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MAP (mitogen-activated protein) kinase (also called
Erk 1/2) plays a crucial role in cell proliferation and
differentiation. Its impact on secretory events is less
well established. The interplay of protein kinase C
(PKC), PI3-kinase and cellular tyrosine kinase with
MAP kinase activity using inhibitors and compounds
such as glucose, phorbol 12-myristate 13-acetate
(PMA) and agonists of G-protein coupled receptors
like gastrin releasing peptide (GRP), oxytocin (OT)
and glucose-dependent insulinotropic peptide (GIP)
was investigated in INS-1 cells, an insulin secreting
cell line. MAP kinase activity was determined by
using a peptide derived from the EGF receptor as a
MAP kinase substrate and [32p]ATP. Glucose as well
as GRP, OT and GIP exhibited a time-dependent
increase in MAP kinase activity with a maximum at
time point 2.5min. All further experiments were
performed using 2.5 min incubations. The flavone PD
098059 is known to bind to the inactive forms
of MEK1 (MAPK/ERK-Kinase) thus preventing acti-
vation by upstream activators. 20M PD 098059
(IC50=51M) inhibited MAP kinase stimulated by
either glucose, GRP, OT, GIP or PMA. Inhibiton
("downregulation") of PKC by a long term (22h) pre-
treatment with 1M PMA did not influence MAP
kinase activity when augmented by either of the
above mentioned compound. To investigate whether
PI3-kinase and cellular tyrosine kinase are involved
in G-protein mediated effects on MAP kinase, in-
hibitors were used: 100nM wortmannin (PI3-kinase
inhibitor) reduced the effects of GRP, OT and GIP
but not that of PMA; 100M genistein (tyrosine

kinase inhibitor) inhibited the stimulatory effect of
either above mentioned compound on MAP kinase
activation. Inhibition of MAP kinase by 20M PD
098059 did not influence insulin secretion modu-
lated by either compound (glucose, GRP, OT or GIP).
[3H]Thymidine incorporation, however, was severely
inhibited by PD 098059. Thus MAP kinase is impor-
tant for INS-1 cell proliferation but not for its insulin
secretory response with respect to major initiators
and modulators of insulin release. The data indicate
that MAP kinase is active and under the control
of MAP kinase. PKC is upstream of a genistein-
sensitive tyrosine kinase and probably downstream
of a PI3-kinase in INS-1 cells.

Keywords: MAP kinase; INS-1 cells; Insulin release; Cell
proliferation

INTRODUCTION

MAP kinases belong to the family of serin/thre-
onin phosphorylating kinases. Two isoenzymes of
MAP kinase have been detected by immunopre-
cipitationIll and by Western blotting. I21 Its activa-
tion results in mitosis, meiosis, cell differentiation
and development. Though it is well known that
receptors for peptidergic growth factors with
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intrinsic tyrosine kinase activity are involved in
cell proliferation via MAP kinases, it is not clear
whether G-protein coupled receptors are involved
in proliferation in addition to their functions
in fully differentiated cells. [3,4] GRP (gastrin re-

leasing peptide), OT (oxytocin) and GIP (glucose-
dependent insulinotropic peptide) were chosen
for our experiments. All compounds were se-
lected due to the fact that their effects are medi-
ated via G-proteins: The 2nd messengers are PLC
(for GRP and OT; probably coupled to Gq) and
mainly adenylylcyclase (for GIP; probably cou-

pled to Gs). These compounds are modulators
of insulin release.I5-71 Using these compounds
and specific inhibitors it is interesting to know
whether MAP kinase is involved in insulin release
and important for cell proliferation of INS-1 cells
since there is a dynamic replicaton of the /-cell
massI81 and the production of new ]B-cells is

approx 3% per day in adult rats and mice.I91

The MAP cascade may be activated by recep-
tor tyrosine kinases, receptors for cytokines and
G-proteir coupled receptors. MAP kinase (ERK
1/2 (extracellularly regulated kinase)) is stimu-
lated by MAPK kinase/MEK 1/2. Many rather
specific compounds help to find out the impor-
tance and regulation of the MAP kinase cascade:
PD 098059 is able to inhibit the cascade on the
level of MAP kinase,[1,111 wortmannin as a PI3-
kinase inhibitor is able to define the involvement
of the enzyme in the cascade activity, genistein
(a tyrosine kinase inhibitor) may be used to

investigate the influence of tyrosine kinase on
MAP kinase as originally described by Hordijk
et al. [12] Tyrosine kinases may be involved in the
activation of MAP kinase by G-protein coupled
pathways.I2l Depending on the investigated
tissue PKC is involved in the G-protein medi-
ated activation of MAP kinase.I3-71

Except the studies of Fr6din et al. Ill no specific
investigation on MAP kinase in insulin secreting
cells with respect to G-protein coupled receptors
exist. The aim of the present study was to an-
swer the question whether MAP kinase is in-
volved in mediating insulin secretion and/or
cell proliferation of INS-1 cells and whether
the signal transduction pathway (MAP kinase

cascade) is involved in effects of glucose, GRP,
oxytocin, GIP (G-Protein coupled receptor ago-
nists) and the phorbolester PMA. The cross-talk
within the cells with respect to tyrosine kinase,
protein kinase C (PKC) and PI3-kinase was in-

vestigated as well in order to look at upstream
and downstream cascades.

MATERIALS AND METHODS

Materials

Bovine serum albumin, genistein, oxytocin, IGF-
1, PMA, tyrphostin AG 1296, wortmannin,
SBTI (soybean trypsin inhibitor) and bacitracin
were obtained from Sigma-Aldrich (Deisenhofen,
Germany) and collagenase (CLS grade, 126-
196 U/ml) from Worthington Biochemicals Corp.
(Freehold, New Jersey). Porcine gastrin re-

leasing peptide1_27 (GRP(1-27)) was purchased
from Bachem Biochemica GmbH, Heidelberg,
Germany. GIP (glucose-dependent insulinotropic
peptide) were purchased from Calbiochem-
Novabiochem GmbH, Bad Soden/Ts, Germany,
(mono-125I-TyrA14)-porcine insulin (360 mCi/mg)
from Behringwerke AG (Marburg, Germany), rat
insulin from Novo Research Institute (Copen-
hagen, Denmark), and anti-insulin antibodies
from Linco (St. Louis, U.S.A.). Biotrak MAP Ki-
nase assay kit, [T-32p]ATP, [methyl-gH]thymidine,
Q-Sepharose Fast Flow were purchased from
Amersham Pharmacia Biotech (Freiburg, Ger-
many), PD 098059 from New England Biolabs
(Schwalbach/Ts. Germany) and pertussis toxin
from Calbiochem-Novabiochem GmbH (Bad
Soden/Ts., Germany).

INS-1 Cell Culture

INS-1 cellsI8l generously provided by Dr. C.
Wollheim (Geneva, Switzerland) were plated at
a density of 5 105 cells/ml and grown in RPMI
1640 medium supplemented with 10%(v/v) fe-
tal bovine serum, 10mM HEPES, 2mM gluta-
mine, i mM pyruvate, 50 txM mercaptoethanol,
100 U/mL penicillin and 0.1mg/mL strepto-
mycin.
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Animals

Adult Wistar rats of either sex weighing between
230 and 330 g were used. They were kept on a

standard pellet diet (Altromin, Lage) and tap
water ad libitum at 22C with a 12h light/dark
rhythm.

Isolation of Rat Pancreatic Islets

Isolation of pancreatic islets was as described by
Kuo et al. [191 with slight modifications.I21 Pancre-
ata were isolated from the ether-anesthetised rat,
minced, and washed twice with 20ml ice-cold
KRH (Krebs-Ringer-Hepes) solution containing
2.8mM glucose, lmg/ml bacitracin, 0.2mg/ml
SBTI, and 0.02% albumin. Pancreas pieces were
soaked and then shaken in a 37C water bath in
the presence of 650U collagenase/g tissue sus-

pension. After 15-18 min of incubation the tissue

suspension was transferred into 10ml of ice-cold
KRH buffer. Islets were separated by sedimenta-
tion and collected as described elsewhere.[191

Insulin Secretion and Radioimmunoassay

INS1 cells were plated at 1,5 105cells/well in
24-well plates and cultured for 5 days. Cells
were washed three times with Krebs-Ringer
buffer containing 10mM HEPES and 0.5%
bovine serum albumin (KRH-buffer). The cells
were preincubated with KRH-buffer containing
3.0mM glucose in the presence or absence of the
respective inhibitor for 30minutes and incu-
bated at 37C in KRH-buffer containing 8.3mM
glucose and the test compound. 5 pancreatic
islets were incubated for 90 min at 37C in KRH
buffer containing either 3.0 or 11.1 mM glucose
with or without PD 098059.

Insulin release into the medium was deter-
mined by a radioimmunoassay using rat insulin
as a standard, (mono-la5I-TyrA14)-porcine insulin
as the labeled compound and anti-insulin anti-

bodies. The intraassay and interassay varia-
bilities were 4.2 and 9.8% respectively. Each
compound had been checked for non-interfer-
ence with the insulin radioimmunoassay.

[3H]Thymidine Incorporation

INS-1 cells in 24 well plates were grown for 3
days until being subconfluent. From the 4th day
they were incubated for 72 hours with the test

compounds in a serum free medium containing
0.1% BSA instead of fetal calf serum, transferrin

(10g/ml), triiodthyronin (0.1nM), phospho-
ethanolamine (50M), ethanolamine (50M)
and IGF-I (0.65 nM). In case the MEK inhibitor
PD 098059 was investigated, the cells were prein-
cubated for 30rain in its presence. During the
last 24 hours of incubation 0.5 Ci [3H]thymidine
was added per well. Thereafter cells were trans-
ferred on ice, sucked from medium, and I ml of
methanol was added for 10rain (increase of cell
attachment). Ceils were rinsed twice with KRH
buffer and with ice-cold 0.3N TCA. Cells were

lysed with 2501 0.3N NaOH (30rain 37C).
Radioactivity (incorporated into DNA) present in

samples of the extracts was measured using a

scintillation counter.

Micro-trap Phosphorylation Assay
(Map Kinase Activity)

The micro-trap assay was conducted as de-
scribed previously with slight modifications.I211

2.6 104 cells per well were grown for 4 or 5
days in 96-well microtiter plates. The normal in-

cubation medium was replaced by a serum free
medium containing 0.1% BSA instead of fetal
calf serum. After another 24 hours cells were
rinsed twice followed by a preincubation with
KRH containing I mM glucose. In case the MEK
inhibitor PD 098059 was investigated, the cells
were preincubated for 30rain in its presence.
Main incubation was for 2.5 to 30rain as indi-
cated in the legends. To finish incubation wells
were transferred on ice, incubation media were
discarded and cells were frozen at -70C for
30rain. The frozen cells were lysed in 100 l of
ice-cold lysis buffer (20ram Tris-HC1, pH 7.5,
i mM Na3VO4, 25mM glycerophosphate, 2ram
EGTA, 1ram PMSF, 20g/ml aprotinin, 2ram
DTT, and 100ram NaC1, and then transferred
to multiscreen plate (MADVN6510, Millipore,
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Eschborn, Germany). This lysate was incubated
1:1with 50% (v/v) slurry of Q-Sepharose/lysis
buffer and was shaken on a microplate mixer at
4C for 30 min. This plate was set onto the multi-
screen-filtration holder (Millipore) with a suc-
tion pump. The lysis buffer was aspirated and
the Q-Sepharose beads were washed twice with
fresh lysis buffer. Then 1001 of the elution
buffer (identical to lysis buffer except containing
300mM of NaC1 instead of 100mM) was added,
and the eluted sample was collected by aspira-
tion in a new plate set under the filtration
holder. The partially purified MAP kinase was
used to determine its activity by mixing 15 1 of
a sample with 10 1 substrate buffer with a pep-
tide that contains a partial phosphorylation do-
main of the EGF receptor (Amersham); Hepes,
NaBVO4, 0.05% NAN3, pH 7.4 and 5 1 (1 Ci)
Mg-[B2p]ATP which is well mixed. After a 30 min
incubation at 37C, the reaction was terminated
by adding 15 pl of phosphoric acid. Then 30 1 of
each sample were spotted onto special binding
discs (Biotrak MAP kinase assay kit). After ex-
tensive washing twice for 2min with 5% phos-
phoric acid and twice with water, the discs were
counted in scintillation counter.

Statistics

Results are shown as means + S.E.M. Statistical

significance was determined using one-way
analysis of variance (ANOVA) (RS/1 statistics

pack, BBN Software Products Corp.) followed
by a post-hoc test (Newman Keuls). A p value
< 0.05 was considered significant.

RESULTS

Map Kinase Activity

As shown in Figures 1A and B glucose (an initia-
tor of insulin release) as well as GRP, OT and
GIP (modulators of insulin release) exhibit a dis-
tinct time profile with respect to activation of
MAP kinase activity: There is a maximum after
2.5 min. The activity comes down shortly, and

there is a 2nd peak after 10min which fades
away slowly. Either modulator tested superim-
poses the maximum observed for glucose alone
after 2.5 min (458, 373 and 386% compared with

292%) (Fig. 1B). Our data on glucose corroborate
those found by others. [1,2] All further experi-
ments on MAP kinase were performed after a
2.5min incubation. Since the compounds are
modulators of insulin release they were always
used in combination with glucose.
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FIGURE Time-course of various compounds on MAP ki-
nase activity. A: glucose effect (8.3 mM); B: effects of GRP, OT
and GIP. The activity of INS-1 cells during preincubation
time was 100%. Results are shown as mean S.E.M. of 3-14
independent experiments run in quadruplicates.
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Next the effect of the MEK inhibitor, PD
098059,Illl was investigated. The half-maximal
concentration for inhibiting MAP kinase activity
in INS 1 cells was approx. 5 IxM when either glu-
cose or a combination of glucose plus GRP was
used (data not shown). Experiments with PD
098059, therefore, were performed at 20 txM con-
centrations. 20M PD 098059 was able to inhibit
MAP kinase activity when stimulated by either
high glucose (8.3 mM) or GRP, OT, GIP or the
phorbol ester PMA (Fig. 2). Glucose at a low con-
centration (3.0mM) had a small effect (Fig. 2).
The effect of PMA has already been shown by
others in a similar way.pl

Pertussis toxin at a concentration of 100ng/ml
had no influence on MAP kinase activity (data
not shown).
To investigate the downstream and upstream

cascade of MAP kinase various inhibitors of
tyrosine kinase, PI3-kinase and PKC were used.
Next the effect of tyrosine kinase inhibitors on
MAP kinase was investigated. Genistein is
known to inhibit cytosolic and receptor linked
tyrosine kinases. I221 A concentration of 1001xM
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FIGURE 2 Effect of PD 098059 on MAP kinase activity stim-
ulated by either GRP, OT, GIP or PMA. INS-1 cells were
preincubated with 20p,M PD 098059 at 3.0mM glucose,
and then incubated for 2.5min in the presence of either
compound. Results are shown as mean S.E.M. of 3-6 inde-
pendent experiments run in quadruplicates. Data were nor-
malized to 8.3mM glucose in the absence of PD 098059
(controls). *p < 0.05 vs. absence of PD 098059.

for genistein was used which was optimal and
non-toxic in insulin releasing experiments.I231

1001xM genistein significantly inhibited the
stirnulatory effects of glucose (8.3 mM), GRP, OT,
GIP and PMA (Fig. 3A). AG 1296 is a tyrosine ki-
nase inhibitor from the tyrphostin family which
rather selectively inhibits the kinase of the PDGF
(platelet derived growth factor) receptor. AG
1296 has no effect on MAP kinase activity
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FIGURE 3 Effect of genistein and AG 1296 on MAP kinase
activity stimulated by either GRP, OT, GIP or PMA. INS-1
cells were preincubated at 3.0mM glucose with either 100M
genistein for 30min (A) or 10M AG1296 for 60min (B); then
the cells were incubated for 2.5 min in the presence of either
indicated compound. Results are shown as mean __+ S.E.M. of
3-7 independent experiments run in quadruplicates. Data
were normalized to 8.3mM glucose in the absence of genis-
tein or AG 1296. *p < 0.05 vs. absence of genistein.
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FIGURE 4 Effect of wortmannin on MAP kinase activity
stimulated by either GRP, OT, GIP or PMA. INS-1 cells were
preincubated with 100nM wortmannin at 3.0mM glucose for
30min, and then incubated for 2.5 min in the presence of ei-
ther compound. Results are shown as mean S.E.M. of 3-5
independent experiments run in quadruplicates. Data were
normalized to 8.3mM glucose in the absence of wortmannin.
*p < 0.05 vs. absence of wortmannin.
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FIGURE5 Effect of PMA-pretreatment on MAP kinase
activity stimulated by either GRP, OT, GIP or PMA. INS-1
cells were preincubated with IM PMA at 3.0mM glu-
cose for 22 hours, and then incubated for 2.5min in the
presence of either compound. Results are shown as mean
S.E.M. of 3-5 independent experiments run in quad-
ruplicates. Data were normalized to 8.3mM glucose in
the absence of PMA-pretreatment. *p < 0.05 vs. absence of
PMA-pretreatment.

(Fig. 3B) indicating that a transactivated PDGF
tyrosine kinase is not involved.
The effect of the PI3-kinase inhibitor wort-

mannin was investigated. 100nM wortmannin
are able to inhibit the stimulatory effect of GRP,
OT and GIP on MAP kinase (Fig. 4). The effects
of both the phorbolester PMA and of glucose at
two different concentrations are not affected by
wortmannin (Fig. 4).
As shown in Figure 5 1 mM PMAhas an acutely

stimulating effect on MAP kinase which is abol-
ished by a 22-hours pretreatment with l mM
PMA. PMA, however, is not able to inhibit the
stimulatory effect of other compounds on MAP
kinase such as glucose, GRP, OT or GIP (Fig. 5).

Biological Effects (Insulin Secretion
and Cell Proliferation)

It is interesting to know whether MAP kinase
activity is necessary for specific biological ef-
fects. Insulin release is augmented by those con-
centrations of glucose, GRP, OT and GIP which

are able to increase MAP kinase activity (Fig. 6).
The MEK inhibitor PD 098059, however, is not
able to inhibit insulin release induced by either
of the compounds (Fig. 6).

Cell proliferation was measured as [3H]thymi-
dine incorporation. Glucose and IGF-1 (as a
control compound) increase cell proliferation.
The other compounds investigated (GRP and
GIP) had a tendency (not statistically significant)
to increase [3H]thymidine incorporation. This
increase is inhibited by PD 098059 no matter the
compound investigated (8.3mM glucose, nM
concentrations of GRP, OT, GIP and IGF-I)
(Fig. 6B). This is also the case when a substimu-
latory glucose concentration (3.0mM) was used
(Fig. 6C) which by itself has a small proliferative
effect (Fig. 6B); therefore the effects are not

clearly glucose-dependent.
Since INS-1 cells have the characteristics of

tumour cells and MAP kinases may play an

important role for them to stay immortalized
some data were repeated for freshly isolated rat

pancreatic islets. As can be seen in Figure 7 20M
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FIGURE 7 Effect of PD 098059 on MAP kinase activity (A) and glucose-induced insulin secretion (B) in rat pancreatic islets.
Rat pancreatic islets were preincubated with 20M PD 098059 in KRH-buffer in the presence of 3.0mM glucose for 30min.
Then the islets were incubated with 20M PD 098059 for 2.5 min (A: MAP kinase) or 90 rain (B: insulin release) in the presence
of either 3.0 or 11.1 mM glucose. Results are shown as mean S.E.M. of 4 independent experiments run in triplicates. *p < 0.05
vs. absence of PD 098059.

PD 098059 inhibit MAP kinase activity though not

being able to inhibit insulin release under the con-
ditions used.

DISCUSSION

Map Kinase

GRP, oxytocin and GIP activate MAP kinase in
the presence of a stimulatory glucose concentra-
tion. The time-course is the same for glucose
alone and its combination with the above men-
tioned compounds. The effects of GRP, oxytocin
and GIP are specific since the MEK inhibitor PD
098059 is effective in inhibiting the MAP kinase
activity probably by inhibiting the cascade up-
stream of MAP kinase.
Our data are in line with data in other cell sys-

tems: GRP is known to activate MAP kinase in
Swiss-3T3 fibroblastsI24’251 and the maximum ef-
fect is also demonstrated after 2min. Both OT
and GIP have already been shown to activate
MAP kinase in rat myometrial cells[26’27] and
CHO cells,I28] respectively.

Stimulating MAP kinase shows a biphasic pat-
tern with two distinct maxima: after 2.5 min and
10min. Whereas the same time profile was
found by some authors[29,31 but not by oth-
ers. [1,21 This difference may be due to the fact
that only the isoenzyme ERK1 was immunopre-
cipitated whereas in our and other studies both
isoenzymes were estimated e.g., by the micro-

trap assay. Another reason for the biphasic pro-
file may be that MAP kinase phosphatase I[31]

dephosphorylates MAP kinase 15 to 200 times
more quickly than other tyrosine phosphory-
lated substrates which is severely active espe-
cially in the initial phase. An alternative

explanation could be that we deal with a com-

plex cascade which includes Shc, Grb2, Sos and
Ras; since Sos can be phosphorylated by MAP
kinaseI321 it is possible that phosphorylated Sos
induces a negative feedback in the cascade
Ras/RAF/MEK/MAK kinase. A quick dephos-
phorylation of Sos may terminate the short neg-
ative feedback on MAP kinase.

Various tyrosine kinases have been shown
to specifically interact with the cascade between
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G-protein coupled receptors and MAP ki-
nases.[33-37] In INS-1 cells the tyrosine kinase in-
hibitor genistein inhibits MAP kinase activity
when stimulated by either glucose or combina-
tions of glucose with GRP, oxytocin, GIP or
PMA. Interestingly vasopressin possibly via Vlb
receptors stimulates a genistein-sensitive tyro-
sine kinase.I38I

PI3-kinase is involved in the G-protein medi-
ated signal transduction which leads to activa-
tion of MAP kinase since the PI3-kinase inhibitor
wortmannin inhibited MAP kinase activity when
induced by glucose, GRP, oxytocin and GIP ex-

cept PMA. PI3-kinase, however, is not involved
in mediating insulin release[39,4] which hints al-
ready at a dissociation between MAP kinase and
insulin secretion as discussed later. Extremely
high concentrations of wortmannin (1 txM) are
able to inhibit insulin releaseI411 which lead-to
nonspecific effects such as inhibition of phospho-
lipase D; these high concentrations were not
used in our experiments. Obviously PI3-kinase is

part of the MAK kinase cascade when activated
by GRP, OT or GIP confirming data shown for
CHO fibroblasts.[421

Activation of PKC is involved in the effects
of GRP.[41] The oxytocin/vasopressin effect on
MAP kinase is at least partially dependent on
PKG.[38’43-46] Downregulation of the PMA-sensi-
tive PKC isoforms by PMA does not influence
MAP kinase activity stimulated by glucose, GRP,
oxytocin and GIP. Only the acute PMA effect
is inhibited (positive control experiment). No
PMA-sensitive PKC isoforms, therefore, are in-
volved in the effect of either compound with

respect to MAP kinase activity. This is different
with respect to PKC:, an atypical PKC isoen-

zyme, which is known to activate both MEK and
MAP kinase.[47,48]

Insulin Secretion

It is not clear whether MAP kinase is linked to
insulin release. In our hands insulin secretion
does not appear to be dependent on MAP kinase

activity since manoeuvres to inhibit its activity,
e.g., by the MEK inhibitor PD 098059, does not

result in changes in insulin release. This is in
contrast to data of Fr6din et al.: Ill They demon-
strated concentration-response curves being par-
allel for the effect of glucose on MAP kinase
activity and insulin release which, however,
does not automatically implicate a causal link. In
contrast using nerve growth factor there was no
parallel effectIll indicating that stimulation of
MAP kinase alone does not result in an increase
in insulin release.

Cell Proliferation

Glucose is a major stimulus for cell proliferation
of INS-1 cells as measured by [3H]thymidine
incorporation into cells corroborating data of
others.[8,49,51 Cell proliferation was modulated
by either compound in a tentative way (approx.
9%) but was not statistically significant. IGF-I
(positive control) was effective but its effect was
small compared to what was shown by oth-
ers. Isll The lack of effect of oxytocin may be due
to low expression of its receptors, since oxytocin
had no effect on [3H]thymidine incorporation in
CHO cells[44] unless the cells had been trans-
fected with cDNA of the vasopressinlb receptor.
Our data with GRP are in line with the observa-
tion that GRP has proliferative effects in normal
cells[52,53] but not in carcinoma cells. [54]

[3H]Thymidine incorporation was inhibited
by the MEK inhibitor PD 098059 at 8.3mM
glucose. Since the inhibition come down to the
same level independent of the compound used,
it is obvious that the glucose effect is inhibited.
Additionally the proliferative effects of GIP
and IGF-1 are inhibited even at low glucose
(3.0mM). Since GIP is an important incretin its

proliferative effect may be of clinical impor-
tance. Altogether the MEK inhibitor is effective
in blocking glucose effects; when proliferation is
stimulated by high glucose concentrations, the
additional small effects of GRP, GIP or IGF-I
cannot be blocked. The proliferative effect of
these compound is only blocked when low glu-
cose concentrations (3.0 mM) were used.
A scheme illustrating the points that are ad-

dressed in this paper is shown in Figure 8.
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STIMULATION OF MAP KINASE
PMA Glucose GIP OT GRP Various receptors

.........dow.by S C PI3"Kinase Eln

Genistein ITyrosine ki

Sos phos-
phorylation

(neg. feedback)

Cell proliferation

Ras

MAPK kinase I- PD098059

MAP kinase/ERK [MAPKi

i phosphatase]

Insulin secretion

Ca2*

by, I" inhibitory

FIGURE8 Schematic illustration of MAP kinase cascade
with drugs and inhibitors used in the paper. (PMA phorbol
myristyl acetate, PKC =protein kinase C, Src=a protein
tyrosine kinase, Shc an adapter protein, Sos son of seven-
less, Grb2 growth factor receptor-bound protein 2, Ras
protein family, oncogene, Raf=protein family, oncogene,
ERK--extracellular signal regulated protein kinase, MAP
kinase =mitogen-activated protein kinase, MAPK kinase--
MAP kinase kinase).

With respect to freshly isolated rat pancreatic
islets data on the effect of PD 098059 on both MAP
kinase activity and insulin release at two different
glucose concentrations were repeated showing no
major difference to the INS-1 cells. With respect to
glucose and PMA Persaud et al. I551 clearly showed
that MAP kinase is not important for the insulin
secretory process. Thus, not only cells being
immortalized and therefore dependent on MAP
kinase show that MAP kinase is not important for
insulin release.

CONCLUSION

1. MAP kinase is active in INS-1 cells.
2. MAP kinase is of no major importance for

insulin release, but strongly affects cell

proliferation with respect to various com-

pounds such as glucose and GIP.
3. MAP kinase is activated after interaction of

compounds with G-protein coupled receptors.
4. Glucose is the major stimulus for cell prolif-

eration.
5. In the MAP kinase pathway PKC is upstream

of a genistein-sensitive tyrosine kinase.
6. PKC is downstream of the PI3-kinase or

alternatively there exist fully different signal
transduction pathways for PKC and PI3-
kinase.
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