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Abstract

Interest in information extraction from the biomedical literature is motivated by the
need to speed up the creation of structured databases representing the latest scientific
knowledge about specific objects, such as proteins and genes. This paper addresses
the issue of a lack of standard definition of the problem of protein name tagging. We
describe the lessons learned in developing a set of guidelines and present the first set
of inter-coder results, viewed as an upper bound on system performance. Problems
coders face include: (a) the ambiguity of names that can refer to either genes or
proteins; (b) the difficulty of getting the exact extents of long protein names; and
(c) the complexity of the guidelines. These problems have been addressed in two ways:
(a) defining the tagging targets as protein named entities used in the literature to
describe proteins or protein-associated or -related objects, such as domains, pathways,
expression or genes, and (b) using two types of tags, protein tags and long-form tags,
with the latter being used to optionally extend the boundaries of the protein tag
when the name boundary is difficult to determine. Inter-coder consistency across
three annotators on protein tags on 300 MEDLINE abstracts is 0.868 F-measure.
The guidelines and annotated datasets, along with automatic tools, are available for
research use. Copyright © 2005 John Wiley & Sons, Ltd.
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Introduction

the biomedical literature is motivated by the need
to speed up the creation of structured databases

With the enormous quantity and variety of high-
throughput data being generated in the post-
genome era, one of the major challenges in man-
aging biological knowledge is to provide timely,
accurate and consistent annotation of biological
databases, such as primary DNA (GenBank) and
protein sequence databases (UniProt) and many
other secondary databases. Of particular value is
annotation derived from experimentally verified
data published in the scientific literature. However,
the amount of such literature-based and manually-
curated annotation is rather limited, due to the
laborious nature of knowledge extraction from the
literature. Interest in information extraction from
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representing the latest scientific knowledge about
specific objects, such as proteins and genes. This
has resulted in natural language processing tech-
nologies being utilized for biological literature min-
ing and information extraction (Hirschman et al.,
2002).

We discuss here our experience in developing
resources for one particular problem area, that of
extracting protein names from MEDLINE abstracts.
This task is fundamental to several other biological
literature mining tasks, including the development
of protein name ontologies and extraction of pro-
tein annotations (such as function and protein—
protein interaction) from the literature.
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The problem

Protein names show considerable variation because
of the existence of multiple naming conventions.
Researchers may name a newly discovered pro-
tein based on its function, sequence features,
gene name, cellular location, molecular weight
or other properties, as well as abbreviations and
acronyms. For example, the EphB2 receptor, a pro-
tein involved in signalling in the brain, was ini-
tially referred to as ‘Cek5’, ‘Nuk’, ‘Erk’, ‘Qek5’,
“Tyro6’, ‘Sek3’, ‘Hek5’, and ‘Drt’ before being
standardized as ‘EphB2’ (Editorial, 1999). Poten-
tial standardization based on publishing guidelines
and community consensus on naming are hard to
enforce uniformly. Moreover, there are proteins
whose status is tentative, and there is of course
also a vast amount of legacy data.

Unfortunately, the previous research in protein
and gene name tagging has been hampered in
several ways. Some systems distinguish between
protein and gene names while others do not, but
the criteria for specifying when a protein or gene
name should be tagged are not discussed. Thus, in
addition to the lack of common datasets, it becomes
very difficult to compare systems if one is unsure
whether they are addressing the same problem.
By using common ragging guidelines, it becomes
possible for groups to share tagged data, compare
automatic tagging results, and in general advance
the field of biological information extraction. Also,
inter-coder reliability is hardly ever reported (a
notable exception is Hatzivassiloglou et al., 2001).
As a result, one has no real sense of the replicability
and difficulty of the task is and how well the
machine is faring relative to the upper bound of
human performance.

The BioCreAtIvE evaluation is motivated by
similar concerns, and is a very positive step that
should address some of these issues. We believe
that our resources and approach can be leveraged
in such evaluations.

Tagging guidelines vl

Focus

Our first set of guidelines was relatively ambi-
tious. We began with the assumption that it was
crucial to annotate references to protein objects
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(including protein complexes and sets of protein
objects), rather than simply annotating the pro-
tein names. References to genes, gene promoters,
mutant genotypes, etc., were therefore not tagged.
Thus, ‘HypA’ was tagged as a protein, while
‘hypA’, which refers to a gene, was not. Ambiguity
between genes, proteins and genotypic strains was
addressed by specific conventions.

Tag type

We defined three tag types: (a) (protein) as a
generic tag for most protein objects, including pro-
tein complexes (e.g. ‘pyruvate dehydrogenase com-
plex’); (b) (acronym) to tag acronyms or abbrevi-
ations; (c) (array-protein) to tag a list of proteins
as a whole (e.g. ‘FGF-1, -2, -4, -5, and -7°).

Tag extent

Our rules for tag extent were reasonably com-
plex. A name was assumed to be made up of a
pre-modifier chunk, a head, and a post-modifier
chunk. Protein names were not tagged when used
as modifiers for non-protein entities (e.g. ‘elas-
tase I promoter’). When the post-modifier in a
name expressed a ‘part-of’ relationship (subunits
or chains of a complex), the name was tagged as
a whole, e.g. (protein) subunit of NADH dehydro-
genase (complex 1)(/protein). However, if the part
referred to a subregion of a protein or a polypep-
tide, such as ‘c-terminal tail of the hLHR’, only the
head ‘hLHR’ was tagged. Other rules were defined
for ‘kind-of’ and ‘member-of’ relations, as well as
various other cases.

Data and annotation procedure

We created two sets of 300 abstracts (called ABS1
and ABS2), each corresponding to 300 PIR (Wu
et al., 2003) protein entries that were randomly
picked from about 5000 entries with curated infor-
mation from high-quality underlying databases,
such as Protein Sequence Database (PSD), Saccha-
romyces Genome Database (SGD) and LocusLink.

ABS1 was tagged by hand by one coder, using
MITRE’s Alembic Workbench (Day et al., 1997).
The human coder tagged nearly 3300 protein names
in them. This experience provided a basis for
developing a formal set of guidelines. ABS2 was
then tagged according to the guidelines by three
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human coders using the Workbench. Al was a
co-author of this paper, while the others were
biologists otherwise unconnected with this project.

Assessment of v/

The inter-coder reliability metrics computed by a
MUC-class named entity scorer used in the DARPA
TIDES program is shown in Table 1. The scorer
is strict, in that a candidate name and a reference
name match (such a match is labelled ‘Correct’
in our tables) if and only if their respective text
extents have exactly the same characters at exactly
the same positions in the text.

Kappa («f) is often used to measure inter-coder
reliability on classification tasks, but its extension
to named entity extent is less clear. We consider
each word position in the abstract, and compare
whether or not the word at that position is a com-
ponent of a protein name across coders. In addition
to ignoring the boundary between contiguous pro-
tein names, this measure is generous and could give
artificially high scores, because most words are
not components of protein names, although chance
agreement can be high. A related measure is used in
Marcu et al. (1999) for computing « on discourse
spans. This method gives x = 0.80.

The ambitious focus on protein objects was a
major reason for disagreement. Many of the cases
of disagreement involved ambiguity of names that
could refer to either genes or proteins. Moreover,
many context-specific protein objects were tagged
by some coders, even when they were very generic
(e.g. protein, enzyme) or meaningless when taken
out of context (e.g. ‘El alpha’).

We next consider extent. While the maximum
protein name length was 12 words, about 93% of
the tags were three words or less, and 86% of the
tags were two words or less, and agreement on
these was much higher. Coders were inconsistent in
annotating pre- and post-modifiers and morpholog-
ical affixes at the boundary of a name, and also in

Table 1. Inter-coder reliability on protein tags (vl)

Coders Correct Precision Recall F-measure
Al-A2 3091 0.750 0.748 0.749
Al-A3 2766 0.8250 0.669 0.739
A3-A2 2474 0.6 0.738 0.662
Average 0.67 0.771 0716
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incorporating trailing punctuation in the tag. Nearly
half such tags were off by just one word.

Finally, consider tag types. Acronym tagging
achieved a 0.85 F-measure, but here the guidelines
were not consistently followed. The array-protein
tags were very hard to annotate (0.15 F-measure).
This was because they were not clearly defined in
the guidelines, e.g. a list of protein objects may or
may not share a common core term.

Finally, coders showed fatigue, and often missed
tagging multiple occurrences of the same protein
name.

Tagging guidelines v2

The above sorts of considerations led us to revise
the guidelines, as discussed next.

Focus

In the previous guidelines, when a protein name
was followed by a non-protein object (e.g. ‘elastase
I gene promoter’), the protein name (e.g. ‘elastase
I’) was not tagged. This was because of the focus
on protein objects. In the modified guidelines,
we defined the tagging targets as protein named
entities (full names, acronyms or other symbolic
names) used in the literature to describe proteins,
or protein-associated or -related objects, such as
domains, pathways, expression or gene. Thus, in
the new guidelines, we have (protein)elastase
I{/protein) gene promoter, etc.

Tag types and extent

In the revised guidelines, we used only two types of
tags: (protein) and (long-form). The (long-form)
tag is designed to optionally extend the boundaries
of (protein) tag when the name boundary is difficult
to determine, thereby improving inter-annotator
consistency. The long-form is only used in two
situations (more details are at our website):

1. Organism names preceding a protein name may
or may not be part of the protein name, e.g.
the species name is tagged as part of the
protein name if the protein name contains an
acronym abbreviating the species name, e.g.
(proteinyhuman growth hormone (hGH){/pro-
tein), but (long-form)human (protein)IGF-II{/
protein)(/long-form).
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2. When several protein entities share common
terms, there may be only one name entity
that can be easily tagged. We tag such an
entity as a protein, while the list of enti-
ties together are tagged as a long-form, e.g.
(long-form) (protein) CSN subunits 4(/protein),
5, 6{/long-form).

Assessment of v2

The results on inter-coder reliability using the
revised guidelines are much better. We present
results for F-measure in Table 2 with three coders
on ABS2. Note that the coders Al and A3 were
also involved in v1. The corresponding k scores
are shown in Table 3.

Related work

Other work on inter-coder reliability comes from
Hatzivassiloglou et al. (2001), who had three anno-
tators manually classify 550 terms found in 15
full-text articles from PubMed as ‘gene’, ‘protein’,
‘mRNA’, ‘ambiguous’ or ‘wrongly extracted’.

Table 2. Inter-coder reliability: F-measure (v2)

Coders Correct Precision Recall F-measure
(protein)

Al-A3 4497 0.874 0.852 0.863
Al-A4 4769 0.884 0.904 0.894
A3-A4 4476 0.830 0.870 0.849
Average 0.862 0.875 0.868
(longform)

Al-A3 172 0.720 0.599 0.654
Al-A4 241 0.837 0.840 0.838
A3-A4 175 0.608 0.732 0.664
Average 0.721 0.723 0718

Table 3. Inter-coder reliability: «

(v2)

Coders K
(protein)

Al-A3 0.899
Al-A4 0.930
A3-A4 0.892
Three-way 0932
(long-form)

Al-A3 0.657
Al-A4 0.819
A3-A4 0.662
Three-way 0766
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They found 77.58% pairwise agreement and
69.27% three-way agreement.

We now compare our annotated corpus with the
GENIA corpus vs. 3.0.2 (Kim et al. 2003). The lat-
ter is a 2000-abstract corpus of biological literature
compiled from the MEDLINE database and tagged
with a set of hierarchical semantic classes. The
GENIA corpus is focused on biological reactions
concerning transcription factors in human blood
cells, with the MeSH terms ‘human’, ‘blood cell’
and ‘transcription factor’ used as criteria for select-
ing abstracts.

The corpus has clearly a different focus from
ours. Our corpora were chosen from the curated
PIR database entries, which are not biased towards
any particular area of biology, thus providing
greater diversity in protein names for a given
sample size. In addition, of course, our focus is on
tagging protein names, a fundamental problem in
automatically extracting experimental information
of proteins from literature to assist protein database
annotations.

The GENIA ontology classes corresponding to
our protein name entities are ‘protein complex’,
‘individual protein molecule’, ‘subunit of protein
molecule’, and ‘peptide’ (here we exclude peptides,
as only naturally occurring peptides map to protein
name objects, not artificial synthetic peptides).
Based on our mapping, both corpora have a similar
percentage (about 22%) of distinct protein names.

Resources

A dictionary of 691000 protein names was com-
piled from PIR entries. A case-insensitive exact
matching of longest matching entries achieved an
F-measure of 0.412 (0.372 Precision, 0.462 Recall)
on ABS2. When used for preprocessing before cod-
ing, we found the dictionary lookup helpful with
standardization and extent. It should also help with
the fatigue problem, and thus could considerably
further improve inter-coder reliability.

We have also developed several automatic tag-
gers (also available) based on machine learning,
which currently perform at about 0.59 F-measure,
tested on both ABS2 and the 2000-abstract GENIA
corpus version 3.0.2, with the latter being based on
a mapping of GENIA tags to ours.

These results compare with a 0.40 F-measure
for KEX (Fukuda efal. 1998) on ABS2, and
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are comparable with other work on GENIA. In
the Hatzivassiloglou et al. (2001) study, their best
automatic taggers were at 7—14% below human
performance.

Our guidelines and annotated data (600 abstracts
in all) are available to the community, along with a
general corpus study and more detailed results. Rel-
evant information about these resources, as well as
the broader research framework, can be found at the
following websites: pir.georgetown.edu/iprolink/
(Hu et al., 2004); and complingone.georgetown.
edu/~prot/.
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