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Fetuin/02-HS glycoprotein (02-HSG) homologs have
been identified in several species including rat,
sheep, pig, rabbit, guinea pig, cattle, mouse and
human. Multiple physiological roles for these
homologs have been suggested, including ability
to bind to hydroxyapatite crystals and to specifically
inhibit the tyrosine kinase (TK) activity of the
insulin receptor (IR). In this study we report the
identification, cloning, and characterization of the
mouse Ahsg gene and its function as an IR-TK
inhibitor. Genomic clones derived from a mouse Svj
129 genomic library were sequenced in order to
characterize the intron-exon organization of the
mouse Ahsg gene, including an 875 bp subclone
containing 154 bp upstream from the transcription
start site, the first exon, and part of the first intron. A
second genomic subclone harboring a 3.45 kb Bgl II
fragment contained exons 2, 3 and 4 in addition to
two adjacent elements within the first intron-a
repetitive element of the B1 family (92 bp) and a
271 bp tract of (T,C)n (A,G)n. We have mapped
mouse Ahsg at 16 cM adjacent to the Diacylglycerol
kinase 3 (Dagk3) gene on chromosome 16 by
genotyping interspecific backcross panels between
C57BL/6J and Mus spretus. The position is syntenic
with human chromosome 3q27, where the human
AHSG gene resides. Using recombinant mouse

2-HSG expressed from a recombinant baculovirus,
we demonstrate that mouse (x2-HSG inhibits
insulin-stimulated IR autophosphorylation and
IR-TKA in vitro. In addition, mouse o2-HSG
(25tg/ml) completely abolishes insulin-induced
DNA synthesis in H-35 rat hepatoma cells. Based on
the sequence data and functional analysis, we con-
clude that the mouse Ahsg gene is the true ortholog
of the human AHSG gene.
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INTRODUCTION

Heremans and Schmid described c2-HSG for the
first time in 1960, [1’2] as a 49-60kD human
plasma glycoprotein secreted into the circulation
by the liver at a concentration of 0.4-0.85 g/L.
Human o2-HSG is a negative acute phase
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reactant protein [3,4] and altered concentrations
of c2-HSG have been reported in several disease
conditions including Paget’s disease, osteogen-
esis imperfecta, lymphoma, leukemia and mye-
lofibrosis. 5, 61 Several functions have been
attributed to c2-HSG, including its involvement
in immune response, [7] the chemotactic response
of macrophages, 8, 91 enhancement of phagocytic
function of human monocytes, [10, 11] bone
mineralization, [12, 13] bone accumulation, [14, 15]

calcification [16, 17] and as an inhibitor of insulin

receptor tyrosine kinase activity [IR-TKA;18].
Recently, Jahnen-Dechent et al. [19] demonstrated
that mice deficient for c2-HSG can develop
ectopic microcalcifications in soft tissues, sup-
porting the idea that c2-HSG may operate as an
inhibitor of apatite crystal growth in vivo.

Classified as a member of the cystatin super-
family, I21 human c2-HSG is synthesized as a

type I secreted glycoprotein with a signal
sequence of 18 amino acids [21] and three major
domains-two N-terminally located cystatin do-
mains, D1 and D2 (116-118 amino acids), and a

single, proline-rich domain D31106-115 resi-
dues;j20"22-241]. Many key amino acid residues
and the position of cysteine residues are
perfectly conserved between human c2-HSG
and the fetuins of bovine, sheep, pig, rat and
mouse origin, I25, 20, 26, 21, 27- 29] suggesting that
the fetuins may be the homologs of human c2-
HSG.

Rat fetuin, originally named pp63, [3’311 se-
creted by rat hepatocytes in the phosphorylated
state, I301 inhibits insulin-stimulated IR-TKA. [32]

The gene for rat fetuin maps to chromosome 11
and spans approximately 8 kb, containing seven
exons separated by six introns of different sizes.
The rat fetuin cDNA sequence is similar to the
cDNA sequences of both human c2-HSG and
bovine fetuin. [33]

When Yang et al. [34] first reported the deduced
amino acid of the mouse fetuin cDNA, the
question arose whether mouse fetuin was the
true ortholog of human c2-HSG. They suggested
that the mouse protein take the name c2-HSG

instead of fetuin, because, unlike bovine fetuin,
the mouse protein is not a major component
synthesized by fetal liver. [34,35] Alignment of
human and mouse c2-HSG reveals a 60% amino
acid identity between the two proteins, with the
majority of the identical residues found in the
N-terminal two-thirds of the protein. Three N-
linked glycosylation sites are present in mouse
while only two are present in the human
protein. Moreover, mouse c2-HSG is 22 residues
shorter than human c2-HSG. [34]

In this study, we report the mouse Ahsg
genomic structure derived from sequencing
and restriction mapping of exons 1, 2, 3 and 4
contained in a contiguous 4.3 kb segment of the
gene. We have also sequenced a 154 bp region
upstream from the transcriptional start site. The
chromosomal location of mouse Ahsg has been
mapped to the proximal region of chromosome
16 at 16 centimorgans, adjacent to the gene
Dagk3. Further, we demonstrate that recombi-
nant mouse c2-HSG inhibits insulin-stimulated
IR autophosphorylation, IR-TKA and DNA
synthesis, confirming that mouse c2-HSG can

play a role similar to the human homolog in

modulating insulin action. Based on the struc-
tural features shared between the mouse and
human genes, their syntenic chromosomal loca-
lization, and the IR-TK inhibitory activities
shared between the two proteins, we suggest
that the mouse Ahsg is not simply a family
member, but the true ortholog of the human
AHSG gene.

MATERIALS AND METHODS

Cloning of Mouse Ahsg cDNA
into a Recombinant Baculovirus

A full-length cDNA encoding the entire 1035 nt

open reading frame (ORF) was cloned from liver
poly(A +) RNA using reverse transcriptase
(RT)-polymerase chain reaction (PCR). The
cDNA was amplified in two segments, a 533
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bp N-terminal segment (using primers SSF1,
5’-GGATCCTGACATTTGCCCATTTTCC-3’OH, and
SSB3, 5’-CGGTGTGGACCACGTTGGTATC-3’OH)
and a 1095 bp C-terminal segment (using
primers VIV1, 5-CTGCCAATCCGCTCCACAAGG
TA-3’OH and VIV2, 5’-TGTGGTATTGCTTTGT-
CAGTGGA-3’OH). A continuous cDNA of ]]82

bp was then amplified from the two segments
using PCR and short overlap extension (primers
SSF1 + VIV2) and the PCR product cloned into

plasmid pCR (Invitrogen, Carlsbad, CA); the
plasmid was sequenced from a combination of
dye primer and dye-terminator automated se-

quencing reactions. The Ahsg ORF was shuttled
as a 1.23kb BamHI-Xbal fragment into the
baculovirus transfer vector pBlueBacIII (Invitro-

gen, Carlsbad, CA) after blunting both the Xbal
end of the Ahsg ORF and the Hind3 site of
pBlueBacIII with the Klenow fragment of E. coli
DNA polymerase I (Pharmacia, Piscataway, NJ);
resulting in a transfer vector, pMusBaccx3 (11,440
bp) in which the Xbal site is restored. This
transfer vector (2 tg) was transfected into Sf9
cells (Gibco Life Technologies, Gaithersburg,
MD) in the presence of 5 tg of the wild-type
baculoviral DNA, and blue plaques selected
from 2% agarose plugs stained in Bluo-Gal
(Gibco Life Technologies, Gaithersburg, MD).
Twice-purified viral plaques were expanded at
27C, and recombinant viral stocks checked for
homogeneity using PCR (baculoviral primers
-44, 5’-TTTACTGTTTTCGTAACAGTTTTG-3’OH;
and + 778, 5’-CAACAACGCACAGAATCTAGC-
3’OH).
Expanded recombinant baculoviral stocks

were used to transfect cabbage looper High-
FiveTM cells (Invitrogen, Carlsbad, CA). Super-
natants collected after 72h were purified using
affinity chromatography on jacalin lectin col-
umns (Sigma, St. Louis, MO), washed with
100mM Tris-pH 7.4 and eluted with 25tM
melibiose (Sigma, St. Louis, MO). Proteins

separated on 12% SDS-PAGE were electro-
blotted to nitrocellulose and probed with a

polyclonal rabbit antibody specific for rat fetuin.

Screening of Genomic Clones Harboring
the Mouse Ahsg Gene

An Svj 129 library, constructed in ADASH2
(Stratagene, LaJolla, CA) using spleen genomic
DNA from male Svj mice, was screened for the
mouse Ahsg gene (kind gift of Dr. Roger Askew,
University of Cincinnati, OH). After infection of
PLK-17 cells, plaques were generated at 50,000
plaques per plate, and lifted onto 137mm i3

Nytran filters (0.45t, Schleicher and Schfill,
Keene, NH). Filters were hybridized at high
stringency (50% formamide, 43C) with a [32 p]_
labeled cDNA probe (1.2kb) derived represent-
ing the mouse Ahsg cDNA.

Chromosomal Mapping of Mouse Ahsg

Using the 3’-UTR of the mouse Ahsg cDNA as a

target, a primer pair [sense 5’-CTTCAAAATC-
TAGGCTTGATTCGG-3’OH and antisense 5’-
GCTTTATGCCTTTCATCAAATTTGACCATT-3 OH]
was selected using the Primer Detective pro-
gram. [361 Mouse genomic DNA (25ng) was

amplified using the above primers in a Thermal
Cycler Model 9600 (Perkin-Elmer-Cetus, USA).
The samples were heated at 95C for 1 min and
amplified by 35 cycles of denaturation (94C for
30 sec), annealing (at the optimized temperature
of 58C for 30sec), and extension (at 70C for
I min), followed by 3 min of extension (70C)
after the last cycle. [37] The Jackson Laboratory
BSS interspecific backcross mouse panels were
used to determine the mouse Ahsg chromoso-
mal location. [381 A customized polyacrylamide
gel electrophoresis apparatus (Nihin Eido,
Japan) was used to obtained high resolution of
the mapping results. A 28-well comb was special-
ly designed to accommodate two interdigitated
sample loadings with a 12-channel micropipet-
ter. A total of 24 samples were loaded per 10%

gel. The gels were run at 250 volts for I h, stained
with 0.5 gg/ml of ethidium bromide and photo-
graphed by UV transillumination. Allele types,
C57BL/6J or M. spretus, were scored by visual
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inspection of the gels and analyzed with the
computer program, Map Manager. [39] The loca-
lization of the markers were determined accord-
ing to the composite map of backcross panels. I38

The composite map of the BSS panel data
contains 451 markers, including 49 MIT markers.
In these composite maps, the average centimor-

gan length of the 95% confidence interval for
these markers is 7.6 cM (BSS).

Functional Studies of Recombinant
Mouse 02-HSG with Respect to the Insulin
Receptor

Insulin receptors were partially purified from
the H-35 rat hepatoma cell line (ATCC, Rock-
ville, MD) as described earlier. 41 Autopho-
sphorylation of crude insulin receptors was
assessed by preincubating various concentra-
tions of c2-HSG in the presence of insulin (100
nM) for 30 min at 20C. The phosphorylation
reaction was initiated in the presence of [32 p]_
ATP (3000 Ci/mmol), MnC12 (8mM), ATP
(10 btM), PNPP (10mM), and Na-orthovanadate
(100 btM). Reactions were stopped after 10 min
by boiling in the presence of 3% SDS and
100 mM DTT. Proteins were separated by SDS-
PAGE 10% gel and the g2P incorporated was
detected by autoradiography of the dried gel.
An exogenous substrate, poly (GluSTyr2), was
used to assess the IR-TK activity.

Insulin-induced DNA synthesis was moni-
tored by incorporation of [3H]-thymidine into H-
35 cells. The cells were grown to 30% confluence
and incubated in serum-free DMEM, containing
0.1% insulin-free BSA for 36 h and reincubated
for 14 h with 100 nM insulin, in the presence of
various concentrations of mouse c2-HSG. Cells
were pulsed with I btCi/ml of [3H]-thymidine
(NEN-Dupont, Wilmington, DE) for I h, and
then washed twice with ice-cold PBS. The cells
were solubilized and the DNA precipitated with
ice-cold TCA. The precipitates were collected on
glass filters and washed twice with ice-cold 5%

TCA. The radioactivity incorporated was quan-
titated in a scintillation counter.

RESULTS

Isolation of Genomic Clones Harboring
the Mouse Ahsg Gene

A screening of 350,000 clones of the ),DASH2 Svj
129 genomic library resulted in 11 independent
clones. The relatedness of these clones to the
mouse Ahsg gene was confirmed by PCR
amplification of crude phage DNA using mouse
Ahsg primers KOAF1 (5’-GCCCTTCGGAGTGGTG-
TATGAGATG-3’OH) and KOAB]0 (5’-ACGTTGG-
TATCGTTGAACGGAGTC-3’OH) designed from
targets in the cDNA sequence. PCR amplifica-
tion of the clones resulted in a fragment of 0.95
kb which could be cleaved into three pieces
using BstEII digestion. One clone (IKOA-1B)
was selected for further characterization, and
10 btg of phage DNA prepared from plate lysates
for restriction enzyme analysis. Restriction

analysis performed on this clone using digestion
with EcoRI or Bgl II (Fig. 1) suggested an insert
size of 18.6- 23.0 kb. Bgl II fragments of 6.0, 5.65,
3.42, 2.62 and 0.9kb representing the mouse

genomic insert were found (in addition to the
I arms); likewise, digest of kKOA-1B revealed
EcoRI fragments of 6.6, 6.0, 4.85, 2.45, 1.7 and
1.42kb (in addition to the k arms). Two Bgl II
fragments excised from an agarose gel (3.45 and
0.9kb) were chosen for subcloning into the
BamHI site of pGEM4Z, resulting in clones D
and delta; both subclones were completely
sequenced.
Sequence analysis of these two clones reveals

that the smaller clone (delta) harbors the first
exon (290 nt) in addition to 5’-regulatory
elements up to the-154 position, as well as 431
nt of intron downstream of the first exon (Figs.
2A and 4A). We suggest that position 155 in

Figure 2A be taken as the transcriptional start
site (cap site) based on the alignment of
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CIONE KOA-1
KBst EcoRI BglII EcoRI Bst agatctgttg gggagagatg atgtcctaac ttatttqctt ttccagagct gctqtttgca

aggattattt ggaaccagaa cagaaatcgt cccacgcctt cttcggcggg
c/EBP-

ctctgtcaga taaattaggc cctctgcccc tctattggtc tagctctcca agctgattat

ccgggctgct cctacatttcccattt, cagggcctct ctggagcaac
MetLysSer

euLeuCysPh TrpGIyCysG oGlnGlyThr

GlyLeuGlyP heArgGluLe uAlaCysAsp AspProGluA laLysGlnVa

AlaValAspT yrLeuAsnAs GlnGlyPheL ysGlnValLe

TCGGgtaagt gagcctacca ggaatgagct gaatgaatct
AspLysValL ysValTrpSe rArg

gggtagggga tctaacccag tgcctcaaag gctagcatct cccagtggag atggaatggc
agcagagatt ggccacatca gtattgttgc cgtgtatctc
acagaggatg ctcccacggg aagaggaagg gaccccgagg catagttcac
cagaaggttg gacttgctgg gaaaacctgg gcccaatttg ctaatttgtg aatgacttct
ctttcttgga ctctgatgaa gcatttgatc agtgaccatg
tgtgacggcc atctaatgca gatcgtttca ttccagacct
gcctgatagc catgttctcc ttagacaaca gatct

FIGURE Restriction analysis of Ahsg genomic clone AKOA-
lB. A 1.2kb mouse Ahsg cDNA was used as a probe to
screen a mouse genomic library. One of the eleven positive
clones (AKOA-1B) was plaque-purified to homogeneity and
10 gg of DNA purified from plate lysates. DNA was cut with
EcoRI or Bgl II and the DNA fragments separated on a 1%
agarose gel. DNA in lanes and 4 is a ABstE2 marker, lane 2
is AKOA-1B cut with Bgl II and lane 3 is &KOA-1B cut with
EcoRI. Digestion with Bgl II generated bands ranging from
900 bp to about 8.5 kb. Two Bgl II fragments were selected for
subcloning, a 3.45 kb Bgl II fragment (indicated by the arrow)
and a 0.9 kb Bgl II band (not shown). Summation of the sizes
of the non-vector fragments in lanes 2 and 3 imply that clone
KOA-1B, harbors a total of 18.6-23.0kb of mouse DNA,
more than twice the size of the known rat and human AHSG
genes (7-8 kb; [49, 50]).

expressed sequence tag (EST) clones available
in public databases, especially those from the
Sugano mouse liver EST project (Marra et al.,
Washington University, St. Louis, MO). In
Figure 2B, we show the alignment of 14 of the
more than 50 EST sequences available; the most
5’ sequence (file identifier 1450748/ud65a11.y1,
accession number AI047339) is taken to define
the transcriptional start site. Upstream of the cap
site + 1) can be found a TATA box (ATAAATT)
at the -24/- 18 position, and two motifs sugges-
tive of sites for transcription factors C/EBP-c
(-58 to -45, CCTTTACGCAATTC) and HNF-3fl
(- 126 to 115, ACTTATTTGCTT ). Both of these
factors are abundant in liver, and associated
with the expression of liver-specific genes.

TCTATTGGTC TAGCTCTCCA

AI047382

AI046467

FIGURE 2 The 875 bp mouse Ahsg subclone delta contains 154
nt of 5’-flanking DNA in addition to exon 1 and part of the first
intron. The DNA sequence analysis shown in Panel A reveals
a 154 bp segment upstream from the transcriptional start site,
the first exon and part of the first intron. Putative transcrip-
tional motifs [hepatic nuclear factor (HNF)-3fl and C/EBP-c]
are indicated, as well as the transcriptional start site. One
of the primers used to construct the baculoviral cDNA
expression clone (SSF1) is indicated. The DNA in exon is
indicated in uppercase. This sequence is available from
GenBank, accession number AF025820. The transcriptional
start site is deduced from the alignment of 14 EST clones
available in the public database (Panel B); the most 5’ EST
clone (AI047339; Sugano mouse liver EST project) is taken to
define the transcriptional start site.

Alignment of the corresponding human AHSG
and rat AHSG upstream sequences (Fig. 5)
reveals that all of these putative transcriptional
elements are conserved in the proximal up-
stream regions of mouse, rat, and human genes.
Moreover, this alignment of the three sequences
reveals that the splice donor (SD) at the 3’-end of
the first exon is precisely conserved among
the three species, strongly suggesting that the
mouse Ahsg genomic segment in clone delta
represents the true ortholog of human AHSG.
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Beyond the SD site, there is little conservation of
sequence between the mouse and human first
intron.

The larger clone (D, 3.45 kb Bgl II insert)
harbors exons 2, 3 and 4 (Figs. 3 and 4B), in
addition to two elements in the intron upstream

1 gatctcatat @ctaacagac tgaaactatg aaaccgccaa tacttgtctg cttttctttt
PRIMER VIV3 I-- (CT)n

61 cctgtttctg tctgtctgtc tgtctttctt cctttctttc tcttctctct ttctttctct
microsatellite (CT)n repeat

121 tcctctttct ttcttcttcc ttcctttctc ttctttctct ttctttcttc ctttttcttc
microsatellite (CT)n repeat

181 tttctttctc tttgctcttt ctttcccttc cttccttcct ttctcttctt tctcttctct
microsatellite (CT)n repeat

241 ctttcttttc cttcctttCt tccttccttc cttccttcct tccttccttc cttccttcct
microsatellite (CT)n repeat

301 tccttctttc cttcttcttt ttgagacaga aaggtttctc tttgtagccc tgactgtcct
(CT)n repeat B1 repetitive element

361 ggaacttact atgtagacca ggctggcctc aaacacacag agatccacct gcctctgcct
Primer VIV7

B1 repetitive element

421 cctggctcct ggaatcatag gcatgtgtca ccgactattt gtctgctttt aacatgcaaa

481 gttggaaact ccatacggtt cagcttaaca taaagatgag aagaacaagt ttgtgtcact
541 agagacttag gatttaggag gaaaataagg taaacaccag gatgctcaga gtgaggattg
601 acaaccagct ttacaatggg acagctgatt tgaaaccacg gttttcctgg gtgagtttta
661 agggcagttg gcaaaagacg taatggccgg ctctctgcct agtttacatg ctgaagggaa
721 agccgtgagc gagcactgtg catgtgctac gtgctgattg tgagatgctc attatgggat
781 gcccgagtgg atcaagaant tccctgcaca taaacccagt gcatctaccc atggttagtt
841 ctgaggtctc cggagagtga aaatgcccag tgaactaaat tgggttgaga gttttcaaac
901 tttggggcat ttcaaggtgt gaacggggaa tacatagaca ggtgaaacac tgaactcctc
961 acagggtcct gcaagcttcc caaaatgctt ccatcctagt ggtgacagtt tcccagcctc

1021 agaatagaaa ggcggcaaac aggagatagg actctctgtg catccaggac ccaggaaggt
1081 agaagataaa gagccaaggg aggagcaaga gaaaccttta aggacacaaa cactcaaaga
1141 aagggagaaa agtgggcaac tagagagaag aaagaatgaa gcagaatgaa agatagcaaa
1201 gataataaac ctttcaagat aaaagctagc cctcagagtc acttctttgt aaagagagct
1261 cagaataagg agtatggctg ggacagctgt tggagcacgg ccccccctcc cgtccctttt
1321 ttccccctcc cccctcccca tttcacaccc gctccatcta tagtggaaga ctaaaaagcc
1381 aaaacaaaac aaaaagaaaa aaaaaaaaaa ccactgcagc actgcatagc tggaaggggt
1441 ggggctgaca tctccttagt cctcccaccc ctcagccaag ccccaccaca gggctat
1501 tcacactagg tgccatgcat tggatcagcg gagcagggcg tttgctcacc tctcccttct

Primer VIVII

1561 gtccggctcc acagCGGCCC TTCGGAGTGG TGTATGAGAT GGAAGTTGAC ACACTGGAGA
SA Primer KOAFI exon 2

Primer VIV5
ArgPro PheGlyValV alTyrGluMe tGluValAsp ThrLeuGluT

1621 CCACTTGCCA TGCTTTGGAC CCCACCCCGC TGGCAAACTG TTCTGTGAGG CAGCTGACTG
hrThrCysHi sAlaLeuAsp ProThrProL euAlaAsnCy sSerValArg GlnLeuThrG

1681 AGCACgtgag tgctgccttg tggttggttg gtgggtgggt gggtgggtgg gagctgccca
luHis

1741 gccaccacag ttcagcaaag tgcaggtttg gctttctcca tctcccagca gccatcttgg
1801 ctagccagag agcaaagtct aaaacccgct gtgggataga tggtgccttc cccgaggttg
1861 attttcacaa cacttgggct tttcttcttg aagccctcgg gagagcagat tatgatgttt
1921 caataacacc cgtgaaggtt gccttgggca ggttacctcc cacaaccctg ccaagacgct
1981 ccctgaatga gcagccagag tatatatact gcttcagaat gccggcatct gatttcttta

2041 cccagGCGGT GGAGGGAGAC TGTGACTTCC ACATCCTGAA ACAAGACGGC CAGTTCAGGG

FIGURE 3 Internal exons 2-4 of mouse Ahsg gene. The 3.45 kb Bgl II fragment cloned pGEM4Z (clone D) was sequenced using a
combination of dye primers (SP6 and T7, at the 3’ and 5’-ends of the subclone, respectively), and dye terminator reactions.
Sequencing primers are indicated beneath the DNA sequence. Exons are indicated in the DNA sequence as uppercase letters.
The first intron contains 271 bp of the microsatellite (C,T)n (A,G)n adjacent to a middle repetitive element of 92bp in the B1
family. This sequence is available from GenBank, accession number AF025821.
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Primer VIV8 exon 3
AlaVa IGluGlyAsp CysAspPheH isIleLeuLy sGlnAspGly GlnPheArgV

2101 TGATGCACAC CCAGTGTCAT TCCACCCCAG gtcagaaaac actgcctctt gtttttatct
alMetHisTh rGlnCysHis SerThrPro

SD
2161 cgtagaatga gaaaggaatc agaatagttt tgaactcaaa taggtctcac ttcctctgtg
2221 aggattctgg gtcctgggga ttctaatgcc atcttttaaa gaagcccgtt cttgtgggcg
2281 aacattgtcc ccgtggctgt gacttggtga ccttcataca gctgcttgaa ggcttagaga
2341 agaagtcatg ctacattgga gcactaggag ccctttctaa ataagcaagc tgttgtgagt

2401 acactggaga gctgcagttg agaccctgct atcttcccgc ccagACTCTG CAGAGGACGT
SA

SerA laGluAspVa

2461 TCGTAAGTTG TGCCCACGGT GCCCACTCCT GACTCCGTTC AACGATACCA ACGTGGTCCA
iArgLysLeu CysProArgC ysProLeuLe uThrProPhe AsnAspThrA snValValHi

2521 CACCGTCAAC ACTGCCCTGG CTGCCTTCAA CACACAGAAT AATGGAACCT ATTTTAAACT
sThrValAsn ThrAlaLeuA laAlaPheAs nThrGlnAsn AsnGlyThrT yrPheLysLe

2581 GGTGGAGATT TCCCGGGCTC AAAATGTGgt aaaaacttaa cactcttttg atagatttgg
SD

uValGluIleSerArgAlaGlnAsnValCy

2641 gcgatttggt ggcccttggg gcatgtgtgg gggtgataac cagaagaaaa ggaaacattg
2701 gctggaagaa ctggcagggg ttctagaact tatggagccc taaactctca gcagcgctgt
2761 cccaaactga gccagttcaa cataggtcag ccacaggcag aaggcaggta acaccctggc
2821 ctcctggctt tacctaacac ttaatagcag ggctctctgt tcagacacaa tacattcacc
2881 gggtgccaca cgtttacacc ctgccagtaa catctgccgc agtctgggaa tcaacactaa
2941 caaaggtatg ggcaaatact ggaaggttcc taatctgcct ttcaaatcca ggtttttgag
3001 gtgggagggg accatctaat tgtatagcca aagcaactat ttgagtgcaa tagacttgag
3061 atgtttaagg aagctggcaa tggaaataag tcaagacata cttgcaaata cattagtgta
3121 ggtggtgatt ctgtaattcc tgggacaatt cccatcccat actgcaccag gcgctgtgct

Primer VIV4

3181 tgcaaggctc ccagcgtcag ggggaaggaa gcacagtgac ttccattttg atcctgctgt
3241 gggaaactgg ggtgggggca tcttttcact tcccgcttcg agcctgggat gactggaaca
3301 ttgaattctg aaggttgagg gccaggagt gctgggtttc catccctgcc ggactaaagt
3361 tagccttttg gcttcctgtt tcctctctga aaacttaacc tctgccccat gcgatggaca
3421 acgatctctt gccaatactt tgagacgact cagatc

FIGURE 3 (Continued).

of exon 2. The first of these elements is a 271 nt

long microsatellite (T,C)n (A,G)n composed of
96% C or T in the coding strand. The second
element found in this intron is a 92 bp sequence
with high homology to the family of B1 middle
repetitive elements characterisitic of mouse
DNA. 41, 42]

chromosome 3q27, the location of the human
AHSG gene. [21’451 The mapping profile of
the Ahsg gene, with respect to the genes
already mapped on chromosome 16, and a

composite map of the Jackson BSS panel Map,
versus the MGD composite map are depicted
in (Fig. 6).

Chromosomal Mapping of Mouse Ahsg

In order to map the mouse Ahsg gene to its
chromosomal site, we targetted a PCR amplicon
of 198 bp located in the 3’-UTR of the mouse

Ahsg cDNA; using a site in the 3’-UTR was used
to increase the possibility of finding sequence
polymorphism between different mouse
strains. [43, 44] The data indicate a localization of
the Ahsg gene to chromosome 16 at approxi-
mately 16 cM, adjacent to Dagk3 (Diacylglycerol
kinase 3) gene, a position syntenic with human

Expression of Mouse Ahsg cDNA
as a Recombinant Baculovirus and Assay
for Insulin Receptor Tyrosine
Kinase Activity

A baculoviral transfer vector, pMusBacc3
(11,440 bp) was created using a 1.2 kb BamHI-
Xbal segment of the mouse Ahsg cDNA featur-
ing an intact 1035bp open reading frame, as
described in Materials and Methods. This
transfer vector (2 tg) was transfected into Sf 9
cells along with 5 tg of the wild-type baculoviral
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FIGURE 4 Schematic structure of subclones delta and D. Shown in Panel A is the schematic structure of the upstream subclone
delta whose sequence is shown in Figure 2A. Putative transcriptional motifs (hepatic nuclear factor (HNF)-3fl and C/EBP-c)
are indicated, as well as the transcriptional start site. The segment of the first exon which encodes the first 85 amino acids of
mouse c2-HS-glycoprotein is shown in the shaded box. Shown in Panel B is the schematic structure of exons 2, 3 and 4,
including part of the first intron and part of the intron downstream from exon 4. Shaded boxes indicate the exons. The 271 bp
microsatellite (C,T)n, (A,G)n and the 92bp middle repetitive (B1 family) element are indicated by bracketing.

DNA, and blue plaques selected from 2%
agarose plugs stained in Bluo-Gal. Twice-pur-
ified viral plaques were expanded at 27C, and
recombinant viral stocks checked for homoge-
neity using PCR (baculoviral primers -44,
5’-TTTACTGTTTTCGTAACAGTTTTG-3’OH; and
/ 778, 5’-CAACAACGCACAGAATCTAGC-3’OH).
Expanded recombinant baculoviral stocks were
used to transfect cabbage looper HighFiveTM

cells, and supernatants collected after 48-72h.
Supernatants were purified using affinity chro-
matography on jacalin lectin columns and
proteins eluted with 25gM melibiose were

separated on 12% SDS-PAGE and electroblotted
to nitrocellulose. Probing of this membrane
with a polyclonal rabbit antibody specific
for rat fetuin reveals two prominent bands of
60 and 66 kD (Fig. 7A) in addition to a fainter
band of a slightly smaller apparent molecular
weight.

Inhibition of Insulin Receptor Tyrosine
Kinase Activity

Jacalin lectin affinity-purified recombinant
mouse c2-HSG (Fig. 7A) was used to test
inhibitory activity of the insulin receptor in a
TK assay. Mouse c2-HSG was tested at concen-
trations ranging from 5 gg/ml to 20 gg/ml in the
presence of insulin. Approximately 70% inhibi-
tion of IR-TK activity was observed at 15 gg/ml
(Fig. 7B).

Inhibition of Insulin-stimulated IR
Autophosphorylation and Insulin-stimulated
DNA Synthesis

Multiple experiments were performed in dupli-
cate in order to verify the ability of recombinant
mouse c2-HSG to inhibit autophosphorylation of
the 95 kD fl-subunit of the IR. The proteins were
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MMAHSG1
RAT

MMARSG1

RATPP63

145 135 125 -I15 I05 95 -85 75 -65
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AagA Ga tga

_.TAa TAA
atTTAttC C-caC Tg

C/P TA +1

MMAHSGI
RATPP6

36 46 56 66 76 86 96 106 116
MetLysSer LeuVaKLuL euLeuCysPh eAlaGlnLeu

CtGGGtTGgT CCaacCAccT GCCtgcTgC CTGGgGCAgC GTCC TCCTTTGTT TGCTCAGCTC>
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TrpGlyCysG lnSerAlaPr oG1nGlyThr GlyLeuGlyP heArgG1uLe uAlaCysAsp AspProGluA laLysG1nVa iAlaLeuLeu

AA AZAAGgrACA GGACTGGGTT TTATT GGCTTGTGAT GATCCAGaAG CGAAGCAAGT AGCTTTGTTG
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RAT

MMAHSGI

216 226 236 246 256 266 276 286 296
AlaValAspT yrLeuAsnAs nHisLeuLeu GlnGlyPheL ysGlnValLe uAsnGlnIle AspLysValL ysValTrpSe rAr

GCtaTaGACT ACaTCAATcA aaA tgGGGATaCA AACAcacCTT GAAcCAGATt GAtgAAGTaAAC TCaGGTAAGT>
\-Intron

306 316 366 336 346 356 366 376 386
GAACCA GGAATGAGCT GAATGAATCT GGGTAGGGGA TCTAACK3PG TGCCTCAAAG GCTAGCATC;T CCCAGTGGAG ATGGAATGC

Cag tctATGAGCT GAAatAATgT GtacA-tGGA gCTAAtCagG TGCCTCAAAa aaTAuCATCa CCCAGTGcAa ATGaAA>

FIGURE 5 Alignment of the proximal promoter sequences of mouse, rat, and human AHSG genes reveals an evolutionary conservation of
putative transcription factor motifs, TATA box, and splice donor (SD) sequences. The mouse sequence is taken from Figure 2A; the rat
sequence is taken from GenBank files M36547 and X63446; [49, 26] the human sequence is taken from GenBank files Y09540 and
M16961.[55’211 Sequences were aligned using CLUSTAL. Transcriptional start site are indicated by double underlining. The C/

EBP-c and HNF-3fl motifs and the MET initiator codon are indicated by single underlining. The conceptual translation of the
mouse Ahsg sequence is indicated above the line MMAHSG1. Where the rat or human sequence agrees with the nucleotide in
the mouse sequence, it is capitalized; otherwise, mismatched bases are indicated in lowercase in the human and rat sequence
lines. The human sequence has two insertions relative to the mouse sequence; the rat sequence has a single deletion relative to
the mouse sequence, filling in the gap with a (-). The numbering above the mouse sequence line is relative to the mouse
transcriptional start site defined in Figure 2.

Oa++
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FIGURE 6 Chromosomal mapping of the mouse Ahsg gene obtained from typing patterns derived from PCR analysis using the Jackson
Laboratories BSS interspecific backcross. Locations of allele types of C57B1/6J or M. spretus were determined by the composite map
of backcross panels. Mouse Ahsg is mapped to chromosome 16 at 16 centimorgans. Mapping profile of the Ahsg gene with
respect to other genes mapped to chromosome 16 (Panel A). Demonstration of a composite map of the Jackson BSS panel Map
versus the MGD composite map. The Ahsg gene is localized at approximately 16cM closely to the Dagk3 gene (Panel B).
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MGD Composite map

separated on a 10% SDS-PAGE and the 32p
incorporated was detected by autoradiography
of the dried gel. Mouse c2-HSG at a concen-
tration of 1 tg/ml completely abolished

insulin-induced autophosphorylation of the fl-
subunit of partially purified rat IR (Fig. 7C).
Various concentrations of recombinant mouse
c2-HSG were tested for their ability to inhibit

66 kD
60

FIGURE 7A Recombinant mouse c2-HS-glycoprotein expressed in a baculoviral system. Immunoblot of mouse c2-HSGsynthesized in insect cells, partially purified by lectin chromatography. Numbers below the lanes indicate fractions eluted fromthe jacalin affinity column. Two forms are prominent, with apparent molecular weights of 60-66 kD.
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Effect of ct 2-HSG on TK activity of insulin
receptors in vitro

5
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10 15 20

FIGURE 7B Recombinant mouse c2-HSG is an inhibitor of the insulin receptor (IR) at the tyrosine kinase (TK) level. The bar
graph indicates that the tyrosine kinase activity of the insulin receptor is inhibited by c2-HSG. IRs purified from H-35 rat
hepatoma cells were incubated for 30 min, 20C with various concentrations of mouse c2-HSG (10,15 or 20btg/ml) in the
presence or absence of insulin (100 nM). Insulin-stimulated IR-TKA was assessed by its ability to transfer 32p onto the synthetic
substrate poly (GluSTyr2). Lane represents stimulation of the insulin receptor with 100 nM insulin. Mouse c2-HSG inhibits
over 70% the insulin-stimulated receptors at a concentration of 15 gg/ml. The results shown are representative of three separate
experiments.

%HSG 10 75 75 ggknl
Insulin 0 + + + + 100 nM

95 kI) @

FIGURE 7C Effect of c2-HSG on autophosphorylation of the IR in vitro. The autoradiograph reveals that recombinant mouse
c2-HSG inhibits the autophosphorylation of the insulin receptor. Partially purified insulin receptors from H-35 cells were pre-
incubated with or without insulin (100nM) in presence or absence of mouse c2-HSG (1,10, 75 gg/ml) respectively.
Autophosphorylation was determined as described in Materials and Methods. The position of the 95 kDa fl-subunit of the
IR is indicated. Insulin-induced autophosphorylation of the fl-subunit of the IR compared to basal (lanes 2 and 1, respectively).
Purified mouse protein at concentrations of I gg/ml completely abolished insulin-induced autophosphorylation of the IR.

insulin-induced DNA synthesis. Mouse
oz2-HSG at 25-35 btg/ml completely abolished
insulin-induced DNA synthesis in H-35
hepatoma cells (Fig. 8).

DISCUSSION

The human glycoprotein c2-HSG acts as a

specific inhibitor of the human IR, at the level
of the TK. [18, 46, 47] In this study, we have cloned

the mouse homolog of human AHSG, deter-
mined its genomic organization, chromosomal
location and demonstrated its inhibitory activity
towards the IR-TK.
The mouse clone we have isolated by screen-

ing a mouse Svj/129 genomic library (AKOA-
1B), harbors 18.6-23.0kb of the mouse Ahsg
gene. Sequence analysis shows that the mouse

gene is organized with the same exon-intron
[48, 49]organization as both the rat fetuin gene

and the human AHSG gene. [s] Both the rat
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Effect ofct 2-HSG on insulin-induced mitogenesis
ofH-35 hepatoma cells
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FIGURE 8 Mouse c2-HSG inhibits insulin-induced mitogen-
esis on H-35 hepatoma cells. The data describe the effect of
recombinant mouse 2-HSG on insulin-induced mitogenesis
of H-35 rat hepatoma cells. Subconfluent dishes were treated
as described in Materials and Methods and the uptake of
[3H]-thymidine was measured. Insulin induced DNA synth-
esis (represented in the first bar). Insulin-stimulated mito-
genesis is completely blocked at concentrations of 25-35 tg/
ml of mouse c2-HSG (bar 3 and 5). The p value was
calculated by comparing the second bar, insulin-stimulated
mitogenesis and the third bar, c2-HSG (25tg/ml) and
insulin-treated cells (the P < 0.05, p=0.008 is considered
significant). A comparison between the second bar, insulin-
stimulated cells and the fifth bar, c2-HSG (35pg/ml) and
insulin-treated cells demonstrated P K 0.01, p-- 0.008.

fetuin gene and the human AHSG gene feature
7 exons. This genomic subclones we have se-

quenced cover exon 1 (Figs. 2A and 4A) and
exons 2-4 (Figs. 3 and 4B). We have not

sequenced clone AKOA-1B downstream of exon
4, and we are unable to address the question of
exon-intron organization downstream of exon
4. In all three species, intron I occurs at the same
codon position and features the same splice
acceptor (SA). Our sequence data demonstrate
that intron 1 is 2000 bp in length in the mouse,
slightly larger than the 1.7 kb reported for the
corresponding intron in the rat, [49] and slightly
smaller that the corresponding intron in the
human gene (2.3 kb; [50]). Clone >,KOA-1B also
contains a 271 bp tract of (T,C)n,(A,G)n
adjacent to a B1 element of 92 bp. Numerous
copies of B1, B2 and D1 elements are found
in rodent genomes. [41,42] Some of these B1 ele-
ments are not neutral relics of evolutionary

spread of the DNA element, but may play a

functional role in the regulation of the genes in
which they are present. For example, B1 ele-
ments can act as negative regulators of gene
expression. [51’521 Moreover, androgen regula-
tion of one gene seems to have been acquired
during evolution through the insertion of a B1
repetitive element into the transcription unit. [53]

Whether the B1 element in the first mouse Ahsg
intron plays a role in the regulation of Ahsg
transcription has not yet been addressed experi-
mentally. The conservation of C/EBP-c and

HNF-3fl binding sites in the proximal 5’ up-
stream region of the mouse and human AHSG
gene is likely to have a functional significance.
Falquerho et al. 54] have shown these motifs to
be functional in transient transfection of the rat
AHSG gene. Moreover, Banine et al. 55 have
analyzed the human AHSG promoter-enhancer
in transient transfection assays as well, sugges-
tive of a functional role for the C/EBP-c and

HNF-3fl sites in the human gene. The putative
HNF-3fl site in the mouse Ahsg gene is con-
served between mouse, rat and human. Given
the role of human,18 rat,48 and mouse
(this study) proteins in the inhibition of insulin
receptor function, it is intriguing to note that one
form of maturity onset diabetes of the young
(MODY), maps to the gene encoding HNF-3fl in
man. [56-58] Another site conserved between the
rat, mouse, and human genes is the putative C/
EBP-c site at -58 to -45 (CCTTTACGCAATTCC in
mouse). This site has been implicated in the
cytokine-induced down regulation of the rat
fetuin gene associated with the acute phase. [59

We have successfully employed the 3’ UTR of
the mouse Ahsg cDNA as a target for inter-

species polymorphism. The 3’ UTR region was
chosen because it is not disrupted by introns in
the human gene, [50] and, therefore, the primer
pairs designed from the 3’ short end of the
cDNA should amplify the same 198 bp fragment
from the genomic DNA. The 3’ UTR sequences
constitute a rich source of genetic markers for
the mouse genome. [43] Using this PCR based
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mapping technique, and panels between C57BL/
6J and Mus spretus, the mouse Ahsg gene was
localized to chromosome 16 at 16cM. This
location is syntenic with the position of the
human AHSG gene on chromosome 3 band q27.
It is interesting to note that the mouse Ahsg
maps in the vicinity of other genes implicated in

signal transduction and gene regulation such
as Dagk3 (diacylglycerol kinase 3, gamma 3,
15.5cM), Prkml (protein kinase, mitogen acti-
vated kinase 1, 14.5 cM), and EIF4fl, eukaryotic
translation initiation factor 4B, 14.2 cM). These
genes have also been mapped at the syntenic
position in man.

In the present study, we have used the bacu-
loviral system to express mouse c2-HSG as a
recombinant protein. The baculoviral protein
has an apparent molecular weight of 60-66 kD
and has been shown to block insulin-induced IR-
autophosphorylation at ltg/ml, IR-TKA at
15 tg/ml and insulin stimulated mitogenesis at
25 tg/ml in vivo. In the rat, it has been shown
that pp63/fetuin can inhibit IR-TK and IR
autophosphorylation with a half-maximal inhi-
bition of 0.24g/ml. 48 These results demon-
strate that the IR inhibitory activity of rat
fetuin, I48 human o2-HSG, [18’46] and bovine
fetuin [60 now extends to mouse c2-HSG. To-
gether, these results suggest that the mouse

Ahsg gene is the ortholog of the human AHSG
gene. Additional studies will be necessary to
determine whether the in vitro demonstration
of IR inhibitory activity demonstrated now for
four of these proteins (rat, bovine, human
and mouse) has a physiological significance for
glucose regulation in these species.
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