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Analysis of Scaling Regimes for the Relation Between Minimal Number
of Addresses and Network Size. In this section we analyze the two
scaling regimes of the relation between the minimal number of
addresses and the network size, and supply the critical network
size above which the scaling becomes independent of network
size. We start with Eq. 3 and divide by N2:
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We next examine D/N vs. c/N. Both of these scaled variables are
bounded between 0 and 1:

The minimal number of addresses can be graphically obtained
as the intersection of D/N with f3. For small values of c the
logarithm function f1 predominates in its contribution to f3 and
the squared function f2 can be neglected (solid blue line, Fig. S3).
When D is larger than log2N, f2 predominates and the solution
follows f2 (dashed and dotted blue lines in Fig. S3). Thus, the
critical network size, above which the minimal number of
addresses becomes independent of network size is Ncrit � 2D. The
dotted line in Fig. S3 depicts the solution for estimated param-
eters in the human brain. For the biologically relevant param-
eters the scaling of minimal number of addresses vs. network size
follows a square root law.

Generalization of Scaling Results to Networks with Arbitrary Neigh-
borhood Graphs. Our scaling results (Eq. 3) do not explicitly
require geometric constraints and can be generalized to other
topologies, as long as the neighborhood of each node, that is the
number of nodes with which it can potentially interact, D, is
arbitrarily predefined. To test this we used two generalizations
to our geometric network model. In the first one we generated
networks in a similar manner to the random geometric networks,
and then assigned each neuron the connectivity neighborhood
and the connectivity pattern of an arbitrarily chosen different
neuron. This model fits scenarios such as topographic mappings,
in which long range axons connect to a small and geometrically
close set of targets that are distant from the original neuron (1).
In the second generalization, we generated arbitrary connectiv-
ity and neighborhood matrices, with the constraint that each
neuron has, on average k outgoing edges, which are a subset of
D arbitrarily chosen potential targets. This model also includes
small world networks (2). In both cases we relaxed the symmetry
of the neighborhood graph. We find that although the minimal
number of addresses in these networks is higher than in the
geometric networks, the square root scaling law of the minimal
number of addresses with network size is invariant to these
generalizations (Fig. S2).

Scaling Exponent Depends on Mean Connectivity. Whereas our
analytical analysis predicts the scaling exponent of the number
of addresses vs. network size to be 1/2, we find that the exponent
is slightly influenced by the mean connectivity (Fig. S1). This can
be understood by noting that the number of neuronal addresses
required to encode the wiring of a fully connected neighborhood
(k � D) and an empty network (k 3 0) approaches zero.

Controlling for Symmetries in the C. elegans Neuronal Network. In the
main text we computed the minimal number of neuronal ad-
dresses required to wire the C. elegans neuronal network. To
control for the prominent left-right and ventral-dorsal symme-
tries in the C. elegans neuronal network (3, 4) we repeated our
calculations on a reduced network that includes only neurons
from the right ventral parts whenever a homologous neuron from
the left or dorsal parts existed. This was done by first eliminating
all neurons whose names end with the letter L, when another
neuron ending with the letter R exists. Of the remaining neurons
we next eliminated any neuron with the ending DR, whenever a
neuron with the same three-letter prefix and the ending VR or
R existed. This resulted in a network with 170 neurons and 873
synapses.

We find that the real network can be encoded by 45 addresses,
significantly less than the number of addresses required to
encode the randomized networks with the same degree connec-
tivity and geometric constraints (P � 0.01). The significantly
smaller number of addresses required to encode the wiring of the
C. elegans neuronal network is thus not only due to the left–right
and ventral–dorsal symmetries in the network.

Minimal Number of Addresses Is an NP Complete Problem. Here, we
show that the problem of finding the minimal number of
addresses (denoted as ADDRESS) is NP-complete. Therefore no
efficient algorithm exists that can solve this problem determin-
istically.

Theorem:
3SAT � 16ADDRESS
Proof:
We seek a mapping f from formulas in 3CNF to directed

connectivity networks and corresponding non-directed neigh-
borhood networks such that for every formula � in 3CNF, � is
satisfiable iff the minimal number of addresses of f(�) is �16.

Formally, we need to find f that is easy to compute, such that:
f : 3CNF 3 {G(V,E), G�(V,E�)}
� � � 3CNF : � � 3SAT7f��� � 16ADDRESS
Given a formula � in 3CNF, f computes the directed network

G(V,E) and the nondirected neighborhood relation G�(V,E�). It
starts by constructing the network G as follows:

First, it creates index nodes 1 to 16 and connects them as
described in Fig. S4. Then, for each variable Xi in �, it creates
six literal nodes, denoted as: Xi, Xi�, Xi��, ¬ Xi, ¬ Xi�, ¬ Xi�� and
connects them to each other and to nodes 1 to 3 as described in
Fig. S4. Finally, for every clause Ci in �, it creates a clause node,
denoted as Ci, and connects it to three literal nodes as follows:
first it connects it to the nontagged literal node representing the
first literal in clause i, secondly it connects it to the tag literal
node corresponding to the nontagged literal node representing
the second literal in clause i, and finally, it connects it to the
double tag literal node corresponding to the nontagged literal
node representing the third literal in clause i. (see Fig. S4 for an
example on two clauses: C1 and C2)

Notice that the order of the literals in the clauses affects the
connections of the clause nodes to the literal nodes. The
neighborhood network G� contains nondirected edges between
all pairs of nodes which contain an edge in either direction in G,
all pairs of index nodes and all pairs of literal nodes that
represent a variable and its negation (the dashed brown line in
Fig. S4 shows nodes that are neighbors according to G�).

It is easy to see that f is easy to compute and it is complete (i.e.,
well defined for every formula in 3CNF).
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Direction 1:
Here, we show that if � � 3SAT, then f(�) � 16ADDRESS.

� � 3SAT 3 � is satisfiable, i.e., there is an assignment S that
satisfies � 3 we can use S to assign addresses to f(�) in the
following way: first assign 16 different addresses to the index
nodes as shown in Fig. S4. Then assign the red address of node
8 to every literal node Xi or ¬ Xi to which assignment S assigned
a false value and a green address of node 5 to every literal node
Xi or ¬ Xi to which assignment S assigned a true value. The
reason that only one of these two addresses can be used is that
index node 2 receives connections from both index nodes 5,8 and
from all pairs of nontagged literal nodes.

Assignment S defines a consistent assignment of addresses for
all of the literal nodes that are denoted as Xi or ¬ Xi, because
addresses 5 and 8 are disconnected among both the index nodes
and the literal nodes.

Continue to assign addresses to the tagged and double tagged
nodes according to S while maintaining consistency with the
addresses of the index nodes. This means that the tagged nodes
will be assigned either the address of node 4 or the address of
node 9 and that the double-tagged nodes will be assigned the
address of either node 6 or node 7. This is again dictated by the
connection of index nodes 1 and 3, respectively. For instance: if
node Xi was assigned the red address of node 8 then Xi� can only
be assigned to the red address of node 9 and X�� can only be
assigned to the red address of node 7. This also means that node
¬ Xi was assigned the green address of node 5 and ¬ Xi� can only
be assigned to the green address of node 4 and Xi�� can only be
assigned the green address of node 6.

Because S satisfies �, it assigns a true value at least for one
literal in every clause in � 3 there is no clause in which all of
the literals are assigned the red address of node 83 there is no
clause for which Ci is connected to three red literal nodes (that
were assigned the addresses of nodes 7 to 9) 3 it is possible to
assign at least one of the addresses of nodes 10 to 16 to every Ci

node 3 There is a consistent assignment of 16 addresses to all
of the nodes in f(�) 3 f(�) � 16ADDRESS.

Direction 2:
We now show that if f(�) � 16ADDRESS then � � 3SAT.
f(�) � 16ADDRESS3 There is a consistent assignment S that

uses only 16 addresses for f(�). In addition, f(�) � {G(V,E),
G�(V,E�)} such that G contains a subgraph of 16 index nodes that
are in neighborhood relation to each other in G�.

All of the index nodes must be assigned to different addresses
(otherwise there will be inconsistency in the relation between the
addresses) 3 S assigns all of the literal and clause nodes
addresses that where also assigned to the index nodes.

Every literal node that is denoted by Xi or ¬ Xi must be
assigned to the same address of node 5 or 8. In addition node Xi
will not be assigned to the same address of node ¬ Xi3 we can
construct an assignment S� that satisfies � in the following way:
every literal that was assigned by S to the same address of node
5 will be assigned by S� to the value true, and every literal that
was assigned by S to the same address of node 8 will be assigned
by S� to the value false.

There is no clause Ci in which all of the corresponding literals
nodes are assigned the same address of node 8 by S because in
this case there is no address in the existing 16 addresses that
could be assigned by S to Ci in contradiction to the success of S
in using only 16 addresses for f(�) 3 At least one literal was
assigned a true value by S� in every clause in �3 S� satisfies �
3 � � 3SAT

Theorem:
ADDRESS � NP-complete
Proof:
ADDRESS � NP (We can guess a solution and check in

polynomial time if it is admissible)
3SAT � NP-complete
3SAT � 16ADDRESS.
16ADDRESS � ADDRESS (By finding the minimal address of

G and G�, we solve the question if the minimal number of
addresses is �16.)
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Fig. S1. Scaling exponent � depends on the mean connectivity k. The scaling exponent is obtained by fitting the formula c � aN�, where c is the minimal number
of addresses and N is the network size (N was varied over three orders of magnitude). The highest scaling exponent, approximately 1/2, is obtained at intermediate
values where each node can connects to about half of its neighborhood nodes (k/D � 1/2). For both low and high connectivity the number of addresses required
to wire geometric networks becomes smaller.
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Fig. S2. Sublinear scaling of minimal number of addresses vs. network size holds for more generalized network models. Geo denotes the geometric networks,
topo denotes the first generalization model, and shuffled denotes the second generalization model. All networks are one-dimensional and have a mean
connectivity k � 5.
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Fig. S3. Graphical solution for the minimal number of addresses for different network sizes N and neighborhood sizes D. f1 is in dashed red, f2 in dashed green,
and f3 in bold black. Vertical blue lines denote the solution, obtained from the intersection of f3 and D/N. Solid line is the solution for D � 20, dashed line for
D � 103, and dotted line for D � 106. Note that even for moderately high D the quadratic term in c/N (the green curve f2) dominates in the solution. Note the
logarithmic scales.
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Fig. S4. Reduction from 3SAT to 16ADDRESSES. Node 17 and its connections are drawn for clarity purpose only (to stress the forbidden configuration) and are
not part of the graph.
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