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SI Text

Datasets. The KEGG database (1) is a depository of the list of all
metabolic reactions identified in a generic human cell, together with
their enzymes and the genes encoding them. The BiGG recon-
struction was obtained by an iterative process of literature search
and curation/extension of the former (2), where compound-specific
transport reactions were added from the literature, and reactions
that were deemed necessary for the completeness of a particular
metabolic pathway, but for which genomic or biochemical evidence
could not be found, were also added.

We used the Morbid Map from the Online Mendelian Inher-
itance in Man (OMIM) (3) to uncover the known gene-disease
relationships, providing 2,025 disease genes and 3,423 disease
phenotypes as of August 2007. The disorders were grouped (4)
into 1,437 distinct disorders associated with 2,025 genes. We
found 337 (378) diseases associated with metabolic reactions in
the KEGG (BiGG) database, classified into 22 disorder classes,
174 (187) being denoted as classical “metabolic diseases” (see
Disease Classification below and Dataset S1 for details).

The Medicare dataset contains Medicare claims of 13,039,018
hospitalized patients from 1990 to 1993. Up to 10 diagnosed
diseases were recorded in ICD-9-CM format at each of 32,341,347
visits of those patients. The set of patients consists of 5,440,490
males (41.7%) and 7,598,528 females (58.3%), and the age is
distributed between 65 and 113 with the average 76.5 and the
standard deviation 7.5 (see Fig. S6). The average number of
diseases diagnosed for a patient is 8.4, and the average number of
patients having a given disease is 5,820. Their distributions are
shown in Fig. S6.

Disease Classification. The disease states considered in this work
were obtained from the OMIM disease list and are associated with
metabolic reactions according to the KEGG or BiGG database. In
contrast, traditional medical classification of diseases is based on the
known pathophysiology of each disorder as well as historical
connotations. To separate classical metabolic diseases (e.g., phenyl-
ketonuria) from those that are not considered such but that have
mutated enzyme(s) involved in their pathogenesis, we used two
separate approaches. First, we used the disease classification re-
ported in ref. 4, where all of the OMIM diseases were manually
classified into 22 disorder classes, including the classical metabolic
disease class (shown in Dataset S1). Next, we have cross-checked all
of the metabolic diseases on this list against the ICD-9-CM and
ICD-10-CM coding systems to ensure that they indeed are currently
classified as such. Note that although ICD-9-CM and ICD-10-CM
coding for metabolic diseases differs from each other in some
respect, our purpose here was not to decide which coding system is
better but to compile a list of metabolic diseases. When a given
disease is categorized into several groups by ICD-9-CM/ ICD-10-
CM, of which one is the metabolic disease group, we have assigned
them to the latter. This derived classification, i.e. whether a disease is
considered metabolic or nonmetabolic, is also shown in Dataset S1.
On many occasions, entering a disease name obtained from ref.
4 into the ICD-9-CM and/or ICD-10-CM returned no match at all.
In these cases, we examined the entry through Internet and/or
literature search and tagged them as metabolic or nonmetabolic
according to the following (somewhat arbitrary) criteria:

* If the disease pathology is strictly organ-specific, we classified
it as nonmetabolic. For example, if in a given disease only the
cornea is affected, we classified it as eye disease. However, if
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e.g. concomitant organic acidemia or aciduria is also present,
the disease was classified into the metabolic disease class.

* Diseases whose names include “resistance to” or “suscepti-
bility to” were considered nonmetabolic.

» If it is known that the enzyme defect is not involved in the
pathology of a disease, it is considered nonmetabolic.

* Mitochondrial and peroxisomal enzyme-caused diseases were
classified as metabolic diseases. However, if the mutation
caused a generic failure of organelle genesis, we did not
consider it as a metabolic disease.

* Asaresult of these two steps, we classified only 202 of the 415
metabolism-related diseases, according to the KEGG or
BiGG database, into the metabolic disease class in either of
the two medical classification scheme, as shown in Dataset S1.
The remaining ones were classified according to the classifi-
cation scheme of ref. 4. The diseases in Figs. 1, S3, and S4 were
color-coded based on this classification.

Constructing the Metabolic Disease Network (MDN). To establish the
metabolic reaction-disease associations, we combined the disease—
gene association from the OMIM database and the gene—reaction
associations from the KEGG and BiGG database. Two metabolic
reactions are adjacent if they convert or produce a common
compound, and we can expect their fluxes to be correlated.
However, some compounds like ATP, NADH, and H,O (cofac-
tors) are involved in many reactions, and the flux correlation of two
of those reactions may be weak. So we assigned a link to adjacent
reactions only when the common compound is involved in no more
than n, distinct reactions. We set n, = 4, but other values can be used
for n, without changing our conclusions. A link was then assigned to a
pair of diseases in the MDN if the diseases are associated with the same
reaction or their associated reactions are linked. The disease—reaction
associations are found in Dataset S1, and the adjacency of the metabolic
reactions are in Dataset S2 and Dataset S3.

Flux-Coupled Reactions. The flux-coupling analysis was based on
the BiGG database, assuming growth in complex medium in
which all of the uptake reactions can occur without limitation.
We identified 216 directionally coupled and 86 fully coupled
pairs of metabolic reactions, as described in the main text and in
ref. 5. The gene-reaction associations allowed us to find 1,925
pairs of directionally and 680 fully coupled pairs of genes, and the
disease—reaction associations provided 38 directionally coupled
and 20 fully coupled diseases pairs.

Gene-Gene Coexpression Analysis. Among ~25,000 human genes,
1,197 (1,490) were found to be associated with metabolic reac-
tions according to KEGG (BiGG) database. We analyzed the
coexpression level of these metabolism-related genes by using
microarray data available for 36 normal human tissues (6).
Denoting the expression level of each gene in each tissue by x;,
where i is the gene index and ¢ is the tissue index running from
1 to N; (= 36), we calculated the Pearson correlation coefficient
(PCC) for each pair of genes, i and j, as

NtE"irsz - Exitzxsz
PCC, = : — Y
! \/b\’tzxizz - (Exit)z \/b\’tzxjt2 - (Exj1)2

Genes associated with the same metabolic reaction or adjacent
reactions were assigned a metabolic link as diseases. We also
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considered pairs of genes whose associated reactions have
directionally coupled or fully coupled fluxes. We compared the
PCC of the gene expression profiles for all pairs of metabolism-
related genes, those connected by metabolic links, and by
flux-coupled links (Fig. 2 b and c).

Prevalence and Comorbidity Index. The comorbidity is defined as
the PCC of their occurrence vectors, Ox and Oy, defined as Oy
= (0X1,0X2,. .. OXN) and OY = (0y1,0y2,. - ,OYN), where OXp
= 1 (0) if the patient p has the disease X, and N is the total
number of patients in the database. We used a hand-curated map
between the genetic disorders in the OMIM and ICD-9-CM
codes (Dataset S4) to determine the number of patients diag-
nosed with each disease (incidence) and with each pair of
diseases (coincidence) denoted by Nx and Ny, respectively, in
the MDN. The prevalence was defined as

IL=—+— [2]

and the comorbidity index was defined as

NsNY(N = Nx)(N — Ny)’

Cxy [3]

The prevalence and comorbidity indices are found in Dataset S4
and Dataset S5, respectively.

Statistical Significance. We calculated the P values under an
appropriate null hypothesis to quantitatively characterize the
statistical significance of the obtained results.

High value of the average coexpression for connected genes and average
comorbidity for connected diseases. As a null hypothesis, we assumed
that the average co-expression (comorbidity) for connected
metabolism-related genes (diseases) follows a normal distribu-
tion with the average m and the standard deviation 0/\/]76,
where m and o are the average and the standard deviation of the
co-expression (comorbidity) for all metabolism-related genes
(diseases), respectively, and N, is the number of pairs of con-
nected metabolism-related genes (diseases). Therefore an aver-
age value r of the co-expression (comorbidity) for connected
genes (diseases) gives the z value,

r—m
zZ, = \NC - 1, [4]

(o

and the corresponding P value calculated as

2

o T
P=J dZﬁez. [5]

Zr

Significance of the Pearson correlation coefficient. We measured the
Pearson correlation coefficients (PCCs) between the disease prev-
alence/mortality and the disease degree, and between the disease
comorbidity and the network distance to characterize quantitatively
their correlations. The disease comorbidity itself is also a PCC.
Under a null hypothesis that there is no correlation between two
given data, their PCC follows the Student’s t-distribution. The
measured value r of PCC corresponds to the ¢ value,

1. Kanehisa M, et al. (2006) From genomics to chemical genomics. Nucleic Acids Res
34:D354-D357.

2. Duarte ND, et al. (2007) Global reconstruction of the human metabolic network based
on genomic and bibliomic data. Proc Nat/ Acad Sci USA 104:1777-1782.

3. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian
Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
Nucleic Acids Res 33:D514-D517.

4. Goh, K-I, etal. (2007) The human disease network. Proc Nat/ Acad Sci USA 104:8685-8690.
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t,=—7—=\N—-2 [6]

where N is the number of data. Then the P value for this obtained
value of ¢ was calculated by using Student’s ¢-distribution.

Random Network Generation. To compare the degree and distance
distribution of the MDN with those that would be without the
topological features of the MDN, we generated the networks
with the same number of nodes connected randomly by the same
number of links as the MDN. To be specific, a random network
of N nodes and L links was generated by (i) starting with N
isolated nodes, (ii) randomly choosing two nodes i and j and
assigning a link to them if they are not connected yet, and (iii)
repeating (if) until the total number of links reaches L. Distri-
butions of the degree and network distance were then obtained
by averaging them over 1,000 such random networks and are
presented in Fig. S2 along with those for the MDN.

Reaction-Tissue Association and the Core of the Human Metabolic
Network. It is well known that different pathways are used under
different environments and growth conditions, and recently
Almaas et al. (7) have computed the core set of metabolic
networks through the flux balance analysis of microorganisms
Escherichia coli, Helicobacter pylori, and Saccharomyces cerevi-
siae. Unfortunately, the same methodology cannot be applied to
human metabolic networks yet because we are lacking the
optimization function to apply flux—balance analysis.

Nevertheless, to approach the question whether the perturbed
reactions are located in the core or in the periphery, we defined
the tissue-associated core/branches of human metabolic net-
works. It is obvious that different sets of reactions are active in
different tissues, and thus, tissue dependency could be viewed as
genetic/epigenetic variants of human metabolism, a role analo-
gous to environmental variables for bacterial and unicellular
eukaryotic metabolism. Therefore, we used mRNA expression
data from 36 human tissues to define the core/branches of the
human metabolism. We find that genes encoding enzymes for
~35% of all metabolic reactions are simultaneously expressed in
all 36 tissues, suggesting that these reactions represent the
tissue-independent core of the human metabolism, whereas the
rest represent tissue-specific metabolic activities.

Then we investigated the distribution of the number of tissues in
which two reactions are active together (see Fig. S13 and Fig. S14
for the metabolic network based on the KEGG and BiGG data-
bases, respectively). We find that most pairs (=84% for KEGG,
~82% for BiGG) of reactions are active together in more than one
tissue. On the other hand, 11% (12%) of the reaction pairs in the
metabolic network from KEGG (BiGG) are active together only in
one branch, a tissue specificity that can help drug discovery.
Approximately 5% (6%) of the reaction pairs are active in different
tissues. We also find that this trend, that two reactions are active
together in more than one tissue, is stronger for reactions associated
with diseases and even stronger for reactions for which the asso-
ciated diseases have significant comorbidity (P < 0.01). In partic-
ular, the fraction of the reaction pairs active together in more than
one tissue is 85.5% (86.4%) for disease reaction pairs and 91.1%
(86.5%) for comorbid disease reaction pairs in the metabolic
network from the KEGG (BiGG) database.

5. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD (2004) Flux coupling analysis of
genome-scale metabolic network reconstructions. Genome Res 14:301-312.

6. Ge X, et al. (2005) Interpreting expression profiles of cancers by genome-wide survey
of breadth of expression in normal tissues. Genomics 86:127-141.

7. Almaas E, Oltvai ZN, Barabasi, A-L (2005) The activity reaction core and plasticity of
metabolic networks. PLoS Comp Biol 1:0557-0563.
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Fig. S1. Statistical characteristics of disease-reaction association. (a) Distribution of the number of diseases associated with a reaction. (b) Distribution of the
number of reactions associated with a disease. (c) Distribution of the number of diseases associated with a metabolic pathway defined in KEGG or BiGG database.
(d) Distribution of the number of pathways associated with a disease. All of the distributions are log-binned.
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Fig. S2. Distributions of degree and distance in the MDN. (a) Degree distribution of the MDN is shown together with that of random networks with the same
numbers of nodes and links as the MDN. (b) Distance distribution of the MDN is shown together with that of the random networks.
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Fig. S3. Metabolic disease network based on the BiGG database. Three hundred and nineteen nonisolated diseases are connected by 699 metabolic links
predicted by BiGG and OMIM reconstructions. The color of a node indicates the disorder class it belongs to. Node size is proportional to the prevalence of each
disease, and the width of a link is proportional to the comorbidity index of the two diseases the link connects. We show with red the links with significant (P <
0.01) comorbidity.
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Fig.S4. Disease-reaction bipartite network. The network includes all of the metabolism-related diseases (circle) and the metabolic reactions (square) associated
with at least one disease based on the OMIM database and KEGG (a) and BiGG (b) database. The links are two types: between a disease and a reaction
(disease-reaction association) and between two reactions (adjacency). With clusters of only one disease excluded, the network is comprised of 308 (319) diseases,
686 (943) reactions, 1,741 (1,677) disease-reaction links, and 431 (628) reaction-reaction links for KEGG (BiGG) database. The color and size of the diseases nodes
reflect the disease class and the prevalence as in the legends of Fig. 1 or Fig. S3.
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Fig. S5. Gene coexpression and disease comorbidity in the MDN based on the BiGG database. Shown are the distributions of the gene coexpression (a) and
disease comorbidity (b) in the MDN based on the BiGG database.
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Fig.S6. Characteristics of the Medicare claim dataset. (a) Plot of the number of patients versus their age. (b) Number of male and female patients. (c) Probability
density (Prob. density) function of the number of diseases diagnosed for a patient. The y axis is in logarithmic scale. (d) Probability density function of the number
of patients having a disease. Both axes are in logarithmic scale.
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Disease pairs

Diabetes mellitus and Hemolytic anemia

Metabolic link [Jli| Genetic link [l Comorbidity link [l
Diabetes mellitus ‘ GCK (2.7.1.2) Glucokinase

G6PD (1.1.1.49) Glucose-6-P dehydrogenase

Hemalylic ancia GPI (5.3.1.9) Glucose-6-phosphate isomerase

Metabolic map Metabolic reactions

S o-D-Glucose-1P | (1) ATP + B-D-Glucose <=>
l 2712 ADP + B-D-Glucose 6-phosphate
2711 I 5422
a-D-Glucose < — o DClucosesP | (2) B-D-Glucose 6-phosphate <=>
5.3.1.9 B-D-Fructose 6-phosphate
5313 (3) 5319
2.71.2 (3) a-D-Glucose 6-phosphate <=>

M 6.3.1.9
B-D-Glucose &» B-D-Glucose-6P <¢=———p 3-D-Fructose-6P

(1)
A (2)
(4) B-D-Glucose 6-phosphate + NADP* <=>
(4) 1.1.1.49 D-Glucono-1,5-lactone 6-phosphate
+ NADPH + H*

B-D-Glucose 6-phosphate

v

D-Glucono-1,5- ,3'1'1'31 6-Phospho-
lactone-6P D-gluconate

Known or potential shared pathogenesis

Oxidative stress and insulin release defect

Red blood cells:

Glutathione is a main factor protecting against oxidative damage. Glutathione peroxidase couples hydrogen
peroxide and other reactive oxygen intermediates to glutathione. Oxidized glutathione is returned to its reduced
form through the activity of glutathione reductase, for which NADPH is needed as reductant. Thus NADPH is
critical for the maintenance of normal levels of reduced glutathione, and NADPH is provided through the activity of
G6PD.

B-cells of the pancreas:

These cells are also very sensitive to oxidative stress, thus regular excess of oxidants related to G6PD deficiency
may represent a factor for the development of B-cell dysfunction. Large number of different mutations can reduce
the functional efficiency of the glucokinase molecule, resulting in reduced enzyme activity and a correspondingly
higher threshold for insulin release by p-cells, and consequently, hyperglycemia.

Concomitant functional polymorphisms in other glycolytic enzymes and free radical detoxifying enzymes can further
contribute to the development of either or both diseases. Several enzyme deficiencies in red blood cells can lead to
anemia (reviewed in van Wijk and van Solinge, Blood 706, 4034-42 (2005)). Impaired free radical removal in the
form of reduced catalase activity increases the incidence of diabetes mellitus (Goth and Eaton, The Lancet 356,
1820-21 (2000)).

Fig. S7. Disease comorbidity report card for diabetes mellitus and hemolytic anemia. These two diseases, having metabolic links and no genetic link, have
comorbidity 0.0038 (P < 10~8). Shown in the report card are their associated genes (enzymes), the metabolicmap in which their adjacent reactions are highlighted
and colored differently, their known pathogenesis, and the implication of the metabolic links to the pathogenesis. Similar report cards for disease pairs are shown
in Figs. S8-511.
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Disease pairs

Hypertension and Coronary spasm

Metabolic link [l

Diseases

Hypertension

Genetic link [l

Comorbidity link [l

Genetic links to

Coronary spasm

Metabolic map

Aspartate

__— Citrulline -\\i

P A )
e Ales 6.3. }
Carbamoyl-P/ \
/ v
L-Arginino-
Ormithine 1.14.13.39 o succginate
\ A
Urea <~ 35.3.1 e /
v u
Arginine Fumerate
= A
o
6-1-“/9{,/ @ | 1.14.13.39
e v
) 1.14.13.39
.L—Arglnyl- N-(omega)-. | 4——p Nitric oxide
tRNA(Arg) Hydroxyarginine @)

Known or potential shared pathogenesis

There are a large number of studies on the co-occurance of the two diseases. Some of the underlying
pathophysiology, namely vasoconstriction, is shared between the two diseases. The tone of the smooth muscle
layer under the endothelial layer is a key determinant of the tone of all blood vessels in the human body.
Endothelial cells release several types of molecules that affect the underlying smooth muscle cell layer, of which
the most important one is nitric oxide. In turn several types of protein complexes on the smooth muscle surface
play a pivotal role on regulating the contractile state of the smooth muscle cells, including K* channels and Ca?*
channels. Nitric oxide, directly or indirectly can regulate the activity of both.

NOS3 (1.14.13.39) Nitric oxide synthase (endothelial)

Metabolic reactions

(1) L-Arginine + Oxygen + NADPH <=>
Nitric oxide + L-Citrulline + NADP*

(2) L-Arginine + Oxygen + NADPH <=>
N-{omega)-Hydroxyarginine + NADP*
+H20

(3) NADPH + 2 N-(omega)-Hydroxyarginine +

Oxygen + H+ <=> NADP* +
2 Nitric oxide + 2 L-Citrulline

Additional factors affecting vasoconstriction may contribute to both diseases’ pathogenesis.

Fig. 8. Disease report card for hypertension and coronary spasm.

Lee et al.[www.pnas.org/cgi/content/short/0802208105]

10 of 17


http://www.pnas.org/cgi/content/short/0802208105

Lo L

P

1\

=y

Disease pairs

Glutathione synthetase deficiency and Myocardial infarction

Metabolic link [l

Diseases

Glutathione synthetase deficiency

Genetic link [l Comorbidity link [l

Genetic links to

‘ GSS (6.3.2.3) Glutathione synthetase

Myocardial infarction

Metabolic map

v

L- y -Glutamyl-cysteine
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Metabolic reactions

(1) ATP + y-L-Glutamyl-L-cysteine
+ Glycine <=> ADP +
Orthophosphate + Glutathione

(2) ATP + L-Glutamate + L-Cysteine <=>
ADP + Orthophosphate +
y-L-Glutamyl-L-cysteine

Known or potential shared pathogenesis

Currently there is no published evidence for the two diseases co-occuring.

very serious additional symptoms (reviewed in Njalsson, Cell. Mol. Life Sci. 62, 1938-45 (2005)).

The tone of the smooth muscle layer under the endothelial layer is a key determinant of the tone of all blood
vessels, including the coronary arteries of the human heart. Endothelial cells release several types of molecules
that affect the underlying smooth muscle cell layer, of which the most important one is nitric oxide (NO). The
normal production of NO is in part dependent on the normal redox state of the endothelial cells, and the normal
concentration of reduced glutathione is a significant determinant of this. Indeed, reduced glutathione levels
(together with several other factors, such as elevated homocysteine) are consistently associated with reduced
coronary blood flow, and polymorphism in the regulatory subunit of the glutamate-cysteine ligase (the rate limiting
enzyme of glutathione synthesis) has been shown to be associated with impairment of NO-mediated coronary
vasomotor function (Nakamura et al, Circulation 7108, 1425-7 (2003)). Such symptoms are also expected in
glutathione synthase deficiency, but there are very few described patients with GSS deficiency, and most have

Predictions

Additional factors affecting the redox state of the cell may contribute to both diseases’ pathogenesis.

Fig. S9. Disease report card for glutathione synthetase deficiency and myocardial infarction.
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5pB-cholestanoate

Metabolic reactions

(1) Ethanol + NAD+ <=>
Acetaldehyde + NADH + H*

(2) Acetaldehyde + NAD(P)+ + H20 <=>
Acetate + NAD(P)H + H*

(3) Primary alcohol + NAD+ <=> Aldehyde

- 1.1.1.1 1.21.3 + NADH I
Primary ' Ll ) (4) Aldehyde + NAD+ + H20 <=> Fatty acid
<+—> Fatty acid + NADH

(5) 3alpha,7alpha,26-Trihydroxy-5beta-
cholestane + NAD+ <=>
3alpha,7alpha-Dihydroxy-5beta-
cholestan-26-al + NADH

(6) 3alpha,7alpha-Dihydroxy-5beta-
cholestan-26-al + NAD+ + H20 <=>

26-al 3alpha,7alpha-Dihydroxy-5beta-
cholestanate + NADH + H*
(7) Glycerol + NAD(P)+ <=> D-
(=15 (22023 Glyceraldehyde + NAD(P}H + H*
Glycerol <=——» D-Glycer- <—p D-Glycerate (8) D-Glyceraldehyde + NAD+ + H20 <=>
aldehyde ® D-Glycerate + NADH + H+

Known or potential shared pathogenesis

There is anecdotal evidence for the two diseases co-occuring, i.e. suggesting that prevalence of epilepsy among
alcoholics is significantly higher than in the general population, and also that alcoholism may be more prevalent
among epileptic patients than in the general population. However, there is no firm data for either.

Fast synaptic inhibition in the brain and spinal cord is mediated largely by ionotrophic —y-aminobutyric acid (GABA)
receptors, which is a group of ligand-gated ion channels. These receptors are involved in a number of central
nervous system diseases, including epilepsy and alcoholism. In turn, there are several drugs that are direct
modulators of GABA receptors.

In the normal brain, a neurotransmitter called glutamate is released when one experiences a desire for something.
This ‘go’ signal is counteracted by GABA, and the ratio of glutamate to GABA signal determines the ‘craving’
response. If there is either an excess of glutamate signal or reduced GABA signal addiction can occur.

A drug called topiramate simultaneously reduces the effect of glutamate and enhances the effect of GABA, and is
used for the treatment of epileptic seizures. Patients have noted that it also helps to fight their alcoholism, and the
drug is currently use ‘off label’ in alcoholics.

Additional factors affecting the levels of glutamate and GABA in the brain may contribute to the pathogenesis of
both diseases.

Fig. S10. Disease report card for alcoholism and epilepsy.
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‘ ALOX5 (1.13.11.34) Arachidonate 5-lipoxygenase
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There is a published study for the co-occurance of the two diseases (Knoflach et al, Arch. Intern. Med. 165, 2521-6
(2005)) showing enhanced atherosclerosis among subjects with common allergic diseases, such as asthma.

There is an emerging concept that key components of allergies, such as leukotrienes or mast cells are active in
human atherogenesis, and there is a growing list of immune system-mediated and chronic inflammatory disorders
that have been linked with enhanced risk for atherosclerosis.

Leukotrines (and their receptors) are involved in mediating inflammation, which is a characteristic component of
both diseases. There are of course a number of diseases that have inflammatory components (e.g. asthma and
colitis).

In severe asthma there is also diminished lipoxin biosynthesis (Levy et al, Am. J. Respir. Crit. Care Med. 172, 824-
30 (2005)), and lipoxins are also derived from arachidonic acid, and are structurally related to leukotrines.

Additional factors contributing to leukotrine and lipoxin levels may affect the pathogenesis of both diseases.

Fig. S11. Disease report card for asthma and atherosclerosis.
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Fig.S12. Prevalence and mortality of monogenic diseases. Among 337 (378) metabolism-related diseases in the MDN according to the KEGG (BiGG) database,
118 (130) diseases are associated with the mutation of a single gene, respectively. The positive correlations between the degree in the MDN and the
prevalence/mortality, asshown in Fig. 3 cand e, are identified also for these monogenic diseases. (a) Prevalence as a function of the degree of monogenic diseases
in the MDN. The Pearson correlation coefficient is 0.143 for KEGG databases and 0.015 for BiGG with P values 0.003 and 0.44, respectively. (b) Mortality as a
function of the degree of monogenic diseases in the MDN. The Pearson correlation coefficient is 0.116 for KEGG databases and 0.096 for BiGG with Pvalues 0.21
and 0.24, respectively.
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Fig.S13. Distribution of the number of tissues in which two metabolic reactions are active together in the human metabolic network from the KEGG database.
Three different distributions are shown, each of which is obtained for all pairs of reactions (blue), pairs of disease reactions (red), and pairs of disease reactions
whose associated diseases show high comorbidity (green).
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Fig.S14. Distribution of the number of tissues in which two metabolic reactions are active together in the human metabolic network from the BiGG database.
Three different distributions are shown, each of which is obtained for all pairs of reactions (blue), pairs of disease reactions (red), bad pairs of disease reactions
whose associated diseases show high comorbidity (green).
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SINPAS

Table S1. Disease pairs that have the highest comorbidity and are connected in both KEGG and BiGG database

Disease1

Disease2

Coincidence

Comorbidity

(Expected value)

(Maximum possible comorbidity)

Diabetes mellitus

Hypertension

Hyperthyroidism, congenital

Endometrial carcinoma

Glutathione synthetase deficiency
Lhermitte-Duclos syndrome

Alcoholism, susceptibility to

Goiter

Goiter

Diabetes mellitus

Enolase-B deficiency

Aldosteronism, glucocorticoid-remediable
Favism

Asthma

Aldosteronism, glucocorticoid-remediable
Asthma

Glutathione synthetase deficiency

Colon adenocarcinoma

Diabetes mellitus

Colon adenocarcinoma

Obesity

Coronary spasms, susceptibility to

Total iodide organification defect
Ovarian cancer

Myocardial infarcation, susceptibility to
Oligodendroglioma

Epilepsy

Hyperthyroidism, congenital

Total iodide organification defect
Hyperinsulinemic hypoglycemia, familial, 3
Myopathy

Hypoaldosteronism, congenital
Hemolytic anemia

Atopy

Low renin hypertension, susceptibility to
Atherosclerosis, susceptibility to
Hemolytic anemia

Ovarian cancer

Hemolytic anemia

Cowden disease

115,638 (53,151)
326,513 (225,637)
9,455 (1,849)
1,359 (129)
4,900 (1,725)
109 (3)
2,038 (656)
426 (52)
2,489 (977)
711 (175)

107 (7)
58 (3)
13 (0.2)
341 (90)
1,148 (662)
7,084 (5,889)
210 (80)
816 (505)
1,656 (1,215)
93 (25)

8.3266 1072 (0.35316)
7.4141x10-2 (0.32667)
5.0372x1072 (0.22563)
3.0114x10-2(0.73863)
2.1414x10-2 (0.95010)
1.6810x1072(0.80107)
1.5058x 1072 (0.58752)
1.4343x10-2 (0.72645)
1.3767x1072(0.16397)
1.2320x 1072 (0.019991)
1.0519x10-2 (0.37852)
9.0245x1073 (0.32134)
7.8440x1073 (0.22424)
7.4047x10-3 (0.11757)
6.4234x1073(0.017235)
4.4056x103 (0.96029)
4.0737x1073 (0.22471)
3.8768x1073 (0.370902)
3.8373x1073 (0.05276)
3.8059x10-3 (0.082376)

This is the subset of Dataset S5, listing the diseases that are connected in both the MDN based on the KEGG and BiGG databases, and cooccur in >10 patients

and have the highest comorbidity indices.

Other Supporting Information Files

Dataset S1
Dataset S2
Dataset S3
Dataset S4
Dataset S5

Lee et al.[www.pnas.org/cgi/content/short/0802208105]

17 of 17


http://www.pnas.org/content/vol0/issue2008/images/data/0802208105/DCSupplemental/SD1.xls
http://www.pnas.org/content/vol0/issue2008/images/data/0802208105/DCSupplemental/SD2.xls
http://www.pnas.org/content/vol0/issue2008/images/data/0802208105/DCSupplemental/SD3.xls
http://www.pnas.org/content/vol0/issue2008/images/data/0802208105/DCSupplemental/SD4.xls
http://www.pnas.org/content/vol0/issue2008/images/data/0802208105/DCSupplemental/SD5.xls
http://www.pnas.org/content/vol0/issue2008/images/data/0802208105/DCSupplemental/SD5.xls
http://www.pnas.org/cgi/content/short/0802208105

