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Creating a Hand-Curated Version of the OMIM Database

We downloaded all phenotypic entries with a known genetic basis (i.e., all

entries preceded by the symbols + and #) containing the phrases ‘‘autoso-

mal dominant,’’ ‘‘dominant,’’ ‘‘autosomal recessive,’’ ‘‘recessive,’’ or ‘‘X-

linked,’’ and retrieved the OMIM phenotype identifiers (Nov. 2004); we found

a couple of additional entries by using (incorrect) variations on the spellings.

We then used EnsMart [S1] to retrieve the HUGO gene symbols and Entrez

Gene identifiers for all genes associated with the list of OMIM phenotype
entries. We turned this set of genes and phenotypes into a list of unique

pairs (HUGO gene symbols, OMIM phenotype numbers) and added OMIM

gene numbers.

Once the list was created, 2–4 people independently read each phenotype

entry that we had downloaded and recorded phenotypic information (see

below). We consulted additional online sources (including Genecards, eMe-

decine, Gene reviews, Gene clinics, Dynomed, and WebMD) to resolve dis-

crepancies among readers and, when possible, to fill in missing information.

We excluded genes with a tenuous link to the phenotype or in which the phe-

notype was caused by a large rearrangement (e.g., the deletion of several
Figure S1. Cumulative Distributions of Dn/Ds and Tajima’s D for the Five

Groups of Genes, Excluding Genes that are Associated with Immune

Response

The order of the five lines remains the same when compared to the dis-

tributions including all genes (Figure 4), and the same comparisons re-

main significant (results for ‘‘hOMIM’’ versus ‘‘complex’’ are shown in

Table S1). The legend of Figure 4 and the main-text Experimental Proce-

dures provide more details.



Figure S2. The Frequency Spectrum for Synony-

mous and Nonsynonymous Alleles in Each

Category of Genes

The frequency spectrum was tabulated in the Eu-

ropean population sample of the Applera data-

set; see main-text Experimental Procedures for

details. Very similar results were obtained with

the use of the African and African-American pop-

ulation samples or the SeattleSNP and NIEHS

resequencing projects instead (not shown). For

assessment of the difference between synony-

mous and nonsynonymous variants, a one-tailed

Wilcoxon matched-pairs signed-rank test was

performed on the median allele frequencies

for each gene (see main-text Experimental

Procedures). p values are 5 3 1026 for essential

genes, 0.013 for hOMIM genes, 0.026 for can-

cer-associated genes, and 0.842 for complex-

disease-associated genes.
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genes) rather than a point mutation; we also excluded cases in which the

disease was only associated with somatic mutations in the gene.

For the mode of inheritance, our categories were ‘‘autosomal dominant,’’

‘‘autosomal recessive,’’ or ‘‘X-linked.’’ We did not distinguish among

X-linked mutations, because such distinctions do not always have a clear

meaning [S2]. For the age at onset, our categories were ‘‘in utero or shortly

after birth,’’ ‘‘before 15 years of age,’’ ‘‘between 15 and 40 years of age,’’ and

‘‘post-40.’’ We considered the age at which the symptoms first become

apparent in the absence of medical intervention, and for cases in which

OMIM records were anecdotal, we used the earlier instances as the age at

onset. We took 15 years to be the start of the reproductive age, and we

took 40 years to be the end because it corresponds approximately to the

end of female reproductive age [S3] and to male life expectancy in pre-

industrial societies [S4].

We used this information to test for differences in the levels of constraint

between genes that cause dominant and recessive disorders and genes

that cause early (before 40 years of age)- and late (after 40)-onset disorders.

Only 14 genes are known to cause exclusively late-onset disorders, and for

two (SNCB and ABCC9), the link to the phenotype was weak. We did not

consider comparisons between other age groups, because it is unclear

whether age at onset would have a monotonic effect on fitness (e.g., in com-

paring the fitness loss of the parent if an offspring died at birth versus at age

10). However, we provide this information in Table S4.

We also tried to record information about the severity of the disease phe-

notype–again, in the absence of medical intervention. However, because

the information in OMIM is often sparse and it is very difficult to establish
the fitness consequences of certain phenotypes (e.g., hereditary fructose

intolerance) in pre-industrial societies, let alone in pre-agricultural ones,

these severity measures are likely to be highly unreliable. We therefore

based our analyses on mode of inheritance and age at onset only.

Finding Human-Rhesus Macaque Orthologs

We ran BLASTN searches [S5] of the human coding sequences against the

rhesus macaque genome sequence, without any filtering of low-complexity

sequences, and we set the threshold of expectation values (e-values) at

0.001. For each human sequence, we then used the alignments produced

by the BLASTN search to construct the orthologous rhesus macaque

sequence. For this purpose, we used only alignments with at least 85%

identity between the human and rhesus macaque sequences. If an align-

ment was more than 500 bp long, it was broken into overlapping alignments,

each one shifted by one bp from the previous one, and only those subalign-

ments displaying at least 85% identity were retained. Because the BLASTN

search can produce more than one alignment for the same query, there

could be cases in which, with the consideration of these multiple align-

ments, there would be an ambiguity as to the identity of the nucleotide at

a specific position in the orthologous sequence. In such cases, the identity

of the nucleotide was determined by the alignment with the lowest

e-value. If, in the alignment used to choose a specific nucleotide, this nucle-

otide was followed by an insertion in the rhesus macaque sequence, this

insertion was introduced into the orthologous sequence.

A concern is that the inferred rhesus macaque orthologous sequence

could contain nucleotides originating from different contigs in the genome



Figure S3. Mkprf Inference of g under a Distribu-

tion of Fitness Effects

In the top panel, the fitness effect of new muta-

tions is drawn from a normal distribution N(m, s).

In the bottom panel, the fitness effect of new

mutations is drawn from an exponential distribu-

tion EXP(l). Shown in blue is the mean g of muta-

tions observed to be segregating in a sample of

78 chromosomes, shown in green is the g esti-

mated by mkprf, and shown in red is the mean

g of mutations that become fixed in the popula-

tion. Note that essentially no mutations become

fixed when drawn from N(220,2).
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draft. We therefore performed consistency checks on the sequence. For this

purpose, each position in the rhesus macaque orthologous sequence was

associated with the following information: the contig from which it came,

the strand on the contig, its position in the contig, and the e-value obtained

for the alignment of the contig against the human gene sequence. A pair of

positions i < j on the inferred rhesus macaque orthologous sequence was

then defined to be consistent if they were associated with the same strand

of the same contig and if the contig positions associated with them, p(i) and

p(j), respectively, fulfilled p(i) < p(j) if they are on the forward strand or p(j) <

p(i) if they are on the reverse strand. The positions of the inferred rhesus ma-

caque orthologous sequence were then arranged into the longest-possible

consistent subsets (i.e., within a subset, every pair of positions was consis-

tent), and each subset was associated with the minimal e-value associated

with any of the positions it contained. If two sets of positions were associ-

ated with the opposite strands of the same contig, we removed from the se-

quence the nucleotides associated with the subset with the highest e-value.

We proceeded similarly in cases in which two sets of positions overlapped

on the inferred rhesus macaque orthologous sequence and were associated

with different contigs in the rhesus macaque genome draft. If two sets over-

lapped on the inferred rhesus macaque orthologous sequence and were as-

sociated with the same contig, we resolved the inconsistency by finding

a position in one of the sets (designated here as ‘‘set A’’) that is consistent

with all the positions in the other set (‘‘set B’’) and then removing all the po-

sitions in set A that are not consistent with at least one position in set B.

As a final quality check, we used BLASTN [S5] searches of the resultant

orthologous sequences against the human refseq mRNA collection to
ensure that the ortholog pairs were mutual best hits. In twelve cases, the

rhesus macaque sequence was not a mutual best hit of the human gene

(because the ortholog does not seem to exist in the genome sequence)

and our search picked up a close homolog instead: PRSS1, CYPC19,

SLC25A15, ACTC, ACTA1, GCSH, SFTPA1, USP6, DUX4, SSX1, SSX2 and

CIC. HBG1 and HBG2 are part of a cluster of globin genes. They are the

result of a duplication event that occurred 20 to 40 million years ago [S6]

and have undergone gene-conversion events [S7], resulting in highly similar

paralogous sequences (only two nucleotide differences between the human

paralogs). Our search recovered the same rhesus macaque sequence for

both HBG1 and HBG2, having nine and eight nucleotide differences with

HBG1 and HBG2, respectively. Given that their evolution is not independent,

we discarded these genes from further analysis.

Calculation of Tajima’s D in the Presence of Missing Data

The following formula was used to calculate Tajima’s D for each gene:

D =
XM

i = 1

�bqpðiÞ 2 bqwðiÞ
��

W;

in which

bqpðiÞ =
ni

ni 2 1
2pið1 2 piÞ;

bqwðiÞ = 1=ani
; ani

=
Xni 2 1

k = 1

1=k;



Table S1. Tests of Differences between Categories

Contrast Data, Statistic No. of Genes Medians KS Testa Logistic Regressiona KS Bootstrap

AR vs. AD Genome Dn/Ds
b 240, 145 0.169, 0.078 1.00E-10 1.29E-06 NT

post40 vs. pre Genome Dn/Ds 6, 466 0.033, 0.136 0.022 0.009

Complex vs. OMIM Genome Dn/Ds 39, 501 0.203, 0.133 0.003 4.78E-06 0.003

Complex (short)c vs. OMIM Genome Dn/Ds 25, 501 0.209, 0.133 0.008 2.07E-04 0.01

Cancer vs. OMIM Genome Dn/Ds 145, 501 0.061, 0.133 8.45E-09 1.44E-03

Other vs. OMIM Genome Dn/Ds 7482, 501 0.139, 0.133 1.05E-05 7.84E-08

Cancer vs. Complex Genome Dn/Ds 145, 39 0.061, 0.203 5.34E-06 3.24E-06 <1E-04

Cancer vs. Complex (short)c Genome Dn/Ds 145, 25 0.061, 0.209 2.22E-04 9.03E-05 <1E-04

Other vs. Complex Genome Dn/Ds 7482, 39 0.139, 0.203 0.079 0.156 0.061

Other vs. Complex (short)c Genome Dn/Ds 7482, 25 0.139, 0.209 0.130 0.289 0.109

Other vs. Cancer Genome Dn/Ds 7482, 145 0.139, 0.061 7.58E-11 8.16E-09

Essential vs. Cancer Genome Dn/Ds 645, 145 0.077, 0.061 0.085 0.398

OMIM vs. Essential Genome Dn/Ds 501, 645 0.133, 0.077 5.49E-09 1.93E-03

Other vs. Essential Genome Dn/Ds 7482, 645 0.139, 0.077 0 4.60E-23

Complex vs. Essential Genome Dn/Ds 39, 645 0.203, 0.077 2.64E-05 1.27E-05 <1E-04

Complex (short)c vs.

Essential

Genome Dn/Ds 25, 645 0.209, 0.077 1.04E-03 1.10E-03 <1E-04

AR vs. AD Dn/Ds
b 452, 294 0.184, 0.084 1.11E-16 1.85E-04

post40 vs. pre Dn/Ds 14, 926 0.120, 0.149 0.575 0.994 0.502

Complex vs. OMIM Dn/Ds 65, 952 0.224, 0.149 0.003 1.18E-05

Complex (short)c vs. OMIM Dn/Ds 40, 952 0.217, 0.149 0.010 0.010 0.006

Cancer vs. OMIM Dn/Ds 326, 952 0.091, 0.149 1.49E-05 0.860

Cancer vs. Complex Dn/Ds 326, 65 0.091, 0.224 6.93E-07 3.52E-04

Cancer vs. Complex (short)c Dn/Ds 326, 40 0.091, 0.217 2.73E-05 0.032 <1E-04

AR vs. AD Appl. Tajima’s D 214, 95 21.42, 21.31 0.314 0.372

post40 vs. pre Appl. Tajima’s D 4, 378 0.223, 21.42 0.276 0.15

Complex vs. OMIM Appl. Tajima’s D 29, 399 20.65, 21.42 0.008 5.12E-04 0.005

Complex (short)c vs. OMIM Appl. Tajima’s D 17, 399 21.12, 21.42 0.317 0.023 0.238

Cancer vs. OMIM Appl. Tajima’s D 84, 399 21.42, 21.42 0.581 0.347

Other vs. OMIM Appl. Tajima’s D 4644, 399 21.28, 21.42 0.029 0.036

Cancer vs. Complex Appl. Tajima’s D 84, 29 21.42, 20.65 0.007 4.0E-04 0.003

Cancer vs. Complex (short)c Appl. Tajima’s D 84, 17 21.42, 21.12 0.217 0.015 0.126

Other vs. Complex Appl. Tajima’s D 4644, 29 21.28, 20.65 0.015 1.62E-03 0.004

Other vs. Complex (short)c Appl. Tajima’s D 4644, 17 21.28, 21.12 0.370 0.048 0.266

Other vs. Cancer Appl. Tajima’s D 4644, 84 21.28, 21.42 0.064 0.037

Essential vs. Cancer Appl. Tajima’s D 323, 84 21.39, 21.42 0.172 0.201

OMIM vs. Essential Appl. Tajima’s D 399, 323 21.42, 21.39 0.356 0.623

Other vs. Essential Appl. Tajima’s D 4644, 323 21.28, 21.39 0.438 0.208

Complex vs. Essential Appl. Tajima’s D 29, 323 20.65, 21.39 0.011 6.68E-04 0.004

Complex (short)c vs.

Essential

Appl. Tajima’s D 17, 323 21.12, 21.39 0.349 0.027 0.237

AR vs. AD SN Tajima’s Dd 33, 22 21.65, 21.41 0.685 0.409 0.560

post40 vs. pre SN Tajima’s D 5, 71 21.06, 21.48 0.103 0.068

Complex vs. OMIM SN Tajima’s D 16, 78 20.57, 21.48 7.54E-04 7.15E-04 <1E-04

Complex (short)c vs. OMIM SN Tajima’s D 6, 78 20.90, 21.48 0.142 0.092

Cancer vs. OMIM SN Tajima’s D 6, 78 22.29, 21.48 1.1E-03 <1E-04

Other vs. OMIM SN Tajima’s D 224, 78 21.39, 21.48 0.408 0.326

Cancer vs. Complex SN Tajima’s D 6, 16 22.29, 20.57 1.87E-04 <1E-04

Cancer vs. Complex (short)c SN Tajima’s D 6, 6 22.29, 20.90 0.026 0.002

Other vs. Complex SN Tajima’s D 224, 16 21.39, 20.57 0.003 0.002 0.001

Other vs. Complex (short)c SN Tajima’s D 224, 6 21.39, 20.90 0.251 0.196

Other vs. Cancer SN Tajima’s D 224, 6 21.39, 22.29 3.73E-04 <1E-04

Essential vs. Cancer SN Tajima’s D 57, 6 21.39, 22.29 6.55E-04 <1E-04

OMIM vs. Essential SN Tajima’s D 78, 57 21.48, 21.39 0.221 0.502

Other vs. Essential SN Tajima’s D 224, 57 21.39, 21.39 0.739 0.935

Complex vs. Essential SN Tajima’s D 16, 57 20.57, 21.39 0.004 0.003 0.007

Complex (short)c vs.

Essential

SN Tajima’s D 6, 57 20.90, 21.39 0.175 0.117

Complex (I) vs. OMIM (I)f Genome Dn/Ds 33, 487 0.172, 0.133 0.054 0.002 0.035

Complex (short I)c vs.

OMIM (I)f
Genome Dn/Ds 21, 487 0.203, 0.133 0.102 0.006 0.079

Complex (I) vs. OMIM (I)f Dn/Ds 55, 922 0.210, 0.149 0.045 0.001

Complex (short I)c vs.

OMIM (I)f
Dn/Ds 34, 922 0.217, 0.149 0.028 0.036 0.03

Contrast Data, Statistic No. of Allelese Medians KS Testa Logistic Regressiona KS Bootstrap

OMIM vs. Complex Nonsyn. Allele Freq. 1173, 70 0.025, 0.075 0.001 0.120

OMIM vs. Other Nonsyn. Allele Freq. 1173, 11527 0.025, 0.026 0.300 0.935

Complex vs. Other Nonsyn. Allele Freq. 70, 11527 0.075, 0.026 0.003 0.107

OMIM vs. Complex Syn. Allele Freq. 1392, 65 0.027, 0.025 0.982 0.975
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Table S1. Continued

Contrast Data, Statistic No. of Allelese Medians KS Testa Logistic Regressiona KS Bootstrap

OMIM vs. Other Syn. Allele Freq. 1392, 11899 0.027, 0.026 0.971 0.727

Complex vs. Other Syn. Allele Freq. 65, 11899 0.025, 0.026 0.985 0.913

Shown in red are cases in which the permutation test or logistic regression is significant at the 5% level; in orange at the 10% level (not corrected for multiple

tests). Polymorphism-data results are presented for the European population samples; qualitatively similar results were obtained for the African and African-

American population samples (not shown).
a p values obtained with the use of a Kolmogorov-Smirnov (KS) test or logistic regression. For cases with fewer than 50 genes in each category, we estimated

the p value of the KS test by a permutation test (see ‘‘Statistical Analyses’’ section). We only fit a logistic regression when there were at least ten genes in each

category.
b Dn/Ds and Genome Dn/Ds refer to two sets of alignments (see main-text Experimental Procedures).
c Only genes with replicated associations are included (see main-text Experimental Procedures).
d Refers to polymorphism data from SeattleSNPs and NIEHS projects (see main-text Experimental Procedures).
e The frequencies of nonsynonymous alleles are compared between the groups. Numbers refer to the total numbers of alleles in each group.
f Genes associated with immune response were excluded from both groups of genes in this analysis.
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ni is the sample size at site i, and

pi is the allele frequency at site i.

W was defined following Tajima (1989)[S8], as:

W =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1S + e2SðS 2 1Þ

p
;

in which

e2 =
c2

a2
1 + a2

;e1 =
c1

a1

;

c2 = b2 2
nmax + 2

a1nmax

+
a2

a2
1

;

c1 = b1 2
1

a1

;b2 =
2
�
n 2

max + nmax + 3
�

9nmaxðnmax 2 1Þ ;

b1 =
nmax + 1

3ðnmax 2 1Þ;

a2 =
Xnmax 2 1

k = 1

1=k2;

a1 =
Xnmax 2 1

k = 1

1=k;

S is the number of segregating sites, and

nmax is the maximum sample size over all sites.

Statistical Analyses

To compare Dn/Ds or Tajima’s D values between categories, we excluded

genes that were assigned to more than one mode-of-inheritance category

(e.g., genes in which mutations lead to both recessive and dominant disease

phenotypes). In turn, genes that belong to more than one age-at-onset cat-

egory (i.e., genes that cause multiple diseases with different ages at onset)

were assigned to the youngest age.

We used a Kolmogorov-Smirnov (KS) test to assess the significance of the

difference between distributions, with the ks.test function in the R software

environment for statistical computing (http://www.r-project.org). Although

all the statistics that we considered are continuous, when there are few

polymorphic or divergent sites per gene, they take on a limited number of

values and effectively become discretized. To address this potential prob-

lem, in cases with fewer than 50 genes in each category, we estimated

the p value by permutation, using the maximum difference between cdfs,

Z, as our test statistic. Specifically, we randomly divided all the values

into two groups of the same size as observed, then calculated Z. This per-

mutation was repeated 10,000 times, and each time the maximal difference

between the cdfs of the two randomly selected groups (Zi) was recorded.

The test p value was defined as the number of times in which Zi R Z, divided

by 10,000.

A second concern was that, in genes with few divergent sites, our esti-

mate of Dn/Ds might be unreliable, leading to differences between cate-

gories driven by few outliers. To address this, we calculated a global

Dn/Ds for each category as
G =

P
KAP
NA

.PKSP
NS

in which KA is the number of nonsynonymous mutations across all genes

in the category, KS is the number of synonymous mutations, NA is the

estimated number of nonsynonymous bases, and NS is the estimated

number of synonymous bases. Each sum was calculated over all genes

in the tested category, with G calculated with the use of the four sums.

We then considered the difference in G between categories as a test

statistic. The significance of the difference was assessed by permutation;

qualitative results were similar to those obtained with the use of a KS test

(not shown).

Finally, we fit linear models to the Dn/Ds data, using the R software. To do

so, values of Dn/Ds were Box-Cox transformed using

yðlÞ =
�
yl 2 1Þ=l:

The parameter l was calculated with the use of the box.cox.powers R

function (in the package ‘‘car’’). The lm function was then used to fit linear

models to the transformed values. Age at onset was represented as a binary

categorical variable that stated whether a gene is in the ‘‘pre-40’’ or the

‘‘post-40’’ age category. As before, if a gene caused phenotypes with vary-

ing ages of onset, we assigned it to the youngest one. Mode of inheritance

was represented by two categorical variables, the first stating the specific

category (either autosomal dominant [AD], autosomal recessive [AR], or

X-linked), and the second stating whether a gene is assigned to both AD

and AR (in which case, the first variable would mark the gene as AD). GO cat-

egories (or pathophysiologies) were represented by N binary categorical

variables, indicating the inclusion of a gene in a specific GO (or pathophys-

iology) category (N is the number of GO or pathophysiology categories for

the included genes). We note that genes can, and often do, belong to

more than one GO (pathophysiology) category and that this feature is taken

into account in our analysis. In tests involving genes that contribute to com-

plex-disease risk or are associated with cancer, we used a categorical vari-

able that stated whether the gene is assigned to, for example, a ‘‘complex’’

or a ‘‘simple’’ phenotype. To compare the fit of two nested linear models, we

used the anova function in R.
Estimating g and u from Human Polymorphism and Human-Rhesus

Macaque Divergence Data

Human polymorphism data were taken from Bustamante et al. (2005) [S9],

for which Celera Genomics resequenced the same 39 individuals for

approximately 20,362 human genes. For divergence data, we used human-

rhesus alignments taken from 10,376 1:1:1 orthologous alignments between

human, chimpanzee, and rhesus macaque generated by the Rhesus

Macaque Genome Sequencing and Analysis Consortium [S10]. Regions in

these orthologous alignments that were not surveyed for polymorphism

by Bustamante et al. were masked out. When a SNP is segregating, one

base pair matches the rhesus macaque sequence and the other base

matches the hg18 assembly, the nucleotide was altered to match the

same base as in rhesus macaque.

We note that when comparing human-rhesus sequences, by chance

alone some sites will have undergone multiple substitutions. Because syn-

onymous mutations tend to saturate first, a parsimony approach tends to

http://www.r-project.org


Table S2. GO Categories that are Overrepresented in ‘‘Autosomal

Dominant’’ versus ‘‘Autosomal Recessive’’ Categories and in ‘‘Autosomal

Recessive’’ versus ‘‘Autosomal Dominant’’ Categories

Overrepresented in AR versus AD

GO:0044444 cytoplasmic part

GO:0006091 generation of precursor metabolites and

energy

GO:0019752 carboxylic acid metabolism

GO:0006082 organic acid metabolic process

GO:0006807 nitrogen-compound metabolic process

Overrepresented in AD versus AR

GO:0050794 regulation of cellular process

GO:0050789 regulation of biological process

GO:0016070 RNA metabolic process

GO:0019219 regulation of nucleobase, nucleoside,

nucleotide, and nucleic acid metabolic

process

GO:0045449 regulation of transcription

The five most-significant GO terms are shown in each case. The GOstat pro-

gram [S17] (http://gostat.wehi.edu.au/) was used for this analysis. As noted

previously (see [S18] and references therein), regulatory proteins tend to be

overrepresented among the AD category, whereas enzymes tend to be

overrepresented among the AR category (see Kondrashov et al.[S18] for

possible explanations).

Table S3. Comparison of Nested Linear Models

Models Compared

Dependent

Var.

No. of

Genes p Value

Mode + GO2 versus GO2 Dn/Ds 917 1025

Mode + Pathophys. versus Pathophys. Dn/Ds 719 <1025

Mode + %Mut versus %Mut Dn/Ds 867 <1025

Age + GO2 versus GO2 Dn/Ds 936 0.470

Age + Pathophys. versus Pathophys. Dn/Ds 730 0.558

Age+Mode+GO2 versus Age + GO2 Dn/Ds 910 <1025

Age+Mode+Pathophys.+GO2 versus

Age+Pathophys.+GO2

Dn/Ds 713 <1025

Age+Mode+Pathophys.

+GO2+%Mut versus

Age+Pathophys.+GO2+%Mut

Dn/Ds 690 <1025

Disease type + GO2 versus GO2 Dn/Ds 1190 0.002

Disease type + Pathophys. versus

Pathophys.

Dn/Ds 747 0.345

‘‘Mode’’ refers to the mode of inheritance, ‘‘age’’ to the age at onset, ‘‘GO2’’

to the GO level-two gene category, ‘‘pathophys.’’ to the pathophysiology

category, and ‘‘%Mut’’ to the number of known disease mutations in the

protein divided by the total number of amino acid positions (derived from

the humsavar.txt file, which was downloaded from Swissprot at http://

www.expasy.org on Sept. 12, 2006). ‘‘Disease type’’ refers to whether the

disorder is classified as ‘‘simple,’’ ‘‘complex,’’ or ‘‘cancer’’ (see ‘‘Creating

a Hand-Curated Version of the OMIM Database’’ section for details).

The mode of inheritance remains significant after correction for functional

categories (as captured by GO categories), pathophysiology, and the frac-

tion of amino acid sites known to cause disease.

Disease type is significant after controlling for functional categories but not

pathophysiologies. However, we have only pathophysiology data for 19

genes associated with complex diseases, and there are 17 pathophysiology

categories, so this might reflect lack of power.
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underestimate the synonymous versus the replacement mutations and, as

a result, the MK test rejects neutrality more often than expected (R. Hernan-

dez and C.D.B., unpublished work). Therefore, we obtained maximum-likeli-

hood estimates of the expected number of silent and replacement fixed dif-

ferences for each gene by using the codeml program of the PAML software

package [S11], with codon frequencies estimated from nucleotide frequen-

cies at each of the three codon positions, a single nonsynonymous-synon-

ymous ratio u = Dn/Ds across sites and branches, and independent transi-

tion-transversion ratios for each gene. The human-rhesus macaque

comparisons are pairwise, so the tree consists of a single branch of evolu-

tionary distance, t. The total number of silent sites and the total number of

replacement sites were estimated from the codeml output with the use of

the Nei-Gojobori method [S12].

Interpreting Estimates of g When There is a Distribution

of Selective Effects within a Gene

The mkprf method [S9, S13] estimates selection parameters assuming all

mutations in a gene are subject to the same selection intensity, g. This as-

sumption is unlikely to be realistic. To examine the effect of a distribution

of fitness effects on our inference of g, we generated MK tables under var-

ious normal and exponential distributions of fitness effects by using the

method of [S14]. We then compared our inference of g with the mean selec-

tion intensity of segregating mutations (gS) and the mean selection intensity

of mutations that had become fixed (gF) by using the equations of [S15]

integrated over the distribution of fitness effects. Except for distributions

tightly centered on a single g, gS and gF will be less negative than the

mean fitness effect of a new mutation (i.e., the mean of the distribution of

fitness effects), because strongly deleterious alleles are lost from the

population.

As expected, we found that the mkprf estimate closely matches gS when

mutations are so deleterious that they rarely fix and that it is intermediate

between gS and gF when the fitness distribution includes nearly neutral or

positively selected sites (see Figure S3). Under an exponential distribution

of fitness effects, the inferred g is closer to gF than to gS because the distri-

bution is not symmetric but, rather, skewed toward less-negative selective

effects. On a log scale, however, the inferred g under an exponential distri-

bution is more intermediate. Most studies of the distribution of fitness

effects conclude that it is not symmetric but, rather, exponential or gamma

distributed [S16].

Resampling Analyses for Evaluation of the Effect of Ascertainment Bias

Complex-disease genes have been discovered primarily through associa-

tion mapping and are therefore likely to harbor at least one allele at inter-

mediate frequency. We wanted to assess the possible effect of this
ascertainment bias on analyses of the frequency spectrum in these genes.

First, we examined whether this might account for the difference in the

distribution of Tajima’s D values observed between hOMIM and complex-

disease genes (see main-text section ‘‘Comparison of Genes Associated

with Simple versus Complex Diseases’’). To do so, we tried to mimic the dis-

covery process by performing the following resampling analysis: Using the

Applera polymorphism data, we identified hOMIM genes with at least one

allele at intermediate frequency (i.e., between 0.1 and 0.9); this implicitly as-

sumes that all genes were found through association studies, which is

somewhat extreme but conservative for these purposes. From these genes,

we randomly selected 29 genes (to match the number of complex-disease

genes for which we had polymorphism data) and compared amino acid

Tajima’s D values in the European sample for this random set with the entire

hOMIM set by using a KS test, logistic regression, and a bootstrap KS

test (see above). This procedure was repeated 10,000 times, and each

time the p values for the three tests were recorded. In only 4.23%, 0.79%,

and 2.85% of cases (for the three tests, respectively) did we observe a p

value lower than or equal to the actual p value for the difference between

the actual hOMIM and complex-disease genes. This analysis suggests

that the ascertainment-bias effect alone is unlikely to explain the observed

differences in Tajima’s D values between complex-disease genes and

genes in other categories.

Next, we wanted to evaluate whether a small sample size or ascertain-

ment bias in the discovery of genes associated with complex-disease risk

could explain our finding that synonymous and nonsynonymous allele

frequencies do not differ significantly (see main-text section ‘‘Comparison

of Genes Associated with Simple versus Complex Diseases’’). To do this,

we selected 20 genes (the number of complex-disease genes used in this

analysis) at random from hOMIM, conditional on their harboring at least

one allele (synonymous or nonsynonymous) at a sample frequency between

0.1 and 0.9. Applying the same test as that applied to the actual data (i.e.,

a Wilcoxon matched-pairs signed-rank test), we then asked how often we

obtained a p value as high as or higher than that observed for the difference

between synonymous and nonsynonymous sites (i.e., p = 0.842 for the

European sample). This occurred in 5.69% of cases. This analysis suggests

that ascertainment bias and small sample size alone are also unlikely to

account for the lack of difference in frequency between synonymous and

nonsynonymous alleles in genes that contribute to complex-disease risk.

http://gostat.wehi.edu.au/
http://www.expasy.org
http://www.expasy.org
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