SUPPLEMENTAL FIGURE 1. PAR2 deletion does not alter the outcome of diet-induced pancreatitis. Nineteen female wild type (wt) and 11 female $PAR2^{-/-}$ mice weighing 13-15g were fasted for 24 hrs and then fed the choline-deficient, ethionine-supplemented diet for 3 days to induce pancreatitis. The animals were then observed for an additional 3 days during which time animal mortality rate was monitored. The 2- and 3-day cumulative animal mortality rates in each group, expressed as a percent of total animals in that group, are shown..

SUPPLEMENTAL FIGURE 2. PAR2 deletion does not alter in-vitro trypsinogen

activation induced by either Na-taurocholate or caerulein. Acini (5-100 cells per cluster) from wild type and $PAR2^{-/-}$ mice were incubated with 0.3% Na-taurocholate (NaT) for 5 min or 10 nM caerulein (caer) for 30 minutes. Trypsinogen activation was quantitated by measuring trypsin activity using the fluorogenic substrate Boc-gln-ala-arg-MCA. No significant difference between the wild type and $PAR2^{-/-}$ acini was noted.

SUPPLEMENTAL FIGURE 3. PAR2 deletion does not alter the frequency with which the calcium transient patterns are observed in wild type acini exposed to caerulein. Small pancreatic acini (1-10 cells per cluster) were freshly prepared from wild type (wt) or *PAR2^{-/-}* mice and exposed to sub-maximally (0.1 nM) or supra-maximally (1 nM) stimulating concentrations of caerulein (caer). Acini from both groups showed only oscillatory responses to 0.1 nM caerulein and only peak-plateau responses to 1 nM caerulein. **SUPPLEMENTAL FIGURE 4. Neither TFLLR nor LRGILS alter the frequency of calcium transient patterns observed in wild type acini exposed to Na-taurocholate and SBTI.** Small pancreatic acini were freshly prepared from wild type mice and exposed to increasing concentrations of Na-taurocholate (NaT) or pre-incubated with 5 μM soybean trypsin inhibitor (SBTI) for 30 min prior to addition of Na-taurocholate. For selected acini, either 1 mM SLIGRL, TFLLR or LRGILS were added at the time of Na-taurocholate addition. Panel *A* shows representative calcium transients from single acinar cells under the conditions described. The three types of response can been seen (marked in each box). Type I consists of oscillations only. Type II consists of oscillations superimposed on a peak plateau. Type III consists of small peak and a sudden and persistent decline of the baseline indicating cell lysis. Panel *B* shows quantitation of the response patterns observed in single acinar cells pre-treated with SBTI and then exposed to either Na-taurocholate alone or to Na-taurocholate along with either TFLLR or LRGILS. Black areas indicate type III response, hatched areas indicate type II response and white areas indicate type I response. Note that neither TFLLR nor LRGILS can reverse the SBTI effect on calcium response-type frequency.

SUPPLEMENTARY FIGURE 5. Neither TFLLR nor LRGILS alter LDH leakage induced in wild type acini by Na-taurocholate or caerulein. Small pancreatic acini were freshly prepared from wild type mice. They were incubated for 30 min in the presence of buffer alone, buffer containing Na-taurocholate (NaT) (0.3%), or buffer containing caerulein (Caer) (100 nM). Selected acini were preincubated for 30 min with 5 μ M SBTI alone (closed columns), SBTI followed by 1 mM TFLLR and Na-taurocholate or caerulein (hatched columns) or SBTI followed by LRGILS and Na-taurocholate or caerulein (gray columns). Results reflect mean values obtained from 3 independent experiments and vertical bars denote +/- SEM. Asterisks denote p<0.05 and NS denotes non-significance of differences when bracketed groups were compared. Note that neither TFLLR nor LRGILS could reverse the SBTI effect on LDH release.

