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Des(1–3)IGF-1 Treatment Normalizes Type 1 IGF Receptor
and Phospho-Akt (Thr 308) Immunoreactivity
in Predegenerative Retina of Diabetic Rats

A. Kummer,1 B. E. Pulford,2 D. N. Ishii,2 and G. M. Seigel1
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Little is known about interventions that may prevent
predegenerative changes in the diabetic retina. This study
tested the hypothesis that immediate, systemic treatment
with an insulin-like growth factor (IGF)-1 analog can pre-
vent abnormal accumulations of type 1 IGF receptor, and
phospho-Akt (Thr 308) immunoreactivity in predegener-
ative retinas of streptozotocin (STZ) diabetic rats. Type 1
IGF receptor immunoreactivity increased approximately
3-fold in both inner nuclear layer (INL) and ganglion
cell layer (GCL) in retinas from STZ rats versus nondia-
betic controls. Phospho-Akt (Thr 308) immunoreactivity
increased 5-fold in GCL and 8-fold in INL of STZ rat reti-
nas. In all cases, immunoreactive cells were significantly
reduced in STZ des(1–3)IGF-1–treated versus STZ rats.
Preliminary results suggested that vascular endothelial
growth factor (VEGF) levels may also be reduced. Hy-
perglycemia/failure of weight gain in diabetic rats con-
tinued despite systemic des(1–3)IGF-1. These data show
that an IGF-1 analog can prevent early retinal biochemi-
cal abnormalities implicated in the progression of diabetic
retinopathy, despite ongoing hyperglycemia.
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The pathogenesis of diabetic retinopathy is a complex proc-
ess involving ischemic/hyperglycemic and growth factor reti-
nal insults that can result in neovascularization and vision loss.
The incidence of diabetic retinopathy can be reduced some-
what when blood glucose is well-controlled [1]. Although
early glucose control may be important in delaying the on-
set of diabetic retinopathy, glucose control alone, unfortu-
nately, cannot halt the eventual progression of retinopathy [2].
There is a pressing need for novel interventions to supplement
glycemic control.

Insulin-like growth factor-1 (IGF-1) is among several fac-
tors that have been suggested to regulate predegenerative ab-
normalities, including early elevation of vascular endothelial
growth factor (VEGF) levels in the retina [3, 4]. VEGF has
been identified as a causative factor in retinal neovasculariza-
tion as well as vascular permeability [5, 6] associated with
proliferative diabetic retinopathy. There is controversy as to
whether serum or vitreous IGF-1 levels correlate with the
progression of retinal neovascularization in clinical diabetes.
Some studies report no correlation [7], whereas others report
correlations with either elevated or decreased levels of IGF-1
in the vitreous or serum of diabetic patients with retinopa-
thy [8–10]. Disparities in these reports may be due to the
methods and biological samples used for analysis (mRNA
versus protein, vitreous versus serum), but also to differences
in the extent of blood-retinal barrier (BRB) breakdown at the
time of sample collection. Recent studies point to increased
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permeability of serum IGF-1 in proliferative retinopathy as the
main source of vitreous IGF-1. In the only study conducted
to date in which both VEGF and IGF-1 were measured in
the vitreous of patients with proliferative diabetic retinopa-
thy, VEGF levels were elevated, whereas free IGF-1 levels
were reduced when corrected for protein infiltration [9]. This
study suggests that IGF-1 is not correlated with proliferative
retinopathy and its role in retina needs to be clarified.

Circulating IGF-1 levels are reduced in diabetic patients
[11] and rodents. There are early alterations in visual function
in the absence of retinopathy in diabetic patients [10], and reti-
nal neuron loss in clinical and experimental diabetes [13, 14].
Recent studies show that early administration of replacement
doses of IGF-1 can prevent certain diabetic complications,
such as neuropathy in diabetic rats [15–17]. IGF-1 or its ana-
logues can inhibit neuroretinal cell death caused by hypoxia
in culture [18], and IGF-1 supports neurite outgrowth and
survival in amacrine neurons [19]. Moreover, administration
of low replacement doses of IGF-1 (20 to 40µg/kg/day) for
24 weeks did not cause progression of retinopathy in a phase
II trial of 53 type 1 diabetic patients [20]. These data show
that IGF-1 administration is relatively safe, and early IGF-1
treatment might prevent diabetic complications in the eyes as
well as nerves. It is not known whether IGF-1 sequestration
to IGF-binding proteins (IGFBPs) is necessary for effective
treatment. Des(1–3)IGF-1 is an IGF-1 analogue lacking the
N-terminal tripeptide, which has greatly reduced affinity for
IGFBPs.

Additional studies are needed to determine the early bio-
chemical pathology in the diabetic eye. To this end, acute
biochemical changes were investigated in the streptozotocin
(STZ) rat. The purpose of this study was to test the hypothe-
ses that administration of des(1–3)IGF-1 at the time of onset
of diabetes can (i) normalize the type 1 IGF receptor levels
in retina, (ii) inhibit the phospho-Akt (Thr 308) retinal stress
response, and (iii) prevent these predegenerative biochemical
abnormalities independently of poor glycemic control. In or-
der to test whether des(1–3)IGF-1 could prevent the onset of
acute biochemical abnormalities, treatment with this IGF-1
analogue was initiated at the time of induction of diabetes.
By using des(1–3)IGF-1, this study additionally tests the hy-
pothesis that IGF-1 sequestration to IGFBP is not essential
for preventing at least certain diabetic complications.

METHODS

Materials
STZ and Glucose Diagnostic Kit 510A were purchased

from Sigma Chemical (St. Louis, MO). Des(1–3)IGF-1 was
from GroPep (Adelaide, Australia). Primary rabbit polyclonal

antibody against Phospho-Akt (Thr 308) (Cell Signaling Tech-
nologies, Beverly, MA) as well as mouse monoclonal anti-
bodies against type 1 IGF receptor (Calbiochem, San Diego,
CA) and VEGF (Calbiochem) were obtained. Alzet osmotic
minipumps (0.5µL/h; 2-week duration) were from Durect
(Cupertino, CA).

Animals
Animal experiments were performed in accordance with

National Institutes of Health (NIH) guidelines (DHEW
publication NIH80-23). Sprague-Dawley (Harlan Sprague-
Dawley, Indianapolis, IN) male rats were maintained on 20 g
per day of rat chow until the study, and chow and water were
provided ad libitum thereafter. Rats (12 weeks old) were ran-
domly assigned to treatment groups (5 rats per group). All
solutions to be administered to rats were sterilized by passage
through 0.2-µm Acrodisk filters (Pall Corp., Ann Arbor, MI).
Diabetes was induced by intraperitoneal [IP] administration
of 50 mg/kg STZ, whereas nondiabetic rats were administered
solvent (10 mM sodium citrate in 0.9% NaCl, pH 4.5). The
treatment groups were as follows: ND, non-diabetic; STZ-veh,
diabetic with subcutaneous osmotic minipumps releasing ve-
hicle (1 mM acetate, pH 6) for 2 weeks; or STZ-des, diabetic
rats with pumps releasing des(1–3)IGF-1 (5µg/rat/day) for
2 weeks. Two weeks later, the animals were euthanized, and
the eyes were placed in 4% paraformaldehyde in phosphate-
buffered saline (PBS). The fixed eyes were embedded in paraf-
fin and cut into 4-µm-thin sections. Tail blood was withdrawn
for glucose assays 1 day after STZ or vehicle treatment as well
as at 2 weeks.

Immunohistochemistry
Paraffin-embedded retinal tissue sections were rehydrated

through xylene and a series of graded alcohol concentrations.
Tissue sections were incubated in 0.25% Triton X-100 for
5 minutes. After a rinse in PBS, sections were incubated for
1 hour with primary antibody. After rinsing 3× 5 minutes
in PBS, sections were incubated with a 1:1500 dilution of
biotinylated goat anti-rabbit or anti-mouse immunoglobulin
(Vector Laboratories, Burlingame, CA) for 60 minutes. Tis-
sue sections were incubated for 20 minutes with horseradish
peroxidase–conjugated avidin (Elite kit, Vector Laboratories).
The sections were rinsed in 0.05 M Tris and antigens were
detected with a diaminobenzidine (DAB) kit (Pierce); the
brown/black reaction product was visualized by light mi-
croscopy. Negative controls consisted of incubation with 5%
goat serum without primary antibody, and did not generate
any detectable reaction product. After staining, immunore-
active cells in the ganglion cell layer (GCL) and the inner
nuclear layer (INL) were counted in 3 random 500-µm-long
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segments of the 4-µm-thick retinal cross-sections taken from
each eye of the rat. There were approximately 100 cells along
the length of each 500-µm segment. Sample labels were not
visible to observers at the time of cell counting.

Statistical Analysis
Results are expressed as means± SD for numbers of im-

munoreactive cells per 500-µm segment for each treatment
group. Cell counts were analyzed with Fisher’s post hoc least
significant differences test. Differences between group means
were accepted as significant atP < .05.

RESULTS
A 2-week duration of STZ diabetes was selected for this

study to examine early pathological changes that may pre-
cede degenerative events. An immunohistological approach
was chosen in order to identify the specific retinal cell layers
affected.

Des(1–3)IGF-1 Treatment Did Not Prevent
Hyperglycemia Nor Weight Loss
in Diabetic Rats

Excessively high levels of IGF-1 or IGF analogues may
cross-occupy the insulin receptor and ameliorate weight loss
and hyperglycemia. The low dose of des(1–3)IGF-1 used in
this experiment was not expected to alter these parameters;
nevertheless, measurements were taken and the results are
shown in Figure 1.

As seen in Figure 1 (top panel), significant differences
in weight loss were not observed in des(1–3)IGF-1 versus
vehicle-treated diabetic groups. Nondiabetic rats gained ap-
proximately 51 g, whereas diabetic rats weighed significantly
less. No difference in weight was observed between STZ-veh
and STZ-des groups. At termination of the experiment, serum
glucose concentrations were measured as well (Figure 1,bot-
tom panel). The diabetic rats were clearly hyperglycemic.
Des(1–3)IGF-1 treatment did not reduce hyperglycemia in
diabetic rats.

Effect of Des(1–3)IGF-1 Treatment on Type 1
IGF Receptor Immunoreactivity

There was a low level of IGF-1 receptor immunoreactivity
in the GCL, INL, and BRB in the nondiabetic retina (Figure
2A). Immunoreactivity in all of these areas appeared to be
increased in retinas from STZ-veh rats (Figure 2B). On the
other hand, such immunoreactivity appeared to be reduced in
STZ-des versus STZ-veh retinas, and was similar to that of
the nondiabetic group (Figure 2C).

To determine whether these differences were significant,
type 1 IGF receptor–immunoreactive cells were counted in
the GCL and INL in retinas from all rats. Type 1 IGF re-
ceptor immunoreactivity was significantly increased (P <

.0001) in both the GCL (Figure 3A) and INL (Figure 3B) in
STZ-veh versus the nondiabetic group. With des(1–3)IGF-
1 treatment, type 1 IGF receptor immunoreactivity returned
nearly to control levels. Immunoreactivity was significantly
reduced (P < .0001) in STZ-des versus STZ-veh groups
(Figure 3A, B).

Preliminary Studies on Effect of Des(1–3)IGF-1
Treatment on VEGF Immunoreactivity

In anticipation of future studies, an initial examination of
VEGF immunoreactivity was performed to determine whether
des(1–3)IGF-1 treatment might prevent an increase in VEGF
immunoreactivity. Adjacent sections of retinal tissue from
the foregoing experiments were examined. The nondiabetic
control group showed a basal level of VEGF immunore-
activity that was mainly associated with retinal endothe-
lial cells (Figure 4A). A qualitative change was observed in
STZ-veh rats, and VEGF immunoreactivity appeared in reti-
nal pigmented epithelial cells (RPEs) (Figure 4B). This in-
crease in RPE-associated VEGF immunoreactivity was pre-
vented by treatment of diabetic rats with des(1–3)IGF-1
(Figure 4C). Occasional cells of the inner retina, however,
stained positively for VEGF in STZ-des as well as ND con-
trol tissues.

Effect of Des(1–3)IGF-1 Treatment on
Phospho-Akt (Thr 308) Immunoreactivity

There was a basal level of the apoptotic-stress response
protein phospho-Akt (Thr 308) immunoreactivity in the GCL
and INL in the nondiabetic retina (Figure 5A). Immunore-
activity in both of these areas appeared to be increased in
the retina from STZ-veh rats (Figure 5B). On the other hand,
such immunoreactivity appeared to be reduced in STZ-des
versus STZ-veh retinas, and was similar to the ND group
(Figure 5C).

To determine whether these differences were significant,
phospho-Akt (Thr 308) immunoreactive cells were counted
in the GCL and INL in retinas from all rats. Immunoreactiv-
ity was significantly increased (P < .0001) in both the GCL
(Figure 6A) and INL (Figure 6B) in STZ-veh versus nondi-
abetic groups. With des(1–3)IGF-1 treatment, phospho-Akt
(Thr 308) immunoreactivity returned nearly to control levels.
Immunoreactivity was significantly reduced (P < .0001) in
STZ-des versus STZ-veh groups (Figure 6A, B).
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FIGURE 1
Effect of des(1–3)IGF-1 administration on body weights and serum glucose levels of diabetic rats. Streptozotocin diabetic rats
(12 weeks old) were implanted with subcutaneous pumps that released either vehicle (D+ Veh) or 5µg/day des(1–3)IGF-1
(D + Des) for 2 weeks. Untreated nondiabetic rats were also studied (ND).Top panel, body weights;bottom panel, serum

glucose content. ND, 9.1± 0.7 mmol/L; D+ Veh, 32.0± 1.6 mmol/L; D+ Des, 38.5± 3.7 mmol/L. Values are means± SEM.
∗P < .05 for ND versus (D+ Veh) or D+ Des groups.
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FIGURE 3
Type 1 IGF receptor immunoreactivity was increased in STZ

rat retina, and such increase was prevented by
des(1–3)IGF-1 treatment. The mean numbers of type 1 IGF
receptor immunoreactive cells per 500-µm-length retinal
sections were calculated: (A) Ganglion cell layer (GCL)

(∗P < .0001 STZ vs. control,∗∗P < .0001 des vs. control)
and (B) inner nuclear layer (INL) (∗P < .0007 STZ vs.

control,∗∗P < .0027 des vs. STZ). The mean
immunoreactive cell count was significantly increased in
STZ-veh versus nondiabetic control retina (P < .0001).
This count was significantly reduced in STZ-des versus
STZ-veh retina (P < .0001). Error bars indicate± SD.

DISCUSSION
Type 1 IGF receptor and phospho-Akt (Thr 308) im-

munoreactivity were increased in the GCL and INL of the
rat retina 2 weeks after induction of diabetes with STZ. These
changes, seen at 2 weeks, are among the earliest biochemical
abnormalities that have been detected in the eye in diabetes,
which coincide with VEGF up-regulation and BRB break-
down [3, 4]. These predegenerative biochemical abnormalities
were prevented by the subcutaneous administration of

des(1–3)IGF-1 at time of onset of diabetes. Interestingly, treat-
ment with des(1–3)IGF-1 was effective independently of poor
metabolic control. These data suggest that treatment with
IGF-1 or its analogues may be protective if administered early
in the course of diabetes. There is evidence for synergistic
effects between IGF-1 and VEGF on retinal endothelial cell
proliferation/survival [21], and concern remains regarding the
potential neovascularizing effects of IGF-1 in the retina. The
present acute study brings new data suggesting that the role
of IGF may be more complex than previouslyappreciated.

The Pathophysiology of Diabetic Neurological
Disturbances is Mimicked by a Reduction of
IGF Activity in Nondiabetic Conditions and
IGF-1 Administration May Protect Against
Deleterious Effects of IGF Depletion in
Diabetes

Reduced axonal diameters, diminished conduction veloc-
ity, impaired nerve regeneration, and neuronal death are major
pathological features of clinical diabetic neurological distur-
bances. A reduction of IGF activity innondiabeticanimals can
mimic these effects. For example, anti-IGF antibodies impair
nerve regeneration [22, 23], and administration of anti-IGF
antibodies or IGFBPs can cause neuronal death [24]. IGF-1–
null mice have reduced axon diameters and nerve conduction
velocity [25] as well as neuron loss [26]. IGF-1 and IGF-2
mRNA levels are reduced in various tissues, including nerves,
brain, and spinal cord in diabetic rodents [16, 27, 28]. IGF-
1 gene expression is reduced in retina from diabetic patients
and rodents [29]. IGF-1 gene expression is reduced in liver,
the primary source of circulating IGF-1 [30, 31], and circulat-
ing IGF-1 levels are reduced in diabetic rats [32, 33], as well
as in type 1 and type 2 diabetic patients [34, 35]. Thus, there
is a profound loss of IGF-1 support for various tissues early
in diabetes. In the present study, immediate des(1–3)IGF-I
treatment protected against early predegenerative changes in
retina.

Des(1–3)IGF-1 Treatment is Effective Despite
Poor Metabolic Control

The earliest detection of retinal neural degeneration in STZ
diabetic rats is 4 weeks [13]. Consequently we examined for
predegenerative changes at 2 weeks after the induction of dia-
betes. Des(1–3)IGF-1 protected against predegenerative reti-
nal abnormalities independently of poor metabolic control ev-
idenced by continued hyperglycemia and failure of weight
gain. This suggests that the early predegenerative biochem-
ical changes that were observed were possibly not a conse-
quence of acute hyperglycemia per se. Alternatively, these
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FIGURE 6
Phospho-Akt (Thr 308) immunoreactivity was increased in

STZ rat retina, and such increase was prevented by
des(1–3)IGF-1 treatment. The mean numbers of type 1 IGF
receptor immunoreactive cells per 500-µm-length retinal

sections were calculated: (A) Ganglion cell layer (GCL) and
(B) inner nuclear layer (INL). The mean immunoreactive cell

count was significantly increased in STZ-veh versus
nondiabetic control retina (P < .0001). This count was
significantly reduced in STZ-des versus STZ-veh retina

(P < .0001). Error bars indicate± SD.

abnormalities were a consequence of the loss of IGF-1 activity
in diabetes. This is consistent with the observation that low
doses of IGFs prevent diabetic neuropathy in type 1 [9, 15]
diabetic rats despite hyperglycemia and weight loss, and in
type 2 [16] diabetic rats despite hyperglycemia and weight
gain. The present studies show that des(1–3)IGF-1 treatment
was effective independently of continued weight loss.

It might be considered that large pharmacologic doses of
IGF-1 can cross-occupy the insulin receptor and reduce hy-
perglycemia. This occurs at doses that exceed by severalfold

the 31-µg/rat/day IGF-1 production in liver. By contrast, the
des(1–3)IGF-1 dose used in this study (5µg/rat/day), and the
4.8µg/rat/day IGF-1 used elsewhere [9, 15], were too low to
ameliorate hyperglycemia in diabetic rats.

IGFBP May Not be Essential for Protection
Des(1–3)IGF-1 is a naturally occurring truncated form of

IGF-1 that is missing the N-terminal tripeptide important for
binding to IGFBP [36, 37]. Consequently, it is more potent
than IGF-1 in vitro [38] and in vivo [33] due to reduced se-
questration to IGFBP. It binds with 25-fold lower affinity to
IGFBP-3 [39], has markedly reduced affinity for IGFBP-1,
and 40-fold lower affinity to IGFBP-4 and -5 but retains sim-
ilar affinity for the type 1 IGF receptor [39–42]. The data in
the present study suggest that IGF-1 binding to IGFBP is not
essential for protection against early predegenerative changes
in type 1 IGF receptor and phospho-Akt (Thr 308) levels in
retina.

IGF-1 Presence in Diabetic Retina
Elevated IGF-1 levels in the retina do not seem to originate

from the retina itself, because IGF-1 mRNA levels are actually
reduced in retinas from patients with 7-year duration diabetes
as well as rats with 3- to 7-week duration STZ diabetes [29,
43]. The predominant source of the elevated vitreous IGF-
1 levels is a breakdown of the BRB because various serum
proteins are increased in the vitreous together with IGF-1,
although at least some of the IGF-1 may be of intraocular
origin [10, 44, 45].

Circulating IGF-I levels are reduced 50% in type 1 and
type 2 diabetic patients [34]. Despite this decrease, serum
IGF-1 levels remain at least 20- to 50-fold higher than vitreous
IGF-1 levels; hence, the increased permeability of retinal cap-
illaries in diabetes may contribute to the elevated total IGF-1
levels in the eye. Therefore, vitreous IGF-1 levels may ini-
tially be reduced in early stages of diabetes as a consequence
of reduced retinal IGF-1 mRNA levels in patients and rats.
With chronic diabetes, increased permeability may result in
elevated vitreous IGF-1 levels. Factors that influence the rate
at which the BRB breaks down may explain at least in part the
variability in vitreous IGF-1 levels reported in various clinical
studies [7–10].

Type 1 IGF Receptor in Diabetes
The IGF-1 receptor (IGF-1R) appears to be under complex

regulation in diabetes. In diabetes, IGF-1R mRNA levels are
reduced in rat superior cervical ganglia [46], heart [47], and
muscle [48], whereas IGF-1R protein levels are decreased in
rat hippocampus [49]. Yet, retina [50] and endothelial cells
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cultured from human retina [50] have elevated levels of IGF-
1R immunoreactivity. Consistent with this observation, the
present results show that IGF-1R immunoreactivity was sig-
nificantly increased in vivo in retina from STZ-veh versus non-
diabetic rats (Figures 4, 5), and the diabetic rat may provide a
model for studying this biochemical abnormality. Immediate
des(1–3)IGF-1 administration prevented this increase in IGF-
1R immunoreactivity in diabetic rats (Figures 4, 5); but it is
unclear whether this effect is at the transcriptional or transla-
tional level. Increased receptor immunoreactivity in the early
stages of experimental diabetes does not appear to result from
hyperglycemia because it is prevented by des(1–3)IGF-1 irre-
spective of ongoing hyperglycemia.

These results are discordant with the observation that IGF-
1R immunoreactivity is not increased in retina from 8-week
diabetic rats [43]. This difference is possibly due to 8- versus
2-week duration of STZ diabetes. Permeability of the BRB
is increased after 3-week STZ diabetes; perhaps the associ-
ated increase in vitreous IGF-1 levels [45] may lead to down-
regulation of IGF-1R immunoreactivity in chronic disease.

Putative Effect of Des(1–3)IGF-1 Treatment
on VEGF

VEGF is among the leading candidates as the primary me-
diator of proliferative retinopathy. It can induce vascular en-
dothelial cell proliferation, migration, and vasopermeability.
Inhibitors of phosphorylation mediated by the VEGF receptor
can completely block retinal neovascularization [51].

VEGF may accumulate in the retina from retinal and vas-
cular sources. VEGF accumulates in the vitreous humor of
patients with proliferative diabetic retinopathy [52]. Patients
with proliferative diabetic retinopathy have increased VEGF
mRNA content in the GCL, INL, and outer nuclear layer,
and this seems to be associated with ischemic regions of
retina [53]. VEGF immunoreactivity may occur early, prior
to evidence of retinal ischemia [54]. An increase in VEGF
mRNA is also observed in the GCL and INL in the retina
of STZ diabetic rats [32, 55]. The increase in immunoreac-
tive VEGF labeling is associated with increasing breakdown
of the BRB, and is most prominent in the nerve fiber layer
near the optic disk and in perivascular areas in diabetic rats
[56]. These are the sites of BRB breakdown and neovascu-
larization observed clinically. Early up-regulation of VEGF
in diabetic retina is also associated with antioxidative defense
mechanisms [57] and the formation of advanced glycation
end products [58]. Hypoxia/ischemia, characteristic of dia-
betic retinal tissues, is a strong inducer of VEGF and may
contribute to the activation of oxidative stress mechanisms
in the diabetic retina (for review, see [59]). Our own previ-

ous studies have shown that neuroretinal cell death under hy-
poxic conditions can be inhibited by IGF-1 and its analogues
in vitro [60].

Our VEGF immunostaining (Figure 4) showed a clustered
pattern, which unfortunately did not lend itself to quanti-
tative counts of random retinal fields. Yet, treatment with
des(1–3)IGF-1 appeared consistently to reduce RPE-
associated VEGF immunoreactivity. Consequently, these
morphological data should be viewed with caution. Our pre-
liminary results seem to indicate that the increase in VEGF
immunoreactivity in the perivascular regions of retinas of di-
abetic rats is reduced by the administration of des(1–3)IGF-1
(Figure 4). This is potentially due to reduced VEGF perme-
ability, or other causes. Further studies are underway.

Phospho-Akt (Thr 308) and the Diabetic
Stress Response

The serine/threonine protein kinase Akt (also known as
PKB and Rac) plays a critical role in regulating the balance
between survival and apoptosis in a variety of systems [61, 62].
In the context of the present study, it is also noteworthy that Akt
is proposed to be an important downstream target of phospho-
inositol (PI) 3-kinase in insulin-mediated processes. There are
high levels of PKB-β expression in insulin-responsive adipose
tissue [63], whereas PKB-β–deficient mice exhibit manifes-
tations of type II diabetes, including hyperglycemia and in-
sulin resistance [64]. Mechanical stretch of retinal pericytes,
proposed to exacerbate diabetic retinopathy, is also associ-
ated with increases in expression of both VEGF and activated
phospho-Akt [65].

Akt phosphorylation was somewhat enhanced (123%) in
STZ diabetic and galactosemic rats versus control, as mea-
sured by Western immunoblot of whole retinal cell lysates
[43]. In our study, the differences are much more striking
between control and diabetic retinal tissues, due to the speci-
ficity of our analysis of GCL and INL regions of the retina.
Our results support the Gerhardinger suggestion that increased
activation/phosphorylation of Akt may reflect a stress re-
sponse in the retina, possibly through a p38/HOG1 kinase
cascade of events [32, 50, 66]. Des(1–3)IGF-1 can cross the
blood–central nervous system barrier [67], and might also
cross the BRB. Consequently, one attractive interpretation of
these data is that des(1–3)IGF-1 may have entered the eye and
affected the phosphorylation and activation state of Akt. In our
own previous studies [68], we have shown that the ability of
insulin to rescue retinal cell cultures from cell death is medi-
ated through the PI 3-kinase/Akt pathway, by the inhibition
of caspase-3 activation. Therefore, the present observation
that increased phospho-Akt (Thr 308) immunoreactivity is an
early event in the course of STZ-induced diabetes appears to
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be important to our understanding of cell signaling and cell
death mechanisms in diabetes-associated retinal degeneration.
In fact, preliminary data from a separate, longer-term exper-
iment show that apoptotic cell death is elevated and IGF-1
administration prevents such elevation in retina from diabetic
rats (Seigel et al., unpublished data). This implies strongly
that preventing these early predegenerative changes in diabetic
retina may prevent the loss of retinal cells. The identification
of predegenerative diabetic changes offer potential targets for
future interventions, including therapy possibly with IGF-1
and its analogs.
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