Associating transcription factor binding site motifs with target GO terms and target genes: Supplementary Material

Mikael Bodén Timothy L Bailey

May 14, 2008

Table 1 provides AUC50 for each GO term prediction method when applied on the yeast Gold standard set at each of the three target levels. Table 2 similarly allows a comparison of methods at all target levels when applied on the yeast data, here at a fixed E = 10.

Of 51 JASPAR motifs for human, 21 were analysed anecdotally by referring to UniProt entries of transcription factors. A maximum of two predicted GO terms and a few keywords extracted from UniProt are provided in Tables 3-4.

Results from applying the proposed aggregate target gene score, for individual TFs, are presented in Tables 5-6. The change in AUC50 caused by including the predicted GO terms into the gene score correlates weakly but positively with the number of predicted terms (0.19).

Of the genes ranked highest by Avg-Odds-GO for each of the 63 transcription factor binding motifs, 54 were included as target genes in the MacIsaac et al. low-confidence map. 25/63 of the top-ranked target genes were in their high-confidence map.

Illustrating typical target gene predictions, the top-20 genes for DIG1 and REB1 appear in Tables 7-8.

DIG1 has a small set of predicted GO terms (3) and consequently identifies a smaller set of genes (217) to receive a doubled target gene score. To put this into context, there are 82 target genes in the HC-set which associate significantly with 41 GO terms (at level 1).

REB1, on the other hand, does not have any significant target GO terms among the 217 putative target genes. The target gene predictions here, however, incorporate *predicted* GO terms. For REB1, the predicted GO terms are very generic and apply to all but 1180 genes. Tables 7-8 provide case-based support for the positive influence of predicted GO terms on target gene predictions.

Target GO terms statistically inferred from transcription target sets are provided in a separate MS Excel Workbook (Target.xls).

GO term predictions by Avg-Odds Global in both the yeast and human genomes (1000-bp upstream regions) are provided in a separate MS Excel Workbook (Predict.xls).

Method	Mean AUC50				
	Level 1	Level 2	Level 3		
Hit-count					
10^{-3} Local	0.26	0.30	0.31		
10^{-3} Global	0.30	0.34	0.39		
10^{-4} Local	0.46	0.51	0.57		
10^{-4} Global	0.45	0.48	0.54		
10^{-5} Local	0.22	0.23	0.24		
10^{-5} Global	0.19	0.19	0.21		
Avg-Odds					
Local	0.46	0.51	0.56		
Global	0.45	0.50	0.56		
ZS Local	0.43	0.48	0.56		
ZS Global	0.45	0.49	0.57		
ZM Local	0.44	0.49	0.56		
ZM Global	0.44	0.48	0.55		
Max-Odds					
Local	0.44	0.49	0.54		
Global	0.44	0.48	0.54		

Table 1: Average AUC50 values for each of the methods in Yeast. Results are for the 43 "Target Level 3" motifs. All three target levels in the gold standard are tested. Higher AUC50 value is better. For the Hit-Count method, the specified motif-match *p*-value threshold is used (see Methods). For Avg-Odds, variations with a sequence-shuffled Z-score (ZS) and a motif-shuffled Z-score (ZM) are trialed.

Method	Average	Let	Level 1 target		Level 2 target		Level 3 target			
	predicted	1 TP	Rec	Prec	1 TP	Rec	Prec	1 TP	Rec	Prec
Hit-count										
10^{-3} Local	38.4	0.71	0.31	0.17	0.71	0.35	0.15	0.64	0.33	0.12
10^{-3} Global	34.2	0.84	0.33	0.21	0.84	0.38	0.19	0.76	0.44	0.16
10^{-4} Local	16.3	0.73	0.36	*0.47	0.73	0.41	*0.45	0.73	0.49	$^{*}0.37$
10^{-4} Global	13.0	0.69	0.31	*0.48	0.69	0.35	*0.47	0.64	0.40	$^{*}0.37$
10^{-5} Local	3.1	0.31	0.09	*0.72	0.29	0.09	*0.72	0.29	0.11	*0.67
10^{-5} Global	2.3	0.22	0.07	*0.66	0.22	0.07	*0.66	0.22	0.09	$^{*}0.63$
Avg-Odds										
Local	47.8	0.89	0.53	0.23	0.89	0.59	0.21	0.87	0.63	0.17
Global	54.0	0.91	0.54	0.21	0.91	0.60	0.19	0.87	0.66	0.15
ZS Local	39.1	0.84	0.47	0.25	0.84	0.53	0.23	0.84	0.63	0.20
ZS Global	39.9	0.84	0.48	0.26	0.84	0.54	0.24	0.84	0.62	0.20
ZM Local	36.7	0.89	0.46	0.28	0.87	0.51	0.26	0.87	0.60	0.21
ZM Global	37.1	0.87	0.45	0.27	0.84	0.49	0.25	0.84	0.59	0.20
Max-Odds										
Local	39.9	0.87	0.49	0.26	0.87	0.54	0.23	0.82	0.60	0.19
Global	44.2	0.89	0.51	0.23	0.89	0.57	0.21	0.84	0.63	0.17

Table 2: Accuracy of predicted TF-GO term associations in Yeast. Averaged outcomes for searches using E = 10 with the 43 motifs from the *S. cerevisiae* gene regulatory network, and for each of the three GO terms target levels. The columns indicate the average number of predictions returned by each method, the probability of predicting at least one true positive (1 TP, higher is better), the recall, and the precision. When one or more TFs render no predictions they are excluded from the precision average (marked with '*').

JASPAR	Factor	Number of	Example of predicted GO terms
motif	(UniProt)	GO terms	Transcriptional target keywords
RREB1	RREB1_HUMAN	5	Positive regulation of cell differentiation (GD:0045597)
			Multicellular organismal development (GO:0007275)
			Ras/Raf-mediated cell differentiation
			Represses angiotensinogen gene
NFIL3	NFIL3_HUMAN	23	Defense response (GO:0006952)
			transcription factor activity (GD:0003700)
			Protects pro-B cells from programmed cell death
			Component of the circadian clock
SPIB	SPIB_HUMAN	8	Immune response (GO:0006955)
			Chemokine receptor binding (GD:0042379)
			Promotes development of plasmacytoid dendritic cells
			B-cell receptor (BCR) signaling
NFKB1	NFKB1_HUMAN	18	Signal transduction (GO:0007165)
			Protein binding (GD:0005515)
			Immune response, Apoptosis
Pax6	PAX6_HUMAN	8	Anatomical structure morphogenesis (GO:0009653)
			Wnt receptor signaling and calcium modulat (GO:0007223)
			Development of the eye, nose,
			Specification of the ventral neuron subtypes
SRF	SRF_HUMAN	10	Extracellular space (GO:0005615)
			Inflammatory response (GO:0006954)
			Cardiac differentation and maturation
SPI1	SPI1_HUMAN	10	Nucleus (GO:0005634)
			Macromolecule metabolic process (GD:0043170)
			Activation of macrophages or B-cells
			Pre-mRNA splicing
IRF1	IRF1_HUMAN	12	Antigen processing and presentation (GD:0019882)
			Immune response (GD:0006955)
			Represses type I IFN and
			IFN-inducible MHC class I genes
IRF2	IRF2_HUMAN	7	Response to biotic stimulus (GD:0009607)
			Anatomical structure morphogenesis (GD:0009653)
			(same as IRF1)
Pbx	PBX1_HUMAN	19	Embryonic development (GD:0009790)
			Glucuronosyltransferase activity (GD:0015020)
			Role in steroidogenesis,
			sexual development and differentiation

Table 3: Subjective analysis of TF-GO term predictions for JASPAR Human TFs (part I). The table shows results for the 21 Jaspar motifs for Human TFs for which the Avg-Odds Global method predicts 25 or fewer TF-GO associations at an *E*-value cutoff of 0.05. For each JASPAR motif, we show the UniProt name of the TF gene, the number of predicted GO terms, and up to two predicted GO terms and the UniProt annotation for the TF that (subjectively) matches them. GO terms with extremely low *E*-values are also shown, even if no UniProt annotation matches them.

4

JASPAR	Factor	Number of	Example of predicted GO terms		
motif	(UniProt)	$GO \ terms$	Transcriptional target keywords		
RUNX1	RUNX1_HUMAN	2	Immune response (GO:0006955)		
			Immune system process (GO:0002376)		
			T-cell receptor enhancers		
			Development of normal hematopoiesis		
FOXF2	FOXF2_HUMAN	10	Anatomical structure morphogenesis (GO:0009653)		
			Anatomical structure development (GD:0048856)		
			Lung-specific genes		
PPARG-RXRA	RXRA_HUMAN	3	Lipid transporter activity (GO:0005319)		
	PPARG_HUMAN		Extracellular region (GO:0005576)		
			Retinoic acid response pathway		
			Beta-oxidation pathway of fatty acids		
PPARG	PPARG_HUMAN	12	Regulation of metabolic process (GO:0019222)		
			Extracellular region (GO:0005576)		
			Hypolipidemic drugs and fatty acids		
			Adipocyte differentiation and glucose homeostasis		
TP53	P53_HUMAN	2	Inflammatory response (GO:0006954)		
			Defense response (GD:0006952)		
			Tumor suppressor, apoptosis induction		
MYC-MAX	MYC_HUMAN	6	Cell-cell adhesion (GO:0016337)		
			Proteinaceous extracellular matrix (GO:0005578)		
			Transcription of growth-related genes		
NR2F1	COT1_HUMAN	12	Regulation of transcription, DNA-dependent (GO:0006355)		
			Vitamin binding (GO:0019842)		
			Initiation of transcription		
FOXD1	FOXD1_HUMAN	21	Anatomical structure morphogenesis (GO:0009653)		
			Activation of plasma proteins during inflam (GO:0002541)		
			Development retina, the optic chiasm		
			and morphogenesis of the kidney		
RORA1	RORA_HUMAN	13	Response to xenobiotic stimulus (GO:0009410)		
			Transcription regulator activity (GD:0030528)		
			Organogenesis and differentiation		
			(source NCBI entry NP_599023)		
TAL1-TCF3	TFE2_HUMAN	14	Multi-organism process (GO:0051704)		
			Defense response to bacterium (GO:0042742)		
			Tissue-specific cell fate during embryogenesis		
			Muscle or early B-cell differentiation		
FOXI1	FOXI1_HUMAN	1	GTPase regulator activity (GD:0030695)		
			Hearing, sense of balance and kidney function		
			Epithelium of distal renal tubules		

Table 4: Subjective analysis of TF-GO term predictions for JASPAR Human TFs (part II).

сл

Motif	Bits	Genes w/terms	Target genes	AUC50			
		,	0 0	Avg-Odds-GO	Avg-Odds	Max-Odds	Change
ABF1	13.98	4703	199	0.07	0.06	0.05	0.00
ADR1	6.84	426	15	0	0	0	0.00
AFT2	7.94	1331	60	0.08	0.05	0.02	0.03
ARG80	8.42	364	13	0.11	0	0	0.11
ARG81	10.74	364	8	0.18	0	0	0.18
BAS1	9.77	315	32	0.23	0.25	0.18	-0.01
CBF1	12.78	337	167	0.15	0.19	0.17	-0.04
CHA4	9.63	1277	13	0.02	0	0.11	0.02
DIG1	8.27	118	82	0.1	0.05	0.04	0.04
FHL1	11.32	3717	95	0.19	0.18	0.15	0.01
FKH1	11.26	286	67	0.13	0.12	0.08	0.01
FKH2	11.08	637	78	0.17	0.14	0.13	0.03
GAL80	10.33	2896	2	0.79	0.92	0.87	-0.13
GAT1	10.57	7	11	0.41	0.38	0	0.03
GCN4	10.57	422	125	0.21	0.14	0.07	0.07
GCR2	9.21	42	32	0.03	0.03	0.03	0.00
GLN3	8.16	611	44	0.03	0.13	0.06	-0.10
GZF3	10.33	7	3	0.18	0.2	0	-0.02
HAP1	7.96	43	72	0.09	0.05	0.04	0.04
HAP2	8.53	510	28	0.07	0.03	0.04	0.03
HAP4	10.87	231	39	0.26	0.21	0.21	0.04
HSF1	14.14	58	32	0.61	0.59	0.56	0.02
IME1	12.73	303	4	0.06	0.1	0.37	-0.04
INO2	11.73	303	27	0.26	0.27	0.22	-0.01
LEU3	12.92	13	11	0.72	0.71	0.68	0.01
MBP1	9.15	1538	107	0.19	0.15	0.1	0.04
MCM1	15.39	540	56	0.44	0.45	0.42	-0.01
MET31	9.2	62	21	0.15	0.1	0	0.05
MET32	14.54	84	19	0.19	0.17	0.17	0.01
MET4	13.21	62	9	0.37	0.23	0	0.14

Table 5: Accuracy of three target gene prediction methods in Yeast (part I). Table shows the prediction accuracy (AUC50) of target gene predictions using the Avg-Odds-GO, Avg-Odds and Max-Odds scoring methods. Results are shown for each of the 63 Yeast transcription factor binding motifs for which target genes and predicted GO terms are available. Provided is also the information content (Bits), the number of genes that are annotated with any of the predicted GO terms, the number of known target genes (HC-set) of each motif. The final column contains the AUC50 difference between Avg-Odds-GO and Avg-Odds (a positive value means that we gain accuracy by including predicted GO terms).

Motif	Bits	Genes w/terms	Target genes	AUC50			
				Avg-Odds-GO	Avg-Odds	Max-Odds	Change
MIG1	11.91	33	3	0	0	0	0.00
MSN2	9.03	1365	63	0.06	0.07	0.01	-0.01
MSN4	8.77	1359	49	0.04	0.08	0.04	-0.04
NDD1	9.39	918	60	0	0.03	0.03	-0.03
NRG1	8.73	2834	76	0.05	0.1	0.04	-0.06
PHD1	7.22	33	79	0.04	0.04	0.01	0.01
PHO4	10.7	1781	23	0.2	0.27	0.09	-0.08
RAP1	11.72	3459	79	0.04	0.04	0.05	0.00
RCS1	7.71	178	42	0.2	0.17	0.01	0.03
RDS1	11.54	2909	10	0.3	0.28	0.1	0.02
REB1	11.35	4703	217	0.05	0.05	0.04	0.00
RGT1	15.64	232	3	0.33	0.33	0.19	0.00
RIM101	12.05	21	2	0	0	0	0.00
ROX1	7.64	232	33	0.03	0.03	0.02	0.00
RPN4	13.84	4026	67	0.32	0.31	0.3	0.01
RTG3	9.9	364	31	0.1	0.05	0.02	0.04
SFP1	12.16	3721	17	0.16	0.13	0.07	0.04
SKN7	6.27	3219	112	0.04	0.05	0.02	-0.01
SK01	9.94	4703	19	0.04	0.03	0	0.00
STB2	10.38	4446	8	0	0	0	0.00
STB5	9.28	4703	17	0.35	0.34	0.26	0.01
STE12	8.76	502	121	0.12	0.08	0.02	0.04
STP4	20.24	3022	1	0	0	0	0.00
SUM1	11.29	195	49	0.09	0.06	0.06	0.03
SUT1	5.69	2413	55	0.06	0.09	0.01	-0.02
SWI4	10.04	33	97	0.14	0.15	0.05	-0.01
SWI5	5.94	4395	56	0.05	0.03	0.01	0.01
SWI6	7.42	1605	108	0.15	0.13	0.02	0.01
THI2	17.54	20	8	0.79	0.78	0.79	0.01
TYE7	8.32	1201	39	0.13	0.1	0.06	0.02
UGA3	10.33	3279	1	0	0	0	0.00
UME6	12.22	75	97	0.19	0.19	0.18	0.00
YAP7	10.21	609	66	0.17	0.18	0.15	0.00
Mean	10.55	1336.4	50.5	0.17	0.16	0.12	0.01

Table 6: Accuracy of three target gene prediction methods in Yeast (part II).

-7

Gene	Rank	Target of	DIG1 in	
	Avg-Odds-GO	Avg-Odds-Std	HC-map	LC-map
YNL279W	1	2	*	*
YNL280C	2	1	*	*
YCL027W	3	17	*	*
YNL042W-B	4	3		*
YOL111C	5	19		*
YGL194C-A	6	4		
YDR085C	7	35	*	*
YIL015W	8	42	*	*
YPL192C	9	52	*	*
YCR089W	10	80		*
YGL053W	11	82		
YLL043W	12	83		*
YKL116C	13	87		
YGL095C	14	5		*
YIL071C	15	6		*
YDR309C	16	7	*	*
YER068W	17	127		*
YGR282C	18	8		*
YFRO31C-A	19	9		*
YAL064W-B	20	10		*

Table 7: An example target gene prediction for DIG1 using Avg-Odds-GO and Avg-Odds-Standard. Scores by each method are used to rank each target gene, here sorted by their Avg-Odds-GO score. In addition, memberships of the MacIsaac et al. high-confidence (HC) and low-confidence (LC) maps are noted ('*' indicates membership). Avg-Odds-standard predictions that rank 11-16, 18, and 19-20 do not appear in the Avg-Odds-GO top-20. None of these appear in the 82-gene HC-map.

Gene	Rank	Target of REB1 in		
	Avg-Odds-GO	Avg-Odds-Std	HC-map	LC-map
YCR032W	1	2	*	*
YEL012W	2	3		*
YOLOO6C	3	4	*	*
YKL059C	4	5	*	*
YJL106W	5	6		*
YKL058W	6	7	*	*
YML043C	7	8		*
YML042W	8	9		*
YLR162W-A	9	1		*
YPR035W	10	11		*
YMR001C	11	14		*
YMR002W	12	15		*
YOR349W	13	16		*
YOR348C	14	17		*
YHLOO4W	15	18		
YOL005C	16	19	*	*
YOLOO4W	17	20	*	*
YNL079C	18	21		*
YNL078W	19	22		*
YPL266W	20	23		*

Table 8: An example target gene prediction for REB1 using Avg-Odds-GO and Avg-Odds-Standard. Scores by each method are used to rank each target gene, here sorted by their Avg-Odds-GO score. In addition, memberships of the MacIsaac et al. high-confidence (HC) and low-confidence (LC) maps are noted ('*' indicates membership). It should be noted that genes ranked 10, 12-13 by Avg-Odds-Standard appear as ranks 253, 255-256, respectively, by Avg-Odds-GO. All three cases appear in the LC-map but not in the 217-gene HC-map.