Supporting Information

Gilbert et al. 10.1073/pnas.0802315105

SI Text: Amino Acid Differences Between the M1 and M25 mtDNA Genomes

Sequence data from 13 mammoth mitochondrial proteins showed between 1 and 5 sequence differences between individuals M1 and M25 (one case, ND4, showed a C-terminal insertion of five residues). In all cases, the substitutions were conservative. That is, all involve substitutions within the set of hydrophobic residues, extended to include Thr and Ser, except for one: an Asn-Asp change in ND4. It was possible to predict structures for four of the proteins by homology modeling techniques [using SWISS-MODEL (1, 2)]. Table S3 shows the details of these calculations. The sequence similarities between parent and target molecules were all at least 78% residue identity, suggesting that the quality of the models should be quite high. (All four parent structures were bovine homologues.)

Pictures of the modeled structures show that the sites of mutation are on the surface. Fig. S2 shows the sites of mutation in the structures for *Cytb* and *COX*1.

Comparison with Elephant Sequences. Alignment of *COX*1 and *Cytb* sequences between the two mammoth individuals and two of the extant elephant species showed alignments with no insertions or deletions. The sets of sequences are very similar, with almost all

 Guex N, Peitsch M.C (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. *Electrophoresis* 18:2714–2723. positions constant. When judging only from the *COX*1 and *Cytb* protein sequences, the data suggest that mammoths are more closely related to African rather than Asian elephants. In this regard, we find 7 out of 16 sequence differences in *Cytb* and 3 out of 7 in *COX*1, at which the two mammoths and *L. africana* have a common residue but *E. maximus* has a different one. However, at position 371 of the *Cytb* alignment, both mammoths and *E. maximus* have Met, and *L. africana* has Val.

The alignments are shown in Fig. S3. At position 14 of the *CYTB* alignment, M25 has the same residue as the extant elephants, different from M1. At positions 159 and 238 of the *CYTB* alignment, both mammoths have the same residue (159 Asp, 238 Phe), and both extant elephants have the same residue (159 Asn, 238 Leu); a similar distribution appears at residues 329, 330, and 334. At position 303 of the *Cytb* alignment, M25 and M1 have different residues (Ile and Met, respectively), whereas the two extant elephants have Leu. At position 345, M1 and *L. africana* have Tyr but M25 and *E. maximus* have His.

The four COX1 sequences are very similar until near the C terminus, where the extant elephants have a C-terminal extension.

Conclusion. There is no reason to suggest that any of the sequence changes is non-neutral.

 Schwede T, Kopp J, Guex N, Peitsch PE (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385.

Fig. S1. Spatial and temporal distribution of clade I and clade II mammoth specimens. Indicated is the geographic distribution of the combined mammoth clade I and clade II specimen dataset, as reported both here and previously by Barnes *et al.* (1). Also indicated is the Estonian mammoth from ref. 1, which is basal to the mammoth phylogeny and may or may not represent a potential unconfirmed third mammoth clade (1) (not discussed here). Because of the high density of samples recovered from the Lena–Kolyma region, this region is expanded in *Inset*. The clade I mammoths are indicated as either younger or older than 40,000 ¹⁴C years, to enable comparison of their geographic distribution with the clade II samples, most, if not all, which also date to >40,000 ¹⁴C years. The geographical limitation of clade II mammoths in comparison with contemporary clade I mammoths is clearly visible.

1. Barnes I, et al. (2007) Genetic structure and extinction of the woolly mammoth, Mammuthus primigenius. Curr Biol 17:1-4.

mammoth cytb model

Zd

mammoth cytb model

mammoth cox1 model

Fig. S2. Sites of mutation in the structures for Cytb and Cox1.

Cytochrome b

		10	20	30	40	50	60
E. maximus	MTHTRKFH	PLFKIINKS	FIDLPTP	SNISTWWNFGS	LLGACLITQI	LTGLFLAMHYTP	DTM
L. africana Mammoth M1	MTHIRKSH	PLLKIINKS	SFIDLPTP SFIDLPTP	SNISTWWNFGS	SLLGACLITQI SLLGACLITOI	LTGLFLAMHYTP LTGLFLAMHYTP	DTM
Mammoth M25	MTHIRKSH	PLLKIINKS	FIDLPTP	SNISTWWNFGS	SLLGACLITQI	LTGLFLAMHYTP	DTM
	* *	* *					
		7.0	8.0	9.0	100	110	120
		,,		50	Ĩ	110	120
E. maximus	TAFSSMSH	ICRDVNYGV	VIIRQLHS VIIRQLHS	NGASIFFLCLY NGASIFFLCLY	THIGRNIYYG THIGRNIYYG	SYLYSETWNTGI SYLYSETWNTGI	MLL
Mammoth M1	TAFSSMSH	ICRDVNYG	VIIRQLHS	NGASIFFLCLY	THIGRNIYYG	SYLYSETWNTGI	MLL
Mammoth M25	TAFSSMSH	ICRDVNYGV	VIIRQLHS	NGASIFFLCLY	THIGRNIYYG	SYLYSETWNTGI	MLL
	1	30	140	150	160	170	180
F maximus	TTTMATAPI	MCVUL DWC	MCRWCAT	VTTNI. PCATDY	TOTNINUTW	CCPSVDVATIND	FFA
L. africana	LITMATAFI	MGYVLPWG	MSFWGAT	VITNLFSAIP	IGTNLVEWIW	GGFSVDKATLNR	FFA
Mammoth M1 Mammoth M25	LITMATAF	MGYVLPWG	MSFWGAT	VITNLFSAIPY VITNLFSAIPY	TGTDLVEWIW	GGFSVDKAT LNR	FFA
Hummoor HES			and a nomi		*		
	1	90	200	210	220	230	240
E. maximus	FHFILPFT	MVALAGVHI	TFLHETG	SNNPLGLTSDS	DKIPFHPYYT	IKDFLGLLILIL	LLL
L. africana Mammoth M1	LHFILPFT	MIALAGVHI	TFLHETG	SNNPLGLTSDS	DKIPFHPYYT	IKDFLGLLILIL	LLL
Mammoth M25	LHFILPFT	MIALAGVHI	TFLHETG	SNNPLGLTSD	DKIPFHPYYT	IKDFLGLLILIL	FLL
	*	*					*
	2	50	260	270	200	200	200
	2	50	260	270	280	290	300
E. maximus	LLALLSPDI	MLGDPDNYN	IPADPLNT	PLHIKPEWYFI DIHIKPEWYFI	FAYAILRSVP.	NKLGGVLALFLS	ILI
Mammoth M1	LLALLSPDI	MLGDPDNYN	MPADPLNT	PLHIKPEWYFI	LFAYAILRSVP	NKLGGVLALLLS	ILI
Mammoth M25	LLALLSPD	MLGDPDNYN	IP AD PLNT	PLHIKPEWYFI	LFAYAILRSVP	NKLGGVLALLLS	ILI
						*	
	3	10	320	330	340	350	360
E maximus	LCIMPPIN	TOVUDOMMI	PDL COVI.	FWTLTMDILT	TWICSODUFU	DVTTTCOMASTL	VPC
L. africana	LGLMPLLH	ISKHRSMMI	RPLSQVL	FWTLTMDLLTI	TWIGSOPVEY	PYIIIGQMASIL	YFS
Mammoth M1 Mammoth M25	LGIMPLLH	ISKHRSMMI ISKHRSMMI	RPLSQVL	FWTLATDLLMI	TWIGSOPVEY	PYIIIGOMASIL PYIIIGOMASIL	YFS
Humano on Higo	* *			** *	*	· · · · · · · · · · · · · · · · · · ·	
	3	70					
E. maximus	IIL <mark>A</mark> FLPI	AGMIENYLI	K				
L. africana Mammoth M1	IILAFLPI. TTLAFLPI	AGVIENYLI	K				
Mammoth M25	IILAFLPI	AGMIENYLI	K				
		*					

Fig. S3. (Figure continues on the next page.)

COX1

PNAS PNAS

	1	LO	20	30	40	50 60
E. maximus L. africana mammoth M1 mammoth M25	M F <mark>A N R W L Y S</mark> M F A N R W L Y S M F A N R W L Y S M F <mark>A N R W L Y S</mark>	TNHKDIGT TNHKDIGT TNHKDIGT TNHKDIGT	LYLLF <mark>GAWAG</mark> LYLLFGAWAG LYLLF <mark>GAWAG</mark> LYLLF <mark>GAWA</mark> G	SMVGTAFSILIR SMVGTAFSILIR SMVGTAFSILIR SMVGTAFSILIR	A ELGOPGSLL A ELGOPGSLL A ELGOPGSLL A ELGOPGSLL	GDDQIYNVIVTA GDDQIYNVIVTA GDDQIYNVIVTA GDDQIYNVIVTA
	7	70	80	90 1	00 1	10 120
E. maximus L. africana mammoth M1 mammoth M25	HAFVMIFFM HAFVMIFFM HAFVMIFFM HAFVMIFFM	VMPIMI <mark>GG</mark> VMPIMIGG VMPIMIGG VMPIMIGG	F <mark>GNWLIPLMI</mark> PGNWLIPLMI PGNWLIPLMI FGNWLIPLMI	GAPDMAFPRMN GAPDMAFPRMN GAPDMAFPRMN GAPDMAFPRMN	NMSFWLLPPS NMSFWLLPPS NMSFWLLPPS NMSFWLLPPS	FLLLL <mark>ASSMVEA</mark> FLLLL <mark>ASSMVEA</mark> FLLLLASSMVEA FLLLL <mark>ASSMVE</mark> A
	13	8 Q	140	150 1	60 1	70 180
E. maximus L. africana mammoth M1 mammoth M25	GTGTGWTVY GAGTGWTVY GTGTGWTVY GTGTGWTVY	PPLAGNLA PPLAGNLA PPLAGNLA PPLAGNLA	HAGASVDLTI HAGASVDLTI HAGASVDLTI HAGASVDLTI	IFSLHLAGVSSI IFSLHLAGVSSI IFSLHLAGVSSI IFSLHLAGVSSI	L SAINFITTI L SAINFITTI L SAINFITTI L SAINFITTI L SAINFITTI	INMKPPAMSQYH INMKPPAMSQYH INMKPPAMSQYH INMKPPAMSQYH
	19	0	200	210 2	20 2	30 240
E. maximus L. africana mammoth M1 mammoth M25	MPLFVW <mark>S</mark> IL MPLFVW <mark>S</mark> IL MPLFVWSIL MPLFVWSIL	VTAVLLLLS ITAVLLLLS VTAVLLLLS VTAVLLLLS	SLPVLAAGII SLPVLAAGII SLPVLAAGII SLPVLAAGII	TMLLTDRNLNTT TMLLTDRNLNTT TMLLTDRNLNTT TMLLTDRNLNTT	FFDPAGGGDP FFDPAGGGDP FFDPAGGGDP FFDPAGGGDP	VLYQHLFWFFGH ILYQHLFWFFGH ILYQHLFWFFGH ILYQHLFWFFGH
		*				*
P. maximus	25		260	270 2	80 2	90 300
L. africana mammoth M1 mammoth M25	PEVYILILP PEVYILILP PEVYILILP	GFGMVSHI GFGMVSHI GFGMVSHI	VTYYSGKKEI VTYYSGKKEI VTYYSGKKEI	PGYMGNVWAMM PGYMGNVWAMM PGYMGNVWAMM	SIGPLGFIVW SIGPLGFIVW SIGPLGFIVW	AHHMFTVGMDVD AHHMFTVGMDVD AHHMFTVGMDVD
	31	LO	320	330 3	40 3	50 360
E. maximus L. africana mammoth M1 mammoth M25	T RAYFTSAT T RAYFTSAT T RAYFTSAT T RAYFTSAT	MIIAIPTG MIIAIPTG MIIAIPTG MII <mark>AIPTG</mark>	VKVFSWLATI VKVFSWLATI VKVFSWLATI VKVFSWLATI	HGGNIKWSPAM HGGNIKWSPAM HGGNIKWSPAM HGGNIKWSPAM	MWALGFIFLF MWALGFIFLF MWALGFIFLF MWALGFIFLF	TIGGLTGIVLAN TIGGLTGIVLAN TIGGLTGIVLAN TIGGLTGIVLAN
	37	10	380	390 4	00 4	10 420
E. maximus L. africana mammoth M1 mammoth M25	SSLDIVLHD SSLDIVLHD SSLDIVLHD SSLDIVLHD	T YYVVAHFI TYYVVAHFI TYYVVAHFI TYYVVAHFI	HYVL SMGAVI HYVL SMGAVI HYVL SMGAVI HYVL SMGAVI	A IMGG FIHWFP A IMGG FIHWFP A IMGG FIHWFP A IMGG FIHWFP	LFSGYTLNYT LFSGYTLNYT LFSGYTLNHT LFSGYTLNHT	WAKIOFLVMFIG WAKIOFLVMFIG WAKIOFLVMFIG WAKIOFLVMFIG
	43		440	450 4	*	70 490
E. maximus L. africana	VNLTFFPOH	FLGLSGMPI	RRYSDYPDAY	TAWNTASSMGS	FISLVAVILM	VFMIWEAFASKR
mammoth M1 mammoth M25	VNLTFFPQH VNLTFFPQH	FLGLSGMP	RRYSDYPDA RRYSDYPDA Y	TAWNTASSMGS TAWNTASSMGS	FISLVAVILM FISLVAVILM	VFMIWEAFASKR VFMIWEAFASKR
	4 9	0	500	510		
E. maximus L. africana mammoth M1 mammoth M25	EVSMMELMT EVSVMELTT EVSMMELTT EVSMMELTT	TNNEWLNG TNVEWLNG TNVEWLNG TNVEWLNG	CPPPHHTFEF CPPPHHTFEF CPP CPP	EPAYVKSNS EPAYVKSNS		
	* *	*	* * * * * * *	*******		

Fig. S3. Alignments of elephant and mammoth Cytb and COX1 sequences.

		n year Sampled by	mation P. lacuminn ole	A. Tikhonov		T. Kuznetsova	T. Kuznetsova	A. Sher
		Collectio	i No inforr availab	1 2003		2000	2001	2003
		Collected by	No information available	No information available		F. Selyakhov	I. Mikolauskas	0 F. Shidlovskiy
		¹⁴ C age	13,995 ± 55	18,560 ± 50	(1	>63,500	>58,000	59,300 ± 2,700
	¹⁴ C accession	no./source	OXA-19605	GrN-28258, GrN-28259,	GrN-24288 (ref. 2	OXA-19608	OXA-19609	OXA-19610
		GPS north	69.8	71.52.988	Ŭ	73.64	73.21	69.79
		GPS east	169	140.34.873		142.89	143.6	157.7
	Size of	digestion, ml	15	15		15	15	30
Amount of	material	used, g	0.43	9.0		0.35	0.2	5.2
		Sample source	Universita Degli Studi Di Parma, Italy	Zoological Instutite, Russian Academy	of Sciences	Lena Delta Reserve	Lena Delta Reserve	Ice Age Museum
		Geographic origin) Ayon Island, Russia	Yukagir Village, 1 Yakutsk, Russia		Bolshoy Lyakhovskiy Island, Russia	Bolshoy Lyakhovskiy Island, Russia	Bolshaya Chukochya River, Russia
	Museum/	other ID	Site 5 (ref. 1	Yukagir Mammoth		LDR-P72	LDR-P73	F-0299
		Sample	M15	M19		M20	M21	M25

Table S1. Sample details

Iacumin P, Davanzo S, Nikolaev V (2006) Spatial and temporal variations in the ¹³Cl¹²C and ¹⁵N¹⁴N ratios of mammoth hairs: Palaeodiet and palaeoclimatic implications. Chem Geol 231:16–28.
Aptroot A, van Geel B (2006) Fungi of the colon of the Yukagir Mammoth and from stratigraphically related permafrost samples. Rev Palaeobot Palynol 141:225–230.

Table S2. Primers and regions PCR amplified and sequenced for specimen M25 to confirm SNPs that differ from the Krause referen	ce
mammoth	

Primer set	Forward primer $5' \rightarrow 3'$	First base	Reverse primer $5' \rightarrow 3'$	Amplicon	Annealing temperature
1		6		215	60
ו כ		0 775		215	60
2		1212	CCTCCATECTATICACC	191	60
4	AGTACCOCAAGGGAATGATG	1212	GGCCGTTAACACTTGGTCA	225	60
7	TACAATTTICCTICCCCTCA	1702		100	60
/ Q	ACCCCTATTAACCCTCCT	2255		210	60
0		2432		210	60
9 10		2/00	GETTAGTETAAAGGACCCATTAT	203	60
10		3013	TEGTECTAATTTTETCAEGTT	217	60
17		4042	TGAAGTTGTGAGGGTATTTGCT	270	60
14		4204		215	60
13		4390 5471	TECCTETCCCAECTTCTACT	220	60
10		5471		230	60
10		5761	GANTITICCCTCATCTATCCTT	221	60
19		6504	CONTRACTOR CONTRACTOR	204	60
20		6011		225	60
21		7170		200	60
22		7172		171	60
23		7455		240	60
24		7702		202	60
25		0015		200	60
20		0000		299	60
27		0000		299	60
28		9035		308	60
29		9507		299	60
30		9678		340	60
3 I 22	IGITIACCITAAAIGCACTATIAICC	9992	GGCTAGTTAGACTAATTGCGAAGC	287	60
32		10417	AATGGATTIGGCTAGGTATGG	305	60
33	GGATCICICCCTACTAGTAACC	10629		422	60
34		1111/		350	60
35		11451	GAAGCCACATIGITAGATGAGG	216	60
30		11/41		486	60
3/		12215	IGAIGGAAGICACGGAIGAA	230	60
38		12514	GCIGIIGAAGIAAIGGGIAIIGIII	341	60
39	GGITTACICAAAAGACCCAATTAT	12902	CGGAATAGTATTATTGAGATGAAGA	260	60
40	CGCATACAACACCCCAAATA	13160	GGCTTAGGTAGGGCAGGATT	204	60
41		13675		260	60
42		13877		220	60
43	GACIAAIGAICIGAAAAACCAICG	14097	IGCICCGIIIGAGIGIAGIIG	315	60
44		14467	AGUUGIIICGIGAAGGAAG	297	60
45		14/42		256	60
46		15023	GGGTTACTTAATGAGGTAGTTTCG	268	60
4/	GGIAIICAGGGAAGAGGICCA	15349	CACGAATATGACTTGACACATTGA	255	60
49	CCATCTTCGTGTCCCTCTTC	15784	ACCAAATGCATGACACCACA	200	60

*Numbering with reference to the revised Krause sequence [Krause J, et al. (2006) Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature 439:724–727], GenBank entry DQ188829.2

								Average							
			Year	Sequencing	%		Fold	untrimmed	$\% \ C \to T$	% Trimmed	% diff. 9	% diff. vs.	% diff. vs.	% diff. vs.	GenBank
Sample	Tissue	¹⁴ C date	collected*	technology	mitochondrial ⁺	Contigs‡	coverage	read length [§]	damage	read identity¶	vs. M1∥	M25	591 bp M1**	591 bp M25**	no.
M1	Hair	n.d.	n.d.	454	1.99	1	48.0	119.0	0.243	99.86	0.00	1.26	0.00	2.54	EU153444
M2 "Jarkov"	Hair	$20,380 \pm 140$	1997	454	0.76	-	13.2	99.5	0.427	99.79	0.09	1.23	0.51	2.03	EU153449
M3 "Fishhook"	Hair	$20,620 \pm 70$	1990	454	1.21	-	20.3	128.1	0.347	99.82	0.03	1.24	0.51	2.03	EU153455
M4	Hair	18,545 ± 70.	n.d.	454	0.65	-	7.8	75.9	0.314	99.85	0.16	1.23	0.68	1.86	EU153456
M5	Hair	n.d.	n.d.	454	1.30	-	19.8	112.6	0.537	99.76	0.15	1.21	0.68	1.86	EU153457
M8 "Dima"	Hair	$46,900 \pm 700$	1977	454	1.43	-	27.7	71.1	0.899	09.66	0.14	1.22	0.68	1.86	EU153458
M13 "Adams"	Hair	$35,800 \pm 1,200$	1799	454	0.76	-	19.1	60.5	0.713	99.73	0.09	1.26	0.34	2.20	EU153445
M15	Hair	13,995 ± 55	n.d.	454/PCR	0.30	2	4.8	86.5	0.576	99.82	0.07	1.24	0.68	2.54	EU153446
M18	Hair	17,125 ± 70	n.d.	454	1.50	-	24.6	129.8	0.388	99.83	0.05	1.27	0.34	2.20	EU153447
M19 "Yukagir"	Hair	$18,560 \pm 50$	2003	454	1.86	٢	72.7	199.8	0.202	99.88	0.15	1.22	0.68	1.86	EU153448
M20 ⁺⁺	Hair	>63,500	n.d.	454/PCR	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.14	0.24	2.88	0.34	EU153450
M21	Hair	>58,000	2001	454	0.43	-	12.7	73.7	0.677	99.65	1.30	0.12	2.71	0.51	EU153451
M22	Hair	$50,200 \pm 900$	2000	454	2.09	٢	17.0	96.8	0.556	99.72	0.17	1.23	0.85	2.03	EU153452
M25	Hair	$59,300 \pm 2,700$	2003	454	1.43	-	25.4	113.4	0.712	99.64	1.26	0.00	2.54	00.00	EU153453
M26	Hair	24,740 ± 110	2003	454	0.46	-	7.3	91.2	0.253	99.84	0.22	1.28	1.02	1.52	EU153454
"Poinar"	Bone	$27,740 \pm 220$	2005	454	0.08	2	7.7	101.1**	1.699	99.51	0.09	1.31	0.34	2.20	EU155210
"Rogaev"	Muscle	33,750–31,950		Sanger	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.21	1.24	0.85	1.69	DQ316067
"Krause"	Bone	12,170 ± 50		Sanger	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.13	1.25	1.02	1.86	DQ188829.2
Where not no	ewly rep	orted (mammoth:	s M15, M19	9. M20. M21. a	and M25). the sar	nple deta	ils are taker	from refs. 1–	5. as descril	bed in the mair	n text.				

-, IVI 12, *Year sample was discovered (where known).

 $^{ ext{there}}$ the second and the second second

⁺Number of contigs assembled out of mitochondrial sequences.

[§]Average read length before trimming based on Krause (1) sequence.

¹Average percent identity with respect to assembly after automatic computational quality processing (i.e., final read used in alignment).

Percent difference from M1 (clade I representative) and M25 (clade II representative) sequences, respectively.

**Percent difference over the 591-bp intervals used for mammoth–elephant comparison from M1 and M25, respectively.

⁺⁺Summary statistics could not be calculated due to the low sequencing-by-synthesis coverage of sample M20. #The sequencing technology (Roche GS 20) used for the generation of the Poinar (3, 4) sequence precluded obtaining longer average read length.

1. Krause J, et al. (2006) Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature 439:724–727

2. Rogaev El, et al. (2006) Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius. PLoS Biol 4:e73.

3. Poinar HN, et al. (2006) Metagenomics to palaeogenomics: Large-scale sequencing of mammoth DNA. Science 311:392–394.

Gilbert MTP, et al. (2007) Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res 35:1–10. Gilbert MTP, et al. (2007) Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science 317:1927–1930. 4. r.

Table S3. Full sequence statistics

Table S4. Structure prediction calculations

Gene name	Parent structure	% sequences similarity to parent	Residues predicted
COX1	1occA	93	1–511
COX2	1v54B	84	2–226
COX3	1v54C	87	3–261
Cytb	2fyuC	78	2–378
ATP8	n.a.		
ATP6	n.a.		
ND1	n.a.		
ND2	n.a.		
ND3	n.a.		
ND4L	n.a.		
ND4	n.a.		
ND5	n.a.		
ND6	n.a.		