise in the data. The results from
real expression profile data show that the ker-
nel density method can group genes into com-
pact, coherent clusters from large data sets. There-
fore, this method should be considered seriously
by researchers and data analysts when grouping
genomic data. Our results show that the kernel
density method is the most robust method for clus-
tering noisy data among the four types of methods
we have assessed. Robustness is important in gene-
expression profile data analysis because data from
many experiments usually reside in a large interac-
tive database and large variations in the scale and
quality of data are common. A clustering method
that is less sensitive to noise and that requires
less data preprocessing to remove or accommodate
scale differences will be more useful. Robustness
is also important, due to the fact that the major-
ity of genes spotted on a gene chip would not
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show real change or real differential expression
in any specific treatment-control experiment and
the observed changes in chip readouts from these
genes are largely noise, resulting from sampling,
experimental, and measurement errors. This noise
would severely affect the performance of a cluster-
ing method that is less robust.

One important difference between the kernel
density clustering method and the other three clus-
tering methods is that users do not specify the num-
ber of clusters before a clustering run (K-means
clustering, mixture model-based clustering) or after
a clustering run (average linkage clustering). The
users instead specify a smoothing parameter, and
the program finds the optimum number of clusters.
Because the clustering outcome is influenced in
some degree by the value of the smoothing param-
eter specified by the user, as illustrated in Figure 1,
several different values for R should be examined
in test runs to identify the optimum value of the
smoothing parameter for the final clustering run.
In most cases, we find that an R-value between
0.15 and 1.2 gives a satisfactory clustering result.
Mixture model-based clustering implemented in the
Mclust package of Fraley and Raftery (1999) also
allows users to obtain the optimum cluster number
K using a two-step procedure (Fraley and Raftery,
1999); the users run a clustering analysis at every
cluster number cutoff (K ) first, and then identify
the optimum K for the final run, based on the
value of the Bayesian Information Criterion (BIC).
Our results show that the mixture model-based
VEV-F method of Fraley and Raftery (1999) has
excellent performance and robustness for clustering
GEP data sets, although the computational speed
becomes much slower than for the kernel density
method, K-means, and average linkage clustering
when the size of a data set is large.

We found that the kernel density clustering
method is particularly suitable for clustering large
data sets. For instance, when clustering thousands
of genes in a large microarray data set into groups,
the average linkage method is overwhelmed by out-
lier genes and tends to lose power in finding true
clusters at a lower cluster number cut-off (K ); the
K-means and model-based EI methods tend to find
clusters with roughly the same number of observa-
tions (genes); the mixture model-based clustering
methods become very slow; but the kernel density
clustering method is faster and has more parti-
tioning power for finding clusters of various sizes

than all of the above three clustering methods. In
our opinion, the kernel density method’s flexibil-
ity, speed and robustness are properties that make
it a promising method for clustering large GEP data
sets.

Like other clustering methods, the kernel density
clustering method has limitations. Because accu-
rate estimation of density and assignment of cluster
membership require multiple data points in near
neighbourhoods, density estimation is less accurate
when a cluster size (expected number of observa-
tions in a cluster) is very small. However, this is
also why this method is robust and less sensitive
to outliers.

Since the main focus of this work is to introduce
a new clustering method to the bioinformatics and
genomics community and to demonstrate its perfor-
mance and utility for clustering expression profile
data, rather than systematically comparing the rela-
tive merits of the different types of clustering meth-
ods, the number of clustering methods that were
used as benchmarks was limited, and we did not
assess the self-organizing maps method (Tamayo
et al., 1999) and the quality-based clustering meth-
ods (Heyer et al., 1999; De Smet et al., 2002), for
example. For the same reasons, the scope of our
simulation study for assessing the performance and
robustness of different clustering procedures is also
relatively small. Since it has been well documented
in the clustering literature that different clustering
methods are suitable for different types of data
(Gordon, 1999), the performance and robustness
of the kernel density clustering method on cluster-
ing other types of genomic data will need further
assessment.
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