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Development of Type 1 Diabetes in Wild Bank Voles
Associated With Islet Autoantibodies and the Novel
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Wild bank voles (Clethrionomys glareolus) may develop
diabetes in laboratory captivity. The aim of this study was
to test whether bank voles develop type 1 diabetes in as-
sociation with Ljungan virus. Two groups of bank voles
were analyzed for diabetes, pancreas histology, autoan-
tibodies to glutamic acid decarboxylase (GAD65), IA-2,
and insulin by standardized radioligand-binding assays
as well as antibodies to in vitro transcribed and translated
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Ljungan virus antigens. Group A represented 101 trapped
bank voles, which were screened for diabetes when euth-
anized within 24 hours of capture. Group B represented
67 bank voles, which were trapped and kept in the labora-
tory for 1 month before being euthanized. Group A bank
voles did not have diabetes. Bank voles in group B (22/67;
33%) developed diabetes due to specific lysis of pancreatic
islet beta cells. Compared to nondiabetic group B bank
voles, diabetic animals had increased levels of GAD65
(P < .0001), IA-2 (P < .0001), and insulin (P = .03) au-
toantibodies. Affected islets stained positive for Ljungan
virus, a novel picorna virus isolated from bank voles.
Ljungan virus inoculation of nondiabetic wild bank voles
induced beta-cell lysis. Compared to group A bank voles,
Ljungan virus antibodies were increased in both nondia-
betic (P < .0001) and diabetic (P = .0015) group B bank
voles. Levels of Ljungan virus antibodies were also in-
creased in young age at onset of newly diagnosed type
1 diabetes in children (P < .01). These findings support
the hypothesis that the development of type 1 diabetes
in captured wild bank voles is associated with Ljungan
virus. It is speculated that bank voles may have a pos-
sible zoonotic role as a reservoir and vector for virus
that may contribute to the incidence of type 1 diabetes in
humans.
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Type 1 (insulin-dependent) diabetes appears after specific
destruction of the pancreatic islet beta cells. The degree of
beta-cell loss varies with age and is more severe in young
children than adults. The disease is strongly associated with
beta-cell autoimmunity (for recent reviews see [1, 2]). Au-
toantibodies against glutamic acid decarboxylase (GAD65),
tyrosine phosphatase–like protein IA-2, or insulin, detected
in standardized antibody tests [3], predict type 1 diabetes [4].
Monozygotic twins show only 20% to 30% concordance of
type 1 diabetes, indicating a significant contribution of envi-
ronmental factors [5]. This is further supported by the fact that
more than 85% of new-onset patients do not have a first-degree
relative with the disease [6]. Seasonal variation in incidence
rate, together with serological studies, have suggested viral
infections as a major environmental risk factor for type 1 di-
abetes [7]. Congenital rubella [8], as well as infections by
enterovirus, in particular during pregnancy [9, 10], are also
implicated in type 1 diabetes [11]. Rota virus seroconversion
was reported to be associated with increases in autoantibod-
ies to GAD65, IA-2, and insulin, suggesting that infection
with this virus may trigger or exacerbate islet autoimmunity
in genetically susceptible subjects [12]. However, it is still
highly controversial how virus may induce beta-cell destruc-
tion. Different hypotheses include direct cytolytic infections
resulting in an autoimmune response to released antigen, by-
stander activation of self-reactive T cells, alterations in target-
cell defenses, or molecular mimicry [11, 13, 14]. In the latter
hypothesis, the host is infected by a virus that has antigens,
which are immunologically similar to the host but different
enough to induce a T-cell response.

The lack of animals developing diabetes following lytic
infections of beta cells have made it difficult to study these
phenomena of potential importance to the etiology of human
type 1 diabetes. Type 1 diabetes is known to occur in ani-
mals outside research laboratories, but to our knowledge a
zoonotic relationship has not been reported. There are numer-
ous zoonoses causing human illness, and bank voles all over
the world are well-known reservoirs and vectors for Puumala,
leptospirosis, cow pox, andBorrelia burgdorferi, which all
infect humans [15]. Puumala virus causes nephropathia epi-
demica [16, 17] and the incidence rate of this disease correlates
with the bank vole population density during the previous year
[18]. Similar statistical evidence suggests that type 1 diabetes
in humans also tracks the 3- to 4-year population density cy-
cles of the bank vole [19]. More recently, wild bank voles

taken to the laboratory for studies of “stereotypic” behavior
[20] were found to develop polydipsia and glucosuria [21].
In the present study, we provide evidence that bank voles de-
velop type 1 diabetes associated with lytic destruction of their
beta cells and increased levels of GAD65, IA-2, and insulin
autoantibodies. We also tested the hypothesis that the bank
vole diabetes may be induced by Ljungan virus, a newly iden-
tified picornavirus [22]. Ljungan virus was isolated from bank
voles and shares molecular features with human parechovirus,
a known human pathogen [23]. Molecular analyses of sev-
eral isolates of Ljungan virus suggests that the strains consti-
tute a monophyletic group clearly related to parechovirus of
Picornaviridae[23, 24].

MATERIALS AND METHODS

Bank Voles
Wild bank voles were trapped from May to November in

a forest habitat on the island of Zealand, Denmark. Group
A bank voles represents 101 animals from a single trapping
session. These bank voles were tested within 24 hours af-
ter trapping for glucosuria and then euthanized. Heart-blood
samples for blood glucose, ketosis, lipids, and antibody anal-
yses were taken immediately after the voles were euthanized.
Blood samples were either immediately analyzed for blood
glucose and ketones or centrifuged for 25 minutes at 1000×g
and plasma stored at−30◦C.

In the same trapping session, 67 voles were caught and
kept in the laboratory as previously described [20, 21]. Briefly,
the animals were housed individually in standard laboratory
mouse cages under a minimum of extraneous disturbance and
with a 12-hour light regime (8.00 to 20.00). The cages were
supplied with a woodcutting bed, and food (standard rodent
chow) and water was available ad libitum. Diabetes devel-
opment was determined after a month by measurements of
glucosuria, and blood glucose and ketonemia.

Pancreas Histology and Immunocytochemistry
Standard hematoxylin and eosin staining was carried out

on pancreas fixed in 4% paraformaldehyde and embedded in
paraffin. Immunocytochemistry was performed as described
previously with minor modifications [25]. Briefly, the bind-
ing of guinea pig insulin antibodies (diluted 1:100), rab-
bit glucagon antibodies (Zymed, San Francisco, CA; diluted
1:100), or mouse Ljungan virus antisera (diluted 1:500 or
more) to bank vole pancreas tissue was revealed by successive
incubations with biotinylated anti–immunoglobulin G (IgG),
either alkaline phosphatase streptavidin ABC reagent (Vec-
tor Laboratories, Burlingame, CA), or Vectastain peroxidase
streptavidin ABC reagent (Vector Laboratories), and either
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Vector NBT/BCIP substrate (insulin), Vector DAB substrate
(glucagon), or Vector Red substrate (Ljungan virus). High-
titer mouse antisera [22] against 2 distinct Ljungan virus iso-
lates, 87-012 and 145SL [23], were used. As control sera we
used similarly produced antisera against members of other
virus families, such as Bunyavirus (Rift Valley fever), To-
gavirus (Ockelbo/Sindbis), and Flavivirus (Langat), as well
as normal mouse serum. Finally, slides were counter stained
with methyl green, dehydrated, and mounted. All slides were
coded and scored independently by two readers.

Islet Cell Autoantibodies
Standardized [3, 26] radioligand-binding assays for au-

toantibodies against GAD65 [27, 28], IA-2 [29], and insulin
[30] autoantibodies were used to analyze serum samples from
both bank voles and humans. The World Health Organization
(WHO) standard 97/550 was used to express levels of GAD65
and IA-2 autoantibodies in common units [3].

Ljungan Virus Antibodies
Sera from children with type 1 diabetes and controls were

tested for presence of antibodies to Ljungan virus using an
indirect immunofluorescence test using spot slides prepared
by incubating virus in Green monkey kidney cells for 8 to 10
days. At signs of discrete cytopathic effects, cells were applied
onto microscope slides, air dried, fixed in cold (4◦C) acetone
and stored at−70◦C until used. The titer was determined
after incubating the serum at several dilutions on the slides
and bound antibodies detected with fluorescein isothiocyanate
(FITC)-conjugated goat anti-human IgG (Sigma, St Louis,
MO). Patient and control sera was first tested at a 1:8 dilution
using 3 Ljungan virus isolates (87-012, 145SL, 174F). Any
sera scoring positive for any of the 3 isolates were titrated
again using all 3 isolates separately. Patient and control sera
were scored either as negative (neg) or positive provided that
one or several isolates at a titer of 32 (+) or higher (++) were
considered positive.

A radioligand-binding assay similar to our GAD65 and IA-
2 autoantibody assays [27] was developed with35S-labeled
virus antigens generated by coupled in vitro transcription and
translation of Ljungan virus cDNA [21].

Type 1 Diabetes Patients and Controls
Two groups of new onset diabetic children were studied.

The first group represented a total of 53 children with a median
age of 10.1 years (range 2.3 to 16.4 years of age) and were
diagnosed with type 1 diabetes at the St Göran Hospital and
Astid Lindgren’s Children’s Hospital, Stockholm, Sweden,
between 1992 and 1995. Within 2 days of diagnosis, blood

samples were drawn for antibody analyses. Healthy children
(7 boys, median age 12.6 [7.8 to 16.8 years] and 10 girls, me-
dian age 13.5 [6.7 to 16.6 years]) were recruited from school
classes in central Stockholm. All children were previously
healthy and without present medication. The second group of
children represented 289 children with newly diagnosed type
1 diabetes in 1995 to 2000. A separate group of 37 young adult
healthy controls were also examined together with this large
group of new onset diabetic children.

The Ethics Committee at the Karolinska Institute,
Stockholm, Sweden, approved the study.

Statistical Analysis
Mann-Whitney test was used for differences in levels.

Spearman rank correlation was used to test relationships be-
tween antibody levels.

RESULTS

Bank Vole Diabetes
The 2 groups of bank voles were analyzed for diabetes,

pancreas histology, and autoantibodies against GAD65, IA-2,
and insulin as well as antibodies against Ljungan virus. Group
A (n = 101) bank voles were euthanized within 24 hours
after capture. The average blood glucose in the wild-caught
GROUP A bank voles was 101±28 mg/dL (mean±SD). Four
female animals had high blood glucose values of 215, 302,
313, and 343 mg/dL, respectively. These high values remain
unexplained because the pancreas histology was normal and
there was no glucosuria (data not shown). The results suggest
that overt diabetes may not be common or easily detected in
the wild.

Group B (n= 67) bank voles were taken to the laboratory
after capture and kept in mouse cages for 1 month. We ob-
served that 22/67 (33%) of the group B bank voles had blood
glucose above 200 mg/dL, range 211 to 540 mg/dL (Table 1).
As many as 18/22 (82%) had ketones, polydipsia, or both.
Type 1 diabetes was therefore a likely classification because
the bank voles were not only hyperglycemic but also posi-
tive for glucosuria, ketonuria, ketonemia, and hyperlipidemia
(data not shown). The pancreas histology was examined in all
the bank voles to test if a type 1 diabetes classification would
be supported by a loss of beta cells and perhaps by insulitis.

Pancreatic Islet Histology and
Immunocytochemistry in Diabetic Bank Voles

The pancreas of the 101 group A bank voles showed nor-
mal islets, as did those of nondiabetic group B bank voles
(Figure 1a, b). Immunostaining with insulin and glucagon
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TABLE 1
The frequency of diabetes in wild-caught and in captive

bank voles

Group of bank voles

A. Analyzed B. Trapped
at trapping and captive

n 101 67
M/F ratio 42/59 29/38
Body weight (g) 19± 5 24± 4
Blood glucose (mg/dL)

Nondiabetic 101± 28 86± 24
Diabetic None 346± 88

Diabetes, n (%) 0/101 (0%) 22 (33%)
M/F ratio N/A 14/8

Note.Mean values± SD are shown. N/A, not applicable.

antibodies showed a normal islet cell distribution, with beta
cells located in the center surrounded by a mantel of glucagon
immunoreactive cells (Figure 1e, f ). In dramatic contrast,
all 22 group B bank voles with diabetes had a major loss
of insulin-positive cells, which were replaced by prominent
vacuolization (Figure 1g, h). Few bank voles had islets with
infiltrating mononuclear cells (Figure 2). Mononuclear cell
infiltration was not observed in any of the 101 group A or

FIGURE 1
Histology of the pancreas in bank voles without diabetes (a, b, e, f ) and with diabetes (c, d, g, h). Hematoxylin and eosin staining
are shown ina–d, while immunostaining for insulin (blue) and glucagon (brown) are shown ine–h. The pancreatic islets in the
diabetic bank vole show complete lysis without insulitis. Glucagon cells are found in the periphery of the islets but tend to be

redistributed in the pancreatic islets, which show vacuolization after the loss of beta cells. Scale bars:a, c, e, andg, 200µm; b, d,
f, andh, 50µm.

FIGURE 2
Histology of the pancreas of a diabetic bank vole

demonstrating both lysis of islet cells and some infiltration
of mononuclear cells. Hematoxylin and eosin staining. The

scale bar is 100µm.

the 45 group B normoglycemic bank voles. Because beta-cell
destruction was observed in all diabetic but not in normo-
glycemic bank voles, we conclude that the bank voles diabetes
was consistent with type 1 diabetes.

In order to evaluate whether Ljungan virus was associ-
ated with the islet beta-cell lesion, we next immunostained
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FIGURE 3
Histology of the pancreas in a nondiabetic wild bank vole
(a), nondiabetic bank voles injected with 1000 TCID50

Ljungan virus of the 145SL isolate and then euthanized for
histology after 6 weeks (b, c), and from a diabetic bank vole

(d). The sections were immunostained with the mouse
145SL antiserum against Ljungan virus. Although the

nondiabetic bank vole is negative for Ljungan virus antibody
staining, both the virus-inoculated nondiabetic (b, c) and the
diabetic (d) bank voles show positive staining at the site of
islet lesions. Note the difference in the extent of lysis in the
virus inoculated nondiabetic (b, c) compared to the diabetic

bank vole (d). The binding of the mouse Ljungan virus
antiserum was revealed with Vector Red staining. The scale

bar is 100µm.

the pancreas sections with high titer mouse antisera against
the Ljungan virus isolates, 87-012 and 145SL (Figure 3). The
control sera were all negative. Both the 87-012 and the 145SL
Ljungan virus antisera at dilutions of 1:4000 or higher im-
munostained islets in diabetic (Figure 3d) but not in nondi-
abetic bank voles (Figure 3a), suggesting that Ljungan virus
antigen may be present in affected islets. None of the con-
trol sera against Bunyavirus (Rift Valley fever), Togavirus
(Ockelbo/Sindbis), and Flavivirus (Langat) in addition to nor-
mal mouse serum showed immunostaining at dilutions of
1:500 or higher. We therefore next tested whether the 145SL

Ljungan virus would induce beta-cell lesions when injected
into wild bank voles. As virus-free, laboratory bank voles were
not available, this experiment had to be carried out in group B
bank voles kept in the laboratory without developing diabetes.

Ljungan Virus Inoculation in Nondiabetic
Bank Voles

A total of 15 nondiabetic wild bank voles, which failed
to developed diabetes in Copenhagen, were transferred to
Stockholm and inoculated with saline (n= 5) or the 145SL
isolate of the Ljungan virus (n= 10). All animals were nor-
moglycemic when they were euthanized after 6 weeks. The
histology of the pancreas was normal in the saline-injected
bank voles but there were different degrees of lytic lesions
in the islets of the virus-inoculated bank voles (Figure 3b, c)
compared to the pancreas of a diabetic bank vole (Figure 3d).
The staining pattern with the Ljungan virus mouse antiserum
suggests that the beta cell–specific destruction was associated
with virus antigen staining. The inoculation with the 145SL
Ljungan virus was therefore associated with lytic effects on
beta cells. The absence of diabetes may be explained by sev-
eral factors, such as a short time of follow-up, immunopro-
tection by neutralizing virus antibodies due to prior Ljungan
virus exposure in the wild, or poor virulence of the 145SL iso-
late. Clearly these experiments are suggestive and will need
to be repeated once a virus-free bank vole colony has been
established.

GAD65, IA-2, and Insulin Autoantibodies
in Diabetic Bank Voles

The beta-cell destruction was of lytic character (Figures 1
and 3) and surprisingly free from mononuclear cell infiltra-
tion (Figure 2). The absence of prominent insulitis supports
the view that Ljungan virus is inducing beta-cell lysis that
may cause release and presentation of sequestered antigen
most likely in lymph nodes draining the pancreas. We there-
fore examined the possibility that the development of bank
vole diabetes was associated with GAD65, IA-2, or insulin
autoantibodies.

Group A and group B bank voles were examined for all
3 islet cell autoantibodies (Figure 4). Levels of autoanti-
bodies were examined because an upper level of normal or
cut-off could not be established in the absence of virus free
wild bank voles. We observed that diabetic group B bank
voles had higher GAD65 (P < .0001) (Figure 4a), IA-2
(P < .0001) (Figure 4b), and insulin (P < .03) (Figure 4c)
autoantibody levels than the nondiabetic group B bank voles.
Nondiabetic group B bank voles also had increased GAD65
(P < .0001) (Figure 4a) and IA-2 (P < .0001) autoantibody
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FIGURE 4
Bank voles have autoantibodies against islet cell autoantigens and against Ljungan virus in vitro translated antigens. It is

indicated whether the bank voles had diabetes (+) or not (−). Autoantibodies to GAD65 (a), IA-2 (b), insulin (c), as well as
Ljungan virus in vitro translated antigens (d) are shown as in-house relative units on a log scale. Data for individual bank voles

are shown along with the median value andP values between groups.
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levels compared to the group A bank voles, suggesting that
bank voles may have been exposed to Ljungan virus without
progressing to diabetes, similar to the inoculation experiment
described above. The increased levels of GAD65, IA-2, and
insulin autoantibodies support the conclusion that diabetes in
the group B bank voles should be classified as type 1 diabetes.

Ljungan Virus Antibodies in Diabetic Bank
Voles

Because Ljungan virus antigen was demonstrated in the
islets of diabetic bank voles (Figure 3d), we next analyzed
whether antibodies to Ljungan virus antigens were associ-
ated with bank vole diabetes. First, the group A bank vole
sera showed a wide range of antibody levels against Ljungan
virus antigen (Figure 4d), suggesting that some animals had
been exposed to the virus in the wild. Note that they-axis
of Ljungan virus antigen antibodies shows log values. Sec-
ond, in the group B bank voles, the levels of Ljungan virus
antibodies were higher in diabetic than nondiabetic animals
(P = .0015).

Because the diabetic group B bank voles also showed in-
creased levels of GAD65, IA-2, and insulin autoantibodies,
we next tested if any of the 3 autoantibodies were related to
Ljungan virus antibody levels. First, in the diabetic group B

FIGURE 5
Children with new onset type 1 diabetes have Ljungan virus antibodies. A total of 53 type 1 diabetes children (•) and 17 controls
(◦) were tested. Ljungan virus antibodies were determined by either indirect immunofluoresence of cells used to propagate the

virus or by the radioligand binding assay with Ljungan virus in vitro translated antigens. Sera from children with type 1 diabetes
and controls were tested for presence of antibodies to Ljungan virus using an indirect immunofluorescence test using spot slides

prepared by incubating virus in Green monkey kidney cells.

voles, Ljungan virus antibodies correlated to GAD65 autoanti-
bodies (rs = .4726,P < .03; n= 22), whereas the correlation
to IA-2 autoantibodies was suggestive (P = .052). Second,
in the nondiabetic group B bank voles, Ljungan virus antibod-
ies correlated to autoantibodies against GAD65 (rs = .3566,
P = .02; n= 43), IA-2 (rs = .4171,P = .005; n= 43), as
well as to insulin (rs = .4389, P = .004; n= 42). In bank
voles, it is therefore possible that a Ljungan virus attack on the
beta cells is related to an immune response to GAD65, IA-2,
or insulin whether or not the bank vole has overt diabetes.

Ljungan Virus Antibodies in Human
Type 1 Diabetes

Similar to other viruses carried by bank voles [15, 16, 31],
the Ljungan virus might also infect humans and we therefore
tested whether type 1 diabetics and their controls may have
Ljungan virus antibodies as detected by indirect immunoflu-
orescence or in a radiobinding assay.

The indirect immunofluorescence virus antibody test was
compared to the radioligand-binding assay for Ljungan virus
antigen antibodies (Figure 5). There was a significant corre-
lation (Spearman rank sum correlation) between the 2 assays
(P < .0001, n= 70). Compared to the 17 healthy control
children, the 53 children with new onset type 1 diabetes had
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an increased frequency of Ljungan virus antibodies scored in
the immunofluorescence assay (P < .009) (Figure 5).

A subsequent analysis of 289 newly diagnosed type 1 di-
abetes children and 37 healthy controls showed that that the
levels of Ljungan virus antibodies increased with decreasing
age at diagnosis Spearman (r = −.151,P < .01). These data
suggest that children with newly diagnosed type 1 diabetes
may have been exposed to Ljungan virus.

DISCUSSION
Diabetes in bank voles was first indicated during a study

of stereotypic behavior in bank voles [20, 21]. In the present
study, we found that one third of the wild bank voles trapped
alive and brought to the laboratory developed clinical dia-
betes with hyperglycemia, ketonemia, ketonuria, hyperlipi-
demia, and weight loss, all criteria that are consistent with a
clinical classification of type 1 diabetes [32]. The classifica-
tion was supported by the observation that the diabetic voles
had increased levels of GAD65, IA-2, and insulin autoanti-
bodies detected with the same internationally standardized
methods that are used to predict type 1 diabetes in humans
[1, 4]. Furthermore, the bank vole diabetes was linked with
specific beta-cell destruction and presence of Ljungan virus
antigen in affected islets. In addition, the diabetic bank voles
had increased levels of antibodies to Ljungan virus antigens
compared to the nondiabetic bank voles. We conclude there-
fore that bank voles caught in the wild and kept in standard
mouse cages with food for laboratory mice may spontaneously
develop diabetes in association with Ljungan virus infection,
which fulfills current criteria for autoimmune type 1 diabetes.
The Ljungan virus, a newly identified picorna-like virus [22]
may therefore be the etiological factor causing type 1 diabetes
in the bank vole. This is a novel finding that may be of consid-
erable significance because it is the first time a wild rodent is
shown to develop type 1 diabetes in association with beta-cell
lysis without insulitis, but with all 3 autoantibodies associated
with human type 1 diabetes.

In the present study, we showed that infecting nondiabetic
wild bank voles could induce beta-cell lesions. As pointed
out, we cannot exclude that the inoculation of the 145SL
Ljungan virus isolate accelerated beta-cell destruction by a
virus already present in the wild bank vole. Attempts are in
progress to breed and generate specific pathogen–free bank
voles to expose them to currently available Ljungan virus
isolates [23]. Inoculation of various strains of mice is also
of interest but may prove futile because our experience so
far failed to induce diabetes when raising mouse antibodies
against the current Ljungan virus isolates (Niklasson, unpub-
lished observations).

The histology of the islets in the diabetic voles suggests
that the beta cells were destroyed and replaced by vacuoles
or possibly fatty infiltration. The less common occurrence of
mononuclear cell infiltrated islets differs from what is reported
in, e.g., Coxsackie virus–infected mice [33, 34]. The lack of
widespread insulitis, however, did not preclude the animals
from developing autoantibodies against GAD65, IA-2, and
insulin, which suggests that an autoimmune response to these
autoantigens is not dependent on insulitis. The location of
antigen presentation is much debated, but data in the BDC2.5
T-cell receptor transgenic nonobese diabetic (NOD) mouse
suggest that beta-cell antigens are specifically transported to
pancreatic lymph nodes, where they trigger reactive T cells
that invade the islets [35]. This suggestion was supported by
studies of Coxsackie B4 virus–induced diabetes in laboratory
mice, which demonstrated that the primary role of virus is
to damage the beta cells to cause release and presentation of
sequestered islet antigen [14]. In humans, it is not surpris-
ing that the initial lesion is difficult to study because most
of the beta-cell destruction has already taken place once type
1 diabetes is diagnosed. The long prodrome is reflected by
the fact that islet cell autoantibodies may be detected years
before diagnosis [1, 4]. Nevertheless, several reports of dia-
betes occurring close to Coxsackie [36, 37] or echo 9 [38]
virus infections have been reported, which suggest that in
some patients infection may still lead to a beta-cell destruc-
tion and diabetes. Although further studies will be required,
our data would support the hypothesis that beta-cell destruc-
tion causes release and presentation of sequestered beta-cell
antigens [14]. Furthermore, a complete depletion of antigen
may preclude a subsequent infiltration of antigen-presenting
cells and T lymphocytes of the type that is seen in inbred,
spontaneously diabetic NOD mice (reviewed by [2]). These
and other questions will be possible to answer once a virus-
free colony of bank voles has been established. Such animals
will also permit an analysis of cut-off levels of autoantibodies,
which could not be accomplished in the present study of wild
bank voles.

Our result that the Ljungan virus antibodies in the diabetic
bank voles correlated with GAD65 antibody was not surpris-
ing because high-titer animal antisera against coxsackie virus
also react with GAD65 [39]. It is important to point out that the
virus antigen prepared by in vitro transcription translation ful-
fill all the criteria to detect conformation-dependent autoanti-
bodies [4], but may not detect linear epitopes of virus-specific
antigens. Additional tests may be necessary to establish the
diagnostic sensitivity and specificity for Ljungan virus immu-
nity. In addition, it cannot be excluded that antibody-binding
sites that are common to Ljungan and other Parechoviruses
are detected in the present system. Our radioligand-binding
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antibody assay may therefore be able to discriminate immune
from nonimmune sera on a population basis, but perhaps not
on an individual basis. The antibody results in the bank voles
are, however, consistent with the hypothesis that the Ljungan
virus is the etiologic agent responsible for beta cell destruction
in the bank voles. The human serological data are also very
intriguing, but additional studies using a variety of serologi-
cal tests as well as polymerase chain reaction (PCR) detection
of virus will be needed to establish a relationship between
Ljungan virus infection and human type 1 diabetes. Although
the mechanism of such a process remains unclear, our ini-
tial studies of diabetic bank voles suggest that stress might
be involved in diabetes development [20, 21]. Stress has also
been implicated in human type 1 diabetes because negative
life events increase the risk for childhood type 1 diabetes [40–
42]. Similar relationships could be relevant to our bank voles
and therefore aid in understanding of zoonotic infections from
bank voles.

Taken together, we have demonstrated the following. First,
bank voles develop diabetes that fulfills the criteria for type
1 diabetes: diabetic animals showed persistent hyperglycemia
associated with weight loss, ketosis, and hyperlipidemia and
specific beta-cell destruction. Second, diabetic voles had in-
creased levels of autoantibodies to GAD65, IA-2, and in-
sulin, and these autoantibodies correlated with Ljungan virus
antigen antibodies. Third, the association between Ljungan
virus and bank vole diabetes was supported by the presence
of Ljungan virus antigen detected by immunocytochemistry
in the islets of diabetic bank voles. Finally, increased lev-
els of Ljungan virus antibodies in newly diagnosed type 1
diabetes children indicate a possible zoonotic relationship be-
tween Ljungan virus infection and human type 1 diabetes.

REFERENCES
[1] Atkinson, M. A., and Eisenbarth, G. S. (2001) Type 1 dia-

betes: New perspectives on disease pathogenesis and treatment.
Lancet,358,221–229.

[2] Mathis, D., Vence, L., and Benoist, C. (2001) Beta-cell death
during progression to diabetes.Nature,414,792–798.

[3] Mire-Sluis, A. R., Das, R. G., and Lernmark,Å. (2000) The
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