## Supporting Information for: Correlated Rayleigh Scattering Spectroscopy and Scanning Electron Microscopy Studies of Au-Ag Bimetallic Nanoboxes and Nanocages

Authors: Min Hu, Jingyi Chen, Manuel Marquez, Younan Xia and Gregory V. Hartland

## **TEM Measurements of Wall Thickness for Nanocages:**

Because it is difficult to measure the wall thickness of the nanocages with SEM, TEM was used to determine a relationship between edge length (*L*) and wall thickness (*w*) for these particles. Figure S1 shows typical TEM images of type I and type II nanocages, along with SEM images of similar particles. The way the wall thickness is measured from the TEM images is indicated in this Figure. Figure S2 shows a plot of the wall thickness versus edge length for 19 nanocages. Fitting the data into a linear relationship yields  $w = 0.11 \times L - 2.4$  (in nm). This formula was used to determine the volume of the type I and type II nanocages in our linewidth analysis, see main text for details.



Figure S1. (A): TEM images of nanocages (both type I and type II). (B) and (C): SEM images of similar nanoparticles.



Figure S2. Relationship between wall thickness (w) and edge length (L) determined from TEM images.

## Dimensions, Resonance Energies and Linewidths for Nanoboxes and Nanocages:

Table S1: Data for Nanocages: L = edge length, w = wall thickness,  $E_{res}$  = resonance energy, and  $\Gamma_{hom}$  = linewidth. The errors for the averages are the standard deviation.

| Particle | L (nm)       | w (nm)         | $E_{\rm res}({\rm eV})$ | $\Gamma_{\rm hom}~({\rm meV})$ |
|----------|--------------|----------------|-------------------------|--------------------------------|
| 1        | 75           | 8.5            | 1.78                    | 316                            |
| 2        | 91           | 12.6           | 1.80                    | 332                            |
| 3        | 93           | 13.1           | 1.71                    | 353                            |
| 4        | 97           | 11.3           | 1.71                    | 509                            |
| 5        | 98           | 11.3           | 1.76                    | 328                            |
| 6        | 99           | 14.4           | 1.72                    | 324                            |
| 7        | 99           | 12.6           | 1.72                    | 338                            |
| 8        | 99           | 12.6           | 1.67                    | 365                            |
| 9        | 99           | 12.2           | 1.68                    | 388                            |
| 10       | 101          | 10.4           | 1.73                    | 351                            |
| 11       | 102          | 14.0           | 1.68                    | 314                            |
| 12       | 105          | 13.5           | 1.66                    | 387                            |
| 13       | 107          | 17.1           | 1.71                    | 288                            |
| 14       | 109          | 12.2           | 1.67                    | 361                            |
| 15       | 110          | 10.4           | 1.68                    | 389                            |
| 16       | 111          | 12.2           | 1.61                    | 410                            |
| average  | $99.7\pm8.8$ | $12.4 \pm 1.9$ | $1.71\pm0.05$           | $360\pm52$                     |

Table S2: Data for Type I Nanocages: L = edge length, d = hole diameter,  $E_{res}$  = resonance energy, and  $\Gamma_{hom}$  = linewidth. The wall thickness is given by the relationship determined by TEM analysis. The errors for the averages are the standard deviation.

| Particle | L (nm)           | d (nm)         | $E_{\rm res}({\rm eV})$ | $\Gamma_{\rm hom}~({\rm meV})$ |
|----------|------------------|----------------|-------------------------|--------------------------------|
| 1        | 112              | 26.6           | 1.76                    | 324                            |
| 2        | 114              | 20.7           | 1.68                    | 470                            |
| 3        | 118              | 21.0           | 1.64                    | 348                            |
| 4        | 118              | 23.0           | 1.69                    | 490                            |
| 5        | 119              | 26.6           | 1.68                    | 476                            |
| 6        | 124              | 20.7           | 1.66                    | 282                            |
| 7        | 126              | 24.8           | 1.71                    | 443                            |
| 8        | 127              | 23.4           | 1.79                    | 405                            |
| 9        | 131              | 20.7           | 1.62                    | 467                            |
| 10       | 131              | 19.4           | 1.69                    | 521                            |
| 11       | 133              | 27.0           | 1.61                    | 466                            |
| 12       | 134              | 18.0           | 1.66                    | 460                            |
| 13       | 134              | 22.5           | 1.61                    | 384                            |
| 14       | 135              | 20.7           | 1.63                    | 328                            |
| 15       | 137              | 22.5           | 1.66                    | 438                            |
| 16       | 137              | 23.0           | 1.65                    | 455                            |
| 17       | 138              | 21.6           | 1.63                    | 392                            |
| 18       | 139              | 25.2           | 1.59                    | 503                            |
| 19       | 153              | 20.3           | 1.62                    | 396                            |
| average  | $129.5 \pm 10.2$ | $22.5 \pm 2.6$ | $1.66\pm0.05$           | $424\pm67$                     |

Table S3: Data for Type II Nanocages: L = edge length, d = hole diameter,  $E_{res}$  = resonance energy, and  $\Gamma_{hom}$  = linewidth. The wall thickness is given by the relationship determined by TEM analysis. The errors for the averages are the standard deviation.

| Particle | <i>L</i> (nm)  | d (nm)         | $E_{\rm res}({\rm eV})$ | $\Gamma_{\rm hom}~({\rm meV})$ |
|----------|----------------|----------------|-------------------------|--------------------------------|
| 1        | 131            | 23.0           | 1.58                    | 290                            |
| 2        | 135            | 25.7           | 1.68                    | 337                            |
| 3        | 137            | 26.1           | 1.65                    | 406                            |
| 4        | 138            | 23.0           | 1.66                    | 388                            |
| 5        | 140            | 21.2           | 1.66                    | 316                            |
| 6        | 141            | 24.8           | 1.55                    | 273                            |
| 7        | 143            | 23.0           | 1.61                    | 290                            |
| 8        | 143            | 24.8           | 1.62                    | 436                            |
| 9        | 147            | 24.8           | 1.67                    | 423                            |
| 10       | 150            | 23.0           | 1.7                     | 481                            |
| 11       | 151            | 23.9           | 1.55                    | 318                            |
| 12       | 155            | 27.9           | 1.67                    | 406                            |
| 13       | 158            | 23.0           | 1.59                    | 350                            |
| 14       | 159            | 20.3           | 1.703                   | 409                            |
| 15       | 160            | 32.9           | 1.59                    | 492                            |
| 16       | 163            | 29.7           | 1.70                    | 400                            |
| 17       | 164            | 24.8           | 1.68                    | 386                            |
| average  | $147.9\pm10.5$ | $24.8 \pm 3.1$ | $1.64\pm0.05$           | $376\pm65$                     |