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Of the three species (Bacteroides ruminicola. B. succinogenes. and Megaspha-
era elsdenii) of anaerobic gram-negative rumen bacteria studied, only B. rumini-
cola produced significant amounts of alkaline phosphatase. This enzyme, which is
constitutive, showed a greater affinity for p-nitrophenylphosphate than for
sodium-f-glycerophosphate and was shown to be located exclusively in the
periplasmic space of log-phase cells. Small amounts of this enzyme were released
from these cells in stationary-phase cultures, but washing in 0.01 M MgCl2 and
the production of spheroplasts by using lysozyme in 0.01 M MgCl2 did not release
significant amounts of the enzyme. Exposure to 0.2 M MgCl2 did not release
significant amounts of the periplasmic alkaline phosphatase of the cell, and when
these cells were spheroplasted with lysozyme in 0.2 M MgCl2 only 25% of the
enzyme was released. Spheroplasts were formed spontaneously in aging cultures
of B. ruminicola. but even these cells retained most of their periplasmic alkaline
phosphatase. It was concluded that the alkaline phosphatase of B. ruminicola is
firmly bound to a structural component within the periplasmic area of the cell
wall and that the enzyme is released in large amounts only when the
cells break down. The behavior of alkaline phosphatase in this bacterium
contrasts with that of conventional periplasmic enzymes of aerobic bacteria,
which are released upon conversion into spheroplasts by lysozyme and
ethylenediaminetetraacetic acid and by other types of cell wall damage. All three
species of bacteria studied here, as well as bacteria found in mixed populations in
the rumen, have thick, complex layers external to the double-track layer of their
cell walls. In addition, B. ruminicola produces a loose extracellular material.

Alkaline phosphatase has been shown to be
associated with cell walls of a number of
gram-negative aerobic bacteria (16), by reaction
product deposition (12, 37), by the use of
ferritin-coupled antibody (25), and by
biochemical means (2). In some cases cell
wall-associated enzymes were seen to be
confined to the periplasmic space (12, 22, 23), in
others they were found at the cell surface (31),
but in most cases they were present in both of
these areas of the cell wall (14, 22, 25, 37). Cell
wall-associated enzymes have been described in
Pseudomonas aeruginosa (12-14), Escherichia
coli (18, 24, 25, 31), Salmonella tvphimurium
(23, 24), and the marine pseudomonad B-16 (17,
25), but their existence in the anaerobic
gram-negative bacteria has not been reported.

Cell wall-associated enzymes can be released
from the cells of various aerobic gram-negative
bacteria by a number of treatments that do not

release cytoplasmic enzymes or unduly damage
the cells. Ethylenediaminetetraacetate
(EDTA) -osmotic shock procedures (18, 30) have
been used to release these enzymes, as have
spheroplast formation using EDTA and
lysozyme (28), high Mg2+ treatment (12-14),
and cell wall removal (17). Cells with defective
cell walls are known to release cell
wall-associated enzymes during growth (23, 24,
36).
The presence of cell wall-associated enzymes

is especially important in organisms that break
down long, extracellular polymers (e.g., the
wall-associated cellulase of Cvtophaga) (35),
and we must expect that rumen bacteria would
use cell wall-associated degradative enzymes to
break down organic compounds in their
environment so that these compounds could be
assimilated by the cells. Cheng, Hironaka, and
Costerton (unpublished results) have found
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that alkaline phosphatase is present in the
bovine rumen in both cell-free and
cell-associated states and that levels of the
enzyme vary with the dietary regime of the cow.
The present study examines three pure cultures
of anaerobic, gram-negative, rumen bacteria,
and spheroplasts derived from one of them
(Bacteroides ruminicola) by aging and by
lysozyme treatment, to determine the location
of alkaline phosphatase and the effect of
spheroplasting on the association of this enzyme
with the cell wall.

MATERIALS AND METHODS
Organisms and culture conditions. Bacteroides

ruminicola subsp. ruminicola (strain 23), B.
succinogenes (S85), and Megasphaera elsdenii (B159)
were generously provided by M. P. Bryant, University
of Illinois, Urbana (5, 8, 33).
The anaerobic technique used for culturing the

bacteria was essentially that of Hungate (20) as
modified by Bryant and Burkey (4). Rumen bacteria
cultured anaerobically for 10 h at 38 C in prereduced
rumen fluid medium (6) or synthetic medium (9) on a
rotary shaker (75 rpm) were inoculated into 300 ml of
fresh medium in 500-ml round-bottom flasks (5%,
vol/vol) and incubated further with shaking. All
experiments described herein used rumen fluid
medium, unless otherwise stated. At given times of
incubation, cultures were harvested by centrifugation
in a Sorvall RC-2B refrigerated centrifuge for 10 min
at 15,000 x g. The optical density of the culture was
measured at 660 nm. The optical densities of cultures
of B. ruminicola, B. succinogenes, and M. elsdenii
were correlated with the dry weight of the cells by
means of a calibration curve following drying to a
constant weight at 90 C. From the curve it was
determined that an optical density of 1.0 is equivalent
to 0.409, 0.348, and 0.225 mg/ml for B. ruminicola, B.
succinogenes, and M. elsdenii, respectively.

Chemicals. Tris(hydroxymethyl)aminomethane
(Tris), p-nitrophenylphosphate (PNPP), reduced
nicotinamide adenine dinucleotide (NADH), nicotin-
amide adenine dinucleotide phosphate, and lysozyme
(EC 3.2.1.17) were purchased from the Sigma Chem-
ical Co., St. Louis, Mo. Sodium-,B-glycerophosphate
was obtained from Fisher Scientific Co., Pittsburgh,
Pa. Osmium tetroxide and Vestopal W were pur-
chased from Polysciences Inc., Rydal, Pa. All other
reagents and chemicals were the best grade obtain-
able from local commercial sources.

Cell extracts and enzyme assays. The cells
harvested after given times of incubation were
ultrasonically disrupted three times with a Bronson
sonic oscillator at a tip energy of 100 W at 30-s
intervals. The alkaline phosphatase was assayed with
PNPP as the substrate as previously described (13).
The assay for glutamate dehydrogenase (EC

1.4.1.3) was similar to that described by Malamy and
Horecker (27) except that the assay system contained
0.05 M 2-mercaptoethanol. NADH oxidase activity
was followed in a 1-ml assay system consisting of 4 x

10-4M NADH, 0.05 M Tris buffer (pH 7.65), and 0.05
M 2-mercaptoethanol. The oxidation of NADH was
followed at 25 C at 340 nm.
One unit of activity in all cases represents the

conversion of 1 Amol of substrate to product per min
at 25 C.
Whole cell assay system for alkaline phosphatase

localization studies. The cells were harvested then
washed three times with 0.01 M Mg2+ in 0.01 M Tris
(pH 8.4) to remove inorganic phosphate in the
medium. The washed cells were incubated for 30 min
in each of the following modified Gomori (12)
mixtures: (i) sodium-f-glycerophosphate, 0.5%;
sodium-barbital, 0.5%; Ca(NO3) 2, 0.02 M; MgCl2,
0.01 M; and Tris buffer, 0.05 M (pH 8.4); or (ii)
PNPP, 0.0001%; Ca(NO3)2, 0.02 M; MgCl2, 0.01 M
and Tris buffer, 0.05 M (pH 8.4). Incubation mixtures
lacking sodium-0-glycerophosphate and PNPP were
also used with washed cells as controls.

Preparation of spheroplasts for alkaline
phosphatase localization studies. Spheroplasts of B.
ruminicola were prepared from 40 ml of 12-h
log-phase cells (optical density 1.40; 660 nm, Gilford
model 300-N spectrophotometer). Cells were
centrifuged at 15,000 x g and were washed three times
with 0.01 M Mg2+ in 0.01 M Tris to remove inorganic
phosphate in the medium. The washed cells were
suspended in 20 ml of 0.2 M Mg2+ in 0.01 M Tris (pH
8.4), or in 20 ml of 0.01 M Mg2+ in 0.01 M Tris (pH
8.4), both containing 1 mg of lysozyme per ml. The
cell suspensions were incubated at 37 C in a rotary
shaker for 30 min. The cells were then centrifuged and
suspended in 0.01 M Mg2` in 0.01 M Tris buffer (pH
8.4) for the formation of spheroplasts (10). In aging
cultures of B. ruminicola (24 h), spheroplasts were
formed spontaneously (10). Both lysozyme-induced
spheroplasts and spontaneous spheroplasts were
incubated with each of the above-mentioned modified
Gomori mixtures to localize the alkaline phosphatase.
During the processes used to convert B. ruminicola
cells to spheroplasts, all supernatant fluids were
collected and assayed (as in Table 1) for alkaline
phosphatase, glutamate dehydrogenase, and NADH
oxidase.

Electron microscopy. Fixation and embedding
were as described by Kellenberger et al. (21) and
modified by Margaretten et al. (29) except that
phosphate buffer was replaced with Tris. The detailed
procedure was described previously (12). The alkaline
phosphatase activity in whole cells was localized by
the deposition of electron-dense lead phosphate after
incubation in a modified Gomori reaction mixture.
Thin sections of reacted cells and controls were cut
with a Sorvall Porter-Blum ultramicrotome, stained
with 1% uranyl acetate and lead citrate (32), and
examined with an AEI-EM-801 electron microscope
having an acceleration voltage of 60 kV.

RESULTS
Alkaline phosphatase production by whole

cells. The rates of growth and of the production
of both cell-free and cell-associated alkaline
phosphatase were determined in cultures of the
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iate samples material when prefixed directly in the medium
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phosphatase per 20 ml of culture, (A) units of alkaline
phosphatase per 20 ml of cell-free culture filtrate.
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TABLE 1. Enzyme release from cells and spheroplasts of Bacteroides ruminicola S-23

Enzyme (U/200 ml of culture)a

0.2 M MgCl2b 0.01 M MgCl2b
Treatment

Alkaline NADHc Glutamate Alkaline NADHc Glutamate
phospha- oxidase dehydro- phospha- oxidase dehydro-

tase genase tase genase

Supernatant fluid obtained fromd cells
treated with lysozyme in 0.2 M
MgCl2 or 0.01 M MgCl2............. 6.4 0 0 1.2 0 0

Supernatant fluid obtained from cells
treated with lysozyme and MgCl2
after resuspension into 0.01 M MgCl2
(spheroplast formation) ...... ...... 0.8 0 0 0.2 0 0

Sonically treated spheroplasts ........ 22.0 6.8 39.0 25.4 6.8 39.0
Cell-free extractse ................... 26.4 7.0 38.0 26.4 7.0 38.0

a Dry weight of cells: 106 mg.
b0.2 M MgCl2 and 0.01 M MgCl2 refer to the solution in which the cells were suspended.
cNADH refers to reduced nicotinamide adenine dinucleotide.
d Twenty milliliters of 12-h cells (10.6 mg [dry wt] of a culture grown to 1.4 optical density units) was

centrifuged and resuspended in each of two solutions to which lysozyme (1 mg/ml) was added, and the
suspension was incubated at 37 C on rotary shaker for 30 min. The suspension was centrifuged, the supernatant
fluids were assayed for each enzyme, and the cell pellets were suspended in 0.01 M MgCl2 and 0.01 M Tris (pH
8.4) for the formation of spheroplasts. The suspension was centrifuged, and the supernatant fractions were
assayed for each enzyme. Spheroplast pellets were suspended in 0.01 M Tris buffer and sonically treated for
enzyme assay.

eTwenty milliliters of 12-h cells were centrifuged and resuspended into 0.01 M Tris buffer and sonically
treated for enzyme assay.
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FIG. 2. Phase contrast micrographs of (A) whole cells, (B) spheroplasts prepared in 0.01 M Mg2+, and (C)
spheroplasts prepared in 0.2 M Mg2+.

washes removed any alkaline phosphatase.
Washed cells were used to localize alkaline

phosphatase to avoid interference by inorganic

phosphate from the medium. The enzyme was
localized exclusively in the periplasmic space of
these log-phase cells (Fig. 5A and B), and only a

I W - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.I w

s



W
.4

4'
'4

.. ,, f z s
5Jt . - ' + 1*

L .

.s. ,,

. .

.- Nz

W

4, s, ;
w v . t = -4

t Zb,, X s. ' ;T r.
i,

;: '-.
;; z

ss s . : i
t ,-

i

w; .. *
* > I ,

*, --, ! $' t r

'. ,.: i

.*, t t

... i;s

: .. _ ,, . ' J
E 4 ' =

*

; s ', ;" "
§' 4-; ^

C ""

t x,;,> ^ e ' "

..i' Ab"iW t . 4

v s \ te >, s- '

. s
., .v '

s.,;4,\;; *
f . " . ,%

r

a, ,t :

*

t

'p

FIG. 3. Electron micrograph of cells of Bacteroides ruminicola from a log-phase (12-h) culture. Note the
acretion of extracellular material between these cells, which were prefixed in the medium. The bar in this and
subsequent electron micrographs indicate 0.1 gm.

428



It, -.

-it c -

-A
1t.. -t4.

¼-.

tws

At

C

.. i

7.t' el

e. Ifv
1.

'k

2
V

.-, 63.'

I

'I

A
.4

--¾
4,

33 t

C,

FIG. 4. Electron micrograph of cells from a 12-h culture that had been washed three times in 0.01 M MgCl2
before fixation. Note that washing has removed the extracellular material but left the thick and complex cell
wall intact.

429

3...

-.1--. -.

1-

I
a

'k-

I ;

4

zl.

ll. t

'.. -W.y
.2

ri

e' .11 Al

'k,-, -,
.. ",fll
-.. - . .- I



A

".

4*4

v~~~' .. .

,t 7 ' '"~~- '4J ? *

FIG. 5. Electron micrograph of cells from a 12-h culture of Bacteroides ruminicola incubated for reaction
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small amount of reaction product was seen at spheroplasts retained alkaline phosphatase.
the cell surface or in the menstruum. The The spheroplasts prepared in 0.01 M MgCl2 also
particulate external layer of the cell wall is retained alkaline phosphatase in their
clearly seen in this preparation, and the general periplasmic areas.
cell preservation is good. The alkaline B. succinogenes produced very small amounts
phosphatase of B. ruminicola showed a distinct of alkaline phosphatase (Fig. 1A) and log-phase
and specific affinity for PNPP and preparations (10 h) cells of this species showed very little
in which sodium-f-glycerophosphate were used reaction product (Fig. 13). Figure 13 shows
as the substrate showed only a very weak clearly that washing three times in 0.01 M
reaction (Fig. 6). No reaction product was found MgCl2 has caused extensive damage to the cell
in control preparations in which the substrate walls of this organism. The large, spherical cells
had been omitted from the incubation mixture of M. elsdenii have a complex and interesting
(Fig. 7). Preparations of log-phase cells at 8 and cell envelope structure, and reaction product
10 h showed no significant differences from the deposition confirms the direct enzyme assay in
12-h cells. that no reaction product is seen in these cells

Cultures of B. ruminicola were in stationary (Fig. 14).
phase at 14 h, and reaction product deposition
preparations showed that some of the cells were DISCUSSION
morphologically altered (Fig. 8, A) and that Cheng, Hironaka, and Costerton (unpub-
alakline phosphatase, which was present at the lished results) have noted that the bovine
cell surface, had caused the formation of an rumen contains a significant amount of alka-
intermittent crust of reaction product (Fig. 8, line phosphatase, and reaction product depo-
R) while the reaction product of cell-free sition has shown that the enzyme is associ-
enzyme had formed discrete crystals (Fig. 8, C). ated with the mixed bacterial population

Stationary-phase cells at 24 h were examined, of this organ. Of the three anaerobic,
and large numbers of irregularly shaped cells gram-negative, rumen bacteria studied here,
were seen (Fig. 9). Phase microscopy hadshopwn only B. ruminicola produces large amounts of
80% of these cells to be "spontaneous- this enzyme. Alkaline phosphatase is strictly
spheroplasts." In many of these cells, the- cell associated in log-phase cells and, moreover,
cytoplasmic elements were extensively -it is confined to the periplasmic zone of the cell
damaged, cell envelopes sometimes lacked the --wall, i.e., the area between the cytoplasmic
outer particulate layer, and occasionally *membrane and the double-track layer of the cell
sections of the cell wall had been removed f-o -wall. Only when cultures enter the stationary
produce a partial protoplast (Fig. 9, P).0. phase, with attendant cellular breakdown, is
Reaction product deposition showed that a large the enzyme released into the medium.
proportion of the alkaline phosphatase had been The strong binding of alkaline phosphatase
retained in the periplasmic area of even severely by the cell wall is further evidenced by our
damaged cells (Fig. 10, D), but surface crusts observation that treatment with 0.2 M MgCl2
(Fig. 10, R) and discrete crystals (Fig. 10, C) and lysozyme, which removes all of this enzyme
formed by surface-associated and cell-free from cells of P. aeruginosa (14), removes only
enzymes were seen also. 25% of the enzyme from cells of this organism.

In log-phase cells (10 h) grown in a synthetic We know that this proportion of the alkaline
medium, some alkaline phosphatase activity phosphatase is released because of cell wall
was seen at the cell surface, while significant damage since neither membrane-associated
amounts of reaction product were seen also in NADH oxidase nor cytoplasmic glutamate
the periplasmic area (Fig. 11). The total enzyme dehydrogenase enzymes are released by this
activity of these cells appeared to be reduced in treatment. The cell walls of these 0.2 M
comparison to cells grown in rumen fluid MgCl2-washed cells are sufficiently disrupted to
medium. admit lysozyme, as are cells which are washed

Spheroplasts prepared by the action of in 0.01 M MgCl2, but alkaline phosphatase is
lysozyme in 0.2 M MgCl2 had been shown to retained in the periplasmic space of the
retain 75% of their alkaline phosphatase (Table resultant spheroplasts. The difference of
1). Reaction product deposition showed that the enzyme release at different Mg2+
enzyme is retained in the periplasmic space of concentrations may be due to a greater effect of
these cells (Fig. 12). Phase microscopy high Mg2+ (0.2 M) on the electrostatic
established that all of these cells were spherical, association of the enzyme with a structural
and reaction product deposition at the electron component of the cell wall (13). Morphological
microscope level showed that all of the evidence shows that the cytoplasmic

VOL. 116, 1973 431



t;*5t §i;*v
#lale * 48'A

'.
4.' btt\Xf s ?'. ,.

' . '; -. ;> t*
¢ ~ ~ r*.,N,t-1t

S % e s ' r4' G 8

Si..~~ *t t4 "'V e~

!>

>~~~~~~4..4<
* At '. 4

44 5. < M

'4'

'.1! P

7A.~~~~~
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FIG. 7. The control preparation for the cells shown in Fig. 5 and 6 in which the substrate was omitted from
the incubation mixture. Note the absence of reaction product in the cells of this preparation.
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incubated for reaction product deposition by alkaline phosphatase using PNPP as the substrate. Note that
some cells (A) show evidence of morphological alteration and that, while most of the enzyme activity is
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FIG. 10. Electron micrograph of cells of a 24-h culture of Bacteroides ruminicola incubated for a reaction
product deposition by alkaline phosphatase using PNPP as the substrate. Note that most of the enzyme activity
is retained in the periplasmic space (arrows), even in severely damaged cells (D), while small amounts of
reaction product form a "crust" at the surface of the cell (R) and small amounts of cell-free enzyme cause the
production of discrete crystals (C) at the cell surface.
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FIG. 12. Electron micrograph of a spheroplast prepared from a 12-h cell of Bacteroides ruminicola by
incubation with Iysozyme in 0.2 M MgCI2. These spheroplasts retain 75% of their alkaline phosphatase (Table

1), and this enzyme activity is exclusively localized in the periplasmic space (arrows) of cells incubated for

reaction product deposition bY alkaline phosphatase using PNPP as the substrate.
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FIG. 14. Electron micrograph of cells of a log-phase (10 h) culture of Megasphaera elsdenii incubated for
reaction product deposition by alkaline phosphatase using PNPP as the substrate. Note the virtual absence of
reaction product in these cells.
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constitutents and cell walls of the "spontaneous
spheroplasts" formed in old cultures of this
organism are extensively damaged but that
these cells retain large amounts of alkaline
phosphatase in what remains of their
periplasmic space.
The present data show that alkaline

phosphatase is firmly associated with structural
elements of the cell wall of this organism and is
not released while the cells are alive. This
enzyme was also found to be cell associated in
the rumen fluid of cows fed a diet of hay or
concentrate feed of coarse particle size (519 Am,
geometric mean particle size). This suggests
that the high levels of cell-free enzyme found in
the rumen fluid of cattle fed fine particle size
(344 ,um, geometric mean particle size)
concentrate feed (K.-J. Cheng and R. Hironaka,
Can. J. Anim. Sci., in press) with high-energy
content that induces "feedlot bloat" is the
result of a massive breakage of bacterial cells
(Cheng, Hironaka, and Costerton, unpublished
data).
The alkaline phosphatase of B. ruminicola is

constitutive, whereas that of E. coli (36) and
that of P. aeruginosa (13) are inducible. Hence,
the enzyme of B. ruminicola is present even
though the concentration of inorganic
phosphate in the rumen is maintained at a high
level. This is advantageous to the organism
because sugar phosphates can always be
hydrolyzed to produce assimilable sugar
molecules and phosphates.

Alkaline phosphatase has been shown to be
associated with a structural component within
the periplasmic space in P. aeruginosa (Cheng,
Costerton, and Ingram, submitted for
publication), and the tendency of this
hydrophobic enzyme (D. F. Day and J. M.
Ingram, Can. J. Microbiol., in press) to asso-
ciate with lipopolysaccharide (LPS) in both this
organism (J. M. Ingram, K.-J. Cheng, and J. W.
Costerton, Can. J. Microbiol., in press) and in S.
typhimurium (23), suggests that LPS is the
structural component that binds the enzyme.
LPS is present in the cell wall both in the
periplasmic space and at the cell surface (34) in
gram-negative aerobic bacteria and has also
been shown to occur in gram-negative anaerobic
bacteria (19). We cannot conclude that the
alkaline phosphatase of B. ruminicola is
specifically linked to LPS, and the tenacity of
its binding suggests that other components or
types of association may also be involved.

This binding of alkaline phosphatase by a
structural component of the cell wall anchors
the enzyme and provides it with a protected

ionic environment because of the Donnan effect
(16) exerted by the bound anions of the
structural polymers. The periplasmic envi-
ronment of the alkaline phosphatase of P.
aeruginosa is so protective that the enzyme
remains active in this space even when identical
extracellular molecules have been inactivated
by high H+ concentration (pH 4.7) in culture
(11).
The alkaline phosphatase of B. ruminicola is

particularly well protected because it is
exclusively periplasmic and is strongly bound to
structural elements in this area and because the
cell wall of the organism is unusually thick and
elaborate. This thick external structure lying
outside the double-track layer is found, to a
greater or a lesser degree, in the cell walls of all
three species studied here and in the mixed
populations in rumen contents (Cheng,
Hironaka, and Costerton, unpublished data),
and its chemistry and structure will be reported
in a subsequent paper. This thick, external
layer of the cell wall would be expected to
exclude certain ions and molecules and to
attract others, thus conditioning the envi-
ronment of cell wall-associated enzymes. In
addition to this external layer, cells of B.
ruminicola produced an extracellular material
that adheres to cells in culture and is removed
by washing with 0.01 M MgCl2.
The taxonomy of rumen bacteria at species

level is difficult due to the paucity of
information available (3). The biochemical and
morphological characteristics described here
will help to bring order by the description of a
wider variety of factors. For example, alkaline
phosphatase is produced in large amounts by
only one of the three organisms studied here and
the enzyme of this species (B. ruminicola)
shows a greater affinity for PNPP than for
,B-glycerophosphate, while organisms seen in
mixed rumen populations readily use the latter
as a substrate. The alkaline phosphatase level
of B. ruminicola and B. succinogenes can be a
useful criterion to differentiate these two
species. The morphological characteristics of
the cell wall of these two species are also very
distinct, as is the ion requirement for cell wall
integrity in B. succinogenes (Fig. 13). The
requirement for Na+ for B. succinogenes is of
considerable interest, as only certain marine
bacteria and a halophile, among bacteria so far
studied, have shown a need for this ion in
considerable amount (26). The amounts of Na+
and K+ necessary for best growth of strain S-85
are similar to those of marine bacteria (7, 26),
and cell wall changes similar to those seen in
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strain S-85 have been reported in the marine
pseudomonad B-16 (15) when the ionic content
of the menstruum is reduced. The large
cytoplasmic glycogen granules seen in M.
elsdenii are also a potentially useful taxonomic
characteristic as are the granules of Clostridium
pasteurianum (1). Detailed chemical studies of
these granules will be reported in a subsequent
paper.

There have been numerous reports that B.
ntminicola and B. succinogenes are pleomor-
phic and that old cultures contain degenera-
tion forms (1, 5, 8, 20), but we have observed
a very constant morphology of the cells of
both species except in aging cultures in which
spontaneous spheroplasts are formed (10).
In the present study, 80% of cells in a 24-h
batch culture of B. ruminicola were seen to be
spheroplasts. Electron microscopy has shown
that these spontaneous spheroplasts are
generally rounded and have enlarged chromatin
areas and a somewhat disorganized cytoplasm,
but that their cell walls generally retain the
double-track layer so that they are true
spheroplasts.
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