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Supporting Information

1 Proof of the evolutionary recurrence for the node degree generating function (Eq. 2)

The generating function for node degrees N
(n)
k after n duplications is defined as,

F (n)(x) =
X

k≥0

〈N (n)
k 〉xk. (S1)

where 〈·〉 corresponds to the ensemble average over all possible trajectories of the evolutionary dynamics. The xk term of
F (n)(x) “counts” the statistical number of nodes with exactly k links (one x per link).

At each time step n → n + 1, each node can be either duplicated with probability q, giving rise to two node copies, or
non-duplicated with probability 1 − q. Hence, in the general case with asymmetric divergence of duplicates (with a more
conserved, “old” copy and a more divergent, “new” copy), there are 3 F (n)

`
Ai(x)

´
contributions to the updated F (n+1)(x)

coming from each node type, i = s, o, n, for singular nodes, old and new duplicates,

F (n+1)(x) = (1−q)F (n)`As(x)
´

+ qF (n)`Ao(x)
´

+ qF (n)`An(x)
´

(S2)

where the substitutions x → Ai(x) in each F (n) terms (i = s, o, n) should reflect the statistical fate of a particular link “x”
between a node of type i and a neighbor node which is either singular (s) with probability 1−q or duplicated (o/n) with
probability q. In practice, the duplication of a fraction q of (neighbor) nodes first leads to the replacement x → (1−q)x+qx2

corresponding to the maximum preservation of links for both singular (x) and duplicated o/n (x2) neighbors, and then to
the subtitution x → γijx+δij for each type of neighbor nodes j = s, o, n where γij is the probability to preserve a link
“x” (and δij = 1−γij the probability to erase it). Hence, the complete substitution correponding to the GDD model reads
x → (1−q)(γisx + δis) + q(γiox + δio)(γinx + δin) = Ai(x) for i = s, o, n, leading to Eq.(S2).

2 Statistical properties of the model

The approach we use to study the evolution of PPI networks under general duplication-divergence processes is based
on ensemble averages over all evolutionary trajectories. We characterize, in particular, PPI network evolution in terms
of average number of nodes and links and average degree distribution. Yet, in order for these average features to be
representative of typical network dynamics, statistical fluctuations around the mean trajectory should not be too large. In
practice, it means that the relative variance χ2

Q(n) for a feature Q(n) should not diverge in the limit n → ∞,

χ2
Q

(n)
=

„ 〈Q2〉 − 〈Q〉2
〈Q〉2

«(n)

< ∞ as n → ∞

and more generally the pth moment of Q(n) should not diverge more rapidly than the pth power of the average. If it is not the
case, successive moments exhibit a whole multifractal spectrum and ensemble averages do not represent typical realizations
of the evolutionary dynamics. In order to check whether it is or not the case here for general duplication-divergence models,
we proceed by analyzing the probability distributions for the number of links and nodes.

The number of link L has a probability distribution P(L) whose generating function P(x) =
P

L≥0 P(L)xL satisfies

P(n+1)(x) = P(n)[a(x)], (S3)

a(x) = (1 − q)2(γssx+δss) + 2q(1 − q)(γsox+δso)(γsnx+δsn) + q2(γoox+δoo)(γnnx+δnn)(γonx+δon)2.

This relation can be justified in a way similar to that of the fundamental evolutionary recurrence above: each node of
the initial graph will be either duplicated d with probability q or kept singular s with probability 1 − q, leading to three
possible node combinations for each link: s − s link with probability (1 − q)2, s − d or d − s links with probability
2q(1 − q) and d − d link with probability q2. Then each s − s link is either kept with γss and erased with δss leading to
the substitution x → γssx+δss in the corresponding term; each s − d or d − s link can lead to two links between s and
each o/n duplicate, i.e. x → (γsox+δso)(γsnx+δsn), while each d − d link can lead up to 4 links after duplication, i.e.
x → (γoox+δoo)(γnnx+δnn)(γonx+δon)2. Combining all these operations eventually yields Eq.(S3).

Successive moments of this distribution are obtained taking successive derivatives of Eq.(S3),

A
(n)
k = ∂k

xP(n)(x)
˛
˛
x=1

, (S4)

and lead to the following recurrence relations

A
(n+1)
k = [h(1)]kA

(n)
k +

C

2
k(k − 1)[h(1)]k−2A

(n)
k−1 + . . .
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where h(1) = a′(1) = (1 − q)Γs +qΓo +qΓn and C = a′′(1) are constants depending on microscopic parameters. These
relations can be solved to get the leading order behavior of successive moments

A
(n)
k = Ãk[h(1)]kn

„

1 + O
`
[h(1)]−n´

«

, (S5)

where Ãk are some functions of microscopic parameters.
The latter relation implies that the kth moment is equal (modulo some finite constant) to the kth power of the first

moment in the leading order when n → ∞. This suggests that in this limit the probability distribution should take a scaling
form,

P(n)(L) ≃ 1

〈L(n)〉F
„

L

〈L(n)〉

«

, n ≫ 1. (S6)

This hypotesis can be verified directly from the explicit form of Eq.(S3)(see Appendix A for details).
Although we are not able to determine the scaling function F from previous considerations, we can derive some of

its properties from the successive moments Eq.(S4): in particular for n ≫ 1 the link distribution and the function F do
not present a vanishing width around their mean value but instead a finite limit width corresponding to a finite relative
variance,

χ2
L

(n)
=

„
〈L2〉 − 〈L〉2

〈L〉2
«(n)

→ 1

L(0)

„
a′′(1)

a′(1)(a′(1) − 1)
− 1

«

< ∞,

This relation is found solving explicitly Eq.(S4) for k = 1 and k = 2 given the initial number of links L(0). Hence, although
fluctuations in the number of links are important, they remain of the same order of magnitude as the mean value, Fig. S1.
This result is in fact rather surprising for a model which clearly exhibits a memory of its previous evolutionary states and
might, in principle, develop diverging fluctuations in the asymptotic limit.

Fluctuations for the total number of nodes, N (n), and the number of nodes of degree k ≥ 1, N
(n)
k , can also be evaluated

using the previous result on link fluctuations and the double inequality Nk ≤ N ≤ 2L, valid for any graph realization.
Indeed, we obtain the following relations between the pth moments and the pth power of the corresponding first moments,

〈(Np)(n)〉 ≤ 2p〈(Lp)(n)〉 ∝ 2p〈L(n)〉p =
`
k

(n)´p〈N (n)〉p,

〈(Np
k )(n)〉 ≤ 2p〈(Lp)(n)〉 ∝ 2p〈L(n)〉p =

`
k

(n)´p〈N (n)〉p =

„
k

(n)

p
(n)
k

«p

〈N (n)
k 〉p.

using 〈L(n)〉 = k
(n)〈N (n)〉 and 〈N (n)

k 〉 = p
(n)
k 〈N (n)〉, for all n ≥ 1 and k ≥ 1. Hence, we find that fluctuations for both

N and Nk remain finite in the asymptotic limit for linear asymptotic regimes corresponding to exponential or scale-free

degree distributions with finite limit values for both mean degree, k
(n) → k < ∞ and degree distribution p

(n)
k → pk > 0,

for all k ≥ 1. This corresponds presumably to the most biologically relevant networks. On the other hand, for non-linear

(scale-free or dense) asymptotic regimes previous arguments do not apply as k
(n) → ∞ (and p

(n)
k → 0 for dense regime)

when n → ∞. The numbers of nodes N (n) and N
(n)
k grow exponentially more slowly than the number of links L(n) in

this case, and the growth process might develop, in principle, diverging fluctuations as compared to their averages, 〈N (n)〉
and 〈N (n)

k 〉, respectively. Yet, numerical simultations (see section 8 below) tend to show that it is actually not the case,
suggesting that the ensemble average approach we have used to study the GDD model is still valid for non-linear asymptotic
regimes.

In summary, we found that the general duplication-divergence dynamics is not stricto sensu “self-averaging” [2] (i.e.
χ(n) → 0), however, fluctuations remain finite (i.e. χ(n) < ∞) in the asymptotic limit n → ∞, which corresponds to a
so-called ‘fractal’ regime. This implies that ensemble averages of PPI network evolution are actually good representatives of
typical PPI network realizations in biologically relevant regimes. Conversely, an ensemble averaging approach would become
inappropriate in the presence of diverging fluctuations (χ(n) → ∞) correponding to a so-called ‘multifractal’ regime. Hence,
our findings on the finite fluctuations of the model justifies its statistical foundations and, thereby, our theoretical approach
based on functional recurrences between successive generating functions.

Interestingly, Fig. S1 shows that duplication-divergence evolution do not tend to be more “self-averaging” in the low
growth rate limit, nor equivalently in the local duplication limit (q ≪ 1). This means that the “self-averaging” property
suggested in previous works on the basis of numerical simulations [2] might actually results as a consequence of the time-
linear, single protein duplication dynamics adopted by these authors.
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Figure S1: Numerical simulations of link and node probability distributions. Scaling functions F(x/〈x〉), eq.(S6),
obtained for link probability distribution (brown, x = L) and node probability distribution (green, x = N) under whole
genome duplication dynamics with 20%, 50% and 80% network growth rates, respectively. These distributions are station-
nary in all three cases and are very close for nodes and links in linear dynamical regimes, as expected (A and B), and
distinct for non-linear regimes (C).

3 Asymptotic methods

In this section, we give more details about the asymptotic analysis of node degree distribution defined by the recurrence
relation on its normalized generating function p(n)(x), Eq.(6).

First of all, the series of p(n)(x) can be shown to converge at each point at least for some initial conditions. Indeed, let us
introduce a linear operator M defined on functions continous on [0, 1] and acting according to Eq.(6), i.e., p(n+1) = Mp(n).
For two non-negative functions f(x) and g(x) so that f(0) = 0, g(0) = 0, f(1) = 1 and g(1) = 1, we have,

∀x ∈ [0, 1] f(x) ≤ g(x) ⇒ ∀x ∈ [0, 1] (Mf)(x) ≤ (Mg)(x). (S7)

It can be verified that if p(0)(x)=x (one simple link as initial condition), Mp(0)(x)≤p(0)(x) ∀x ∈ [0, 1] and by consequence,
when applying Mn to this inequality, the following holds

0 ≤ p(n+1)(x) ≤ p(n)(x), ∀x ∈ [0, 1]

which means that at each point the series of p(n)(x) is decreasing and converges to some non-negative value p(x). Futhermore,
numerical simulations show that for an arbitrary initial condition, there exists an n0 > 1 suffisiently large so that p(n)(x)
decreases for n ≥ n0. Hence, we can take the limit n → ∞ on both sides of Eq.(6) to get the Eq.(9) for the limit function
p(x).

We analyze the properties of this generating function p(x) for the limit degree distribution, using asymptotic methods.
Indeed, we have no mean to solve analytically this functional equation to precisely obtain the corresponding limit degree
distribution, but we have enough information to deduce its asymptotic behavior at large k, since it is directly related to
the asymptotic properties of p(x) for x → 1. In the following, we note h(α) = (1 − q)Γα

s + qΓα
o + qΓα

n, following the same
notation as in the main text.

First, we consider the relation between successive derivatives of p(x) at x = 1 deduced from Eq.(6) by taking the
corresponding number of derivatives, Eq.(10),

»

1 − h(k)

∆

–

∂k
xp(1)=

kX

l=[k/2]

αk,l ∂l
xp(1), (S8)

with some positif coefficients αk,l. The value of ∆ in this relation is still unknown and should be determined self-consistently
with p(x). Each of these derivatives can also be obtained as a limit of value ∂k

xp(1) = limn→∞ ∂k
xp(n)(1), with the following

recurrence relation for ∂k
xp(n)(1) = m

(n)
k

m
(n+1)
k =

h(k)

∆(n)
m

(n)
k +

C̃

2
k(k − 1)

h(k − 2)

∆(n)
m

(n)
k−1 + . . . (S9)

directly derived from Eq.(6). Different regimes can be identified depending on the general convex shape of h(α) (∂2
αh(α) ≥ 0).
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Regular regimes - h(α) strictly decreasing for α > 0 iff M ′ = maxi(Γi) < 1, for i = s, o, n.
In this case, if we suppose that p′(1) is finite, all the derivatives of p(x) at x = 1 are finite since ∆ = h(1) and h(k) < h(1)
for ∀k ≥ 2. In fact, the alternative situation p′(1) = ∞ and ∆ < h(1) is not possible as it would imply that some first

moments in Eq.(S9), at least m
(n)
1 and m

(n)
2 , would diverge exponentially as (h(1)/∆)n. However, since h(k) < h(1) for

k ≥ 2, this would contradict the fact that the nth moment grows more rapidly than the nth power of the first one. Hence,
we must have ∆ = h(1) and the solution is not singular at x = 1 but may have a singularity at some x0 > 1.

Taking an anzats for the asymptotic expansion in the form

p(x) = A0 − A1(x0 − x) + A2(x0 − x)2 + Aα(x0 − x)α + O
`
(x0 − x)α+1´. (S10)

and inserting it in Eq.(9) we find that, in order to have the singularity at x = x0 present on both sides of the equation, x0

has to be chosen as the root closest to 1 in the following three equations,

As(x) = x, Ao(x) = x, An(x) = x, (S11)

where, Ai(x) = (1−q)(γisx + δis) + q(γiox + δio)(γinx + δin) for i = s, o, n, or explicitly (since the second root is always 1)

x0 = min

„
(1 − q)δss + qδsoδsn

qγsoγsn
,
(1 − q)δso + qδooδon

qγooγon
,
(1 − q)δsn + qδonδnn

qγonγnn

«

.

Since h(α) is strictly decreasing when Γs < 1, Γo < 1 and Γn < 1, it is straightforward to prove that all three values are
greater than one, and hence, x0 > 1 for regular regimes.

The value of α is obtained from the same equation Eq.(6) by comparing the coefficients in front of the singular terms
when developping each term near x = x0

α =
ln(ǫi∆)

ln(2 − Γi)
, (S12)

where i = s, o or n if x0 is the solution of Ai(x) = x, ǫs = (1 − q)−1, ǫo = ǫn = q−1, and replacing also ǫi → 1/2ǫi or 1/3ǫi

if two or all three Γi’s happen to be equal, respectively.
We recall that for h(α) under consideration k = p′(1) is finite and ∆ = h(1). Therefore, in this regime the asymptotic

growth of the graph is exponential with respect to the number of links and the number of nodes with a common growth
rate ∆ = h(1). We call this asymptotic behavior “linear” because 〈L(n)〉 and 〈N (n)〉 are asymptotically proportional.

The decrease of the limit degree distribution for k ≫ 1 is given by [3]

pk ∝ k−α−1x−k
0

„

1 + O
„

1

k

««

, k ≫ 1 (S13)

and is thus exponential with a power law prefactor. When one of the Γi’s tends to one, simultaneously x0 → 1 and α → ∞
and, as we will see below, we meet the singular scale-free regime for the limit mean degree distribution.

The emergence of an exponential tail for pk when k ≫ 1 naturally comes from the fact that at each duplication step
the probability for a node to duplicate one of its links (keeping both the original link and its copy), qγooγon for o nodes,
qγsoγsn for s nodes and qγonγnn for n nodes, is smaller than the corresponding probabilities to delete the initial link,
(1−q)δso + qδooδon, (1−q)δss + qδsoδsn and (1−q)δsn + qδonδnn (it is in fact equivalent to x0 > 1). For this reason at each
duplication only few nodes are preserved and they keep only few of their links, the graph contains many small components
and has no memory about previous states. In a different way, we can develop this argument in terms of a particular node
degree evolution. When Γo < 1, Γs < 1 and Γn < 1, nodes o and s as well as their copies n loose links in proportion
to their connectivities. It means that the number of nodes of a given connectivity is modified by a Poissonian prefactor,
representing the overall tendency to follow an exponentially decreasing distribution for large number of duplications.

Singular regimes - h(α) has a minimum on α > 0 iff M ′ = maxi(Γi) > 1, for i = s, o, n.
In this case, from Eq.(S8) we can be sure to have a negative value for some derivative: since h(α) has a unique minimum,
there exists an integer r ≥ 1 so that h(r) < ∆ < h(r + 1) implying that ∂r+1

x p(1) < 0 which is impossible by construction.
In fact, this indicates the presence of an irregular term in the development of p(x) in the vicinity of x = 1, and for this
reason the function itself is r times differentiable at this point while its (r + 1)th and following derivatives do not exist.
Hence, we take an anzats for p(x) in the neighborhood of x = 1 using the following form

p(x) = 1 − A1(1 − x) + A2(1 − x)2 + Aα(1 − x)α + O
`
(1 − x)α+1

´
(S14)

A priori, we do not know the exact value of ∆, and it is to be determined self-consistently with p(x). We then substitute
Eq.(S14) into Eq.(9) to get a “characteristic” equation relating α and ∆,

h(α) = (1 − q)Γα
s + qΓα

o + qΓα
n = ∆. (S15)
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If we find a nontrivial value of α∗ > 0 that are solutions of this equation, it will give us an asymptotic expression for the
coefficients of the generating function of the scale free form

pk ∝ k−α∗−1

„

1 + O
„

1

k

««

, k ≫ 1. (S16)

Note that when the solution takes an integer value α∗ = r ≥ 1 the form of the asymptotic expansion should differ from
Eq.(S14) because formally it is not longer singular in this case. In fact, in the anzats a logarithmic prefactor should be
added in the singular term

p(x) = 1 − A1(1 − x) + A2(1 − x)2 + . . . + Ar(1 − x)r + Ãr(1 − x)r ln(1 − x) + O
`
(1 − x)r+1

´
(S17)

In order for this asymptotic expansion to satisfy Eq.(9), we should have h(r) = ∆, as before, as well as an additional
condition for r = 1 namely h′(1) = 0.

Note also, that the characteristic equation h(α) = ∆ can be recovered directly (although less rigorously) using the con-
nectivity change k → kΓi on average for i-type of nodes (i = s, o, n) at each duplication and the following continuous

approximation, N (n) =
P

k N
(n)
k ≃

R

u
N

(n)
u du,

∆=
〈N (n+1)〉
〈N (n)〉 ≃

R

k

˙
(1−q)N

(n)
kΓs

Γs+qN
(n)
kΓo

Γo+qN
(n)
kΓn

Γn

¸
dk

R

u
〈N (n)

u 〉du
=

`
(1−q)Γα

s +qΓα
o +qΓα

n

´ R

u
〈N (n)

u 〉du
R

u
〈N (n)

u 〉du
=h(α)

where we assumed that 〈N (n)
k 〉∝k−α−1.

Three cases should now been distinguished depending on the signs of h′(0) and h′(1) (see Fig. 3 in main text):

1. h′(0) < 0 and h′(1) < 0.
Since h(α) > h(1) for α < 1, any solution of Eq.(S15) has to be greater than one (as ∆ ≤ h(1)) which implies, by

vertue of Eq.(S16), k <∞ and consequently ∆ = h(1) exactly (which is consistent with previous considerations). So, for
the parameters satisfying h′(1) < 0 the value of α we are looking for is the unique solution, α⋆ > 1, of

h(α⋆) = (1−q)Γα⋆

s +qΓα⋆

o +qΓα⋆

n = (1−q)Γs+qΓo+qΓn = h(1) (S18)

The other solution α = 1 should be discarded here as it corresponds to a solution only if h′(1) = 0 (see proof for the most
general dupication-divergence hybrid models, below).

Evidently, in this regime there exists an entier k0 ≥ 1 for which

h(k0) < h(α∗) ≤ h(k0 + 1),

and so all the derivatives of p(k)(1) are finite for k ≥ k0 while all following derivatives are infinite. Finally, when we fix Γi

which are less than one and make other Γi → 1 the value of α∗ tends to infinity, the scale free regime Eq.(S16) meets the
exponential one Eq.(S13).

2. h′(0) < 0 and h′(1) ≥ 0.
The condition ∆ ≤ h(1) implies that only solutions with 0 < α ≤ 1 are possible. Therefore, surely k = ∞ in this case

but there is no additional constraints a posteriori on ∆ which might take, in principle, a whole range of possible values
between minα(h(α)) and min(h(0), h(1)). Yet, numerical simulations suggest that there might still be a unique asymptotic
node growth rate ∆ regardless of initial conditions or evolution trajectories, although convergence is extremely slow (See
Numerical simulations below).

3. h′(0) ≥ 0 (we always have h′(1) > 0 in this case).
The minimum of h(α) is achieved for α0 < 0 in this case, and ∆ ≤ 1 + q ≤ h(1). Yet because solutions of Eq.(S15)

cannot be negative by definition of p(x), the only possibility is ∆ = 1 + q, implying that the graph grows at the maximum
pace. From the point of view of the graph topology, it means that the mean degree distribution is not stationnary and for
any fixed k the mean fraction of nodes with this connectivity k tends to zero when n → ∞, the number of links grows too
rapidly with respect to the number of nodes so that the graph gets more and more dense. For this reason, we refer at this
regime as the dense one.
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4 Whole genome duplication-divergence model (q = 1)

The case q = 1 describes the situation for which the entire genome is duplicated at each time step, corresponding to the
evolution of PPI networks through whole genome duplications, as discussed in ref. [1]. All results obtained above in the
general case remain valid although there are now no more “singular” genes (s) and thus no γij ’s involving them. We just
summarize these results here adopting the notations of ref. [1] for the only 3 relevant γij ’s left: γo ≡ γoo, γn ≡ γnn and
γ ≡ γon, hence

Γo = γo + γ, Γn = γn + γ, (S19)

The model analysis then yields three different regimes (we do not consider the case Γo+Γn < 1 for which graphs vanish)

1. Exponential regime Γo +Γn > 1, max(Γo, Γn) < 1. The limit degree distribution is nontrivial and decreases like
Eq.(S13) with

x0 =


δoδ/γoγ, Γo < Γn

δnδ/γnγ, Γo ≥ Γn
(S20)

and

α =
ln(Γo + Γn)

ln
`
2 − max(Γo, Γn)

´ , Γo 6= Γn (S21)

while

α =
ln(Γo)

ln(2 − Γo)
, for Γo = Γn. (S22)

The rate of graph growth in number of nodes as well as in number of links is ∆ = Γo+Γn

2. Scale free regime (Γo > 1, Γn < 1) or (Γo < 1, Γn > 1). The limit degree distribution is surely nontrivial for

h′(1) = Γo ln Γo + Γn ln Γn < 0, (S23)

and described by an asymptotic formula Eq.(S16) with α∗ > 1 solution of

Γα
o + Γα

n = Γo + Γn, (S24)

In this case the ratio of two consecutive sizes is also ∆ = Γo+Γn. When

h′(1) = Γo ln Γo + Γn ln Γn > 0, ΓoΓn < 1 (h′(0) < 0),

the mean degree distribution is still expected to converge to a nontrivial asymptotically scale-free distribution with
0 ≤ α ≤ 1.

3. Dense regime ΓoΓn > 1 (i.e. h′(0) > 0). The mean degree distribution is not stationary: the growing graphs get
more and more dense in the sense that the fraction of nodes with an arbitrary fixed connectivity tends to zero when n → ∞.
Almost all new nodes are kept in the duplicated graph ∆ = 1 + q.

Because all these regimes are defined in terms of two independent parameters (instead of three), the model phase
diagram can be drawn in a plane (Γo, Γn), or equivalently in (Γo+Γn, Γo) (See Fig. S2A & B). This last representation is
adapted to show explicitly the domains of node conservation and graph growth, while the alternative choice (Γo+Γn, Γo−Γn)
used in ref. [1] is best suited to illustrate the asymmetric divergence requirement to obtained scale-free networks (see [1] for
a detailed discussion).

5 Local duplication-divergence limit (q → 0)

A different limit model is obtained for q going to zero when the mean size of the graph tends to infinity, Fig. S2C. In
principle, the most general model of this kind is the one defined by a monotonous decreasing function q(〈N〉) with

lim
x→∞

q(x) = 0.

For any function of this type, the graph growth rate in terms of links depends essentially on γss because

〈L(n+1)〉
〈L(n)〉 = (1 − q)Γs + qΓo + qΓn = γss + 2q(γso + γsn − γss) + O(q2),

and if γss < 1 the ensemble average of graphs will never reach infinite size, it will have at most some finite dynamics. So,
we will suppose that γss = 1, to ensure an infinite growth. We remark also that γoo, γon and γnn appear only in the term
of order q2 in the last expression because two new nodes have to be kept in order to add any link of the type oo, on or nn.
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Figure S2: Asymptotic phase diagram of PPI networks under the GDD model. A. Phase diagram of GDD models for

local (blue, q ≪ 1, γss = 1), partial (black, q < 1) and whole genome (red, q = 1) duplications, in the (Γ,M) plane. In particular,

the condition 1+q−(1−q)2(1−γss) > 1 should be enforced, implying γss > 1 − q, in the local duplication limit, q ≪ 1. B. Whole

genome duplication-divergence limit (q = 1). C. Local duplication-divergence limit (q ≪ 1 and γss = 1). Boxed figures are power law

exponents (α + 1) of scale-free regimes.

When q becomes small an approximate recursion relation for generating functions can be obtained by developping Eq.(6)
(we set γss = 1) with

p̃(n)
`
As(x)

´
= p̃(n)(x) + q

`
(δso + γsox)(δsn + γsnx) − x

´
∂xp̃(n)(x) + O(q2)

p̃(n)`Ao(x)
´

= p̃(n)(δso +γsox) + O(q)

p̃(n)`An(x)
´

= p̃(n)(δsn +γsnx) + O(q)

, (S25)

gives in linear order of q

p̃(n+1)(x) =
(1 − q)p̃(n)(x) + q

`
(δso + γsox)(δsn + γsnx) − x

´
∂xp̃(n)(x) + qp̃(n)(δso +γsox) + qp̃(n)(δsn +γsnx)

∆(n)
+ O(q2)

with

∆(n) = 1 − q

„

δsoδsn∂xp̃(n)(0) + p̃(n)(δso) + p̃(n)(δsn) − 1

«

, (S26)

an expression which does only depend on 3 of the 6 general γij ’s: γss, γso and γsn. By neglecting terms in q2 we obtain
a model for which duplicated nodes are completely decorrelated in the sense that the probability for an o or s node to
have two new neighbours is zero, and consequently any two new nodes do not have common neighbors. This model can be
regarded as a generalization of the local duplication model proposed in [2] for which only one node is duplicated per time
step and without modification of the connectivities between any other existing nodes, i.e. γss = 1 and γso = 1. Indeed,
when taking for q a decreasing law

q
`
〈N〉

´
=

A

〈N〉 , A > 0
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on average A nodes per step are duplicated. By setting γso = 1 in Eq.(S26) we first get the following form for the recurrence
relation,

p̃(n+1)(x) =
p̃(n)(x) + qγsnx(x − 1)∂xp̃(n)(x) + qp̃(n)(δsn +γsnx)

∆(n)
, ∆(n) = 1 − qp̃(n)(δsn), (S27)

and then using the definitions of ∆(n) and p(n)(x) Eq.(4) to reexpress it as,

N
(n+1)
k = N

(n)
k + Aγsn(k − 1)p

(n)
k−1 − Aγsnkp

(n)
k + A

X

s≥k

Ck
s γk

snδs−k
sn p(n)

s , (S28)

This expression is identical to the basic recurrence relation in the model of ref. [2] for A = 1. For an arbitrary A the
asymptotic properties of the growing graph are essentially the same as in ref. [2], with only the growth rate modified by a
factor proportional to A.

In the more general cases for which both γsn and γso may vary (with γss = 1 remaining fix to ensure a non-vanishing
graph), an asymptotic analysis can be carried out for the limit degree distribution with an asymptotic solution of the form

p̃(x) = −A1(1 − x) + A2(1 − x)2 + Aα(1 − x)α + O
`
(1 − x)α+1

´

satisfying Eq.(S26) with q ∝ A/〈N (n)〉. The characteristic equation thus becomes,

hl(α) = γα
so + γα

sn + α(γso + γsn − 1) − 1 = ϕ,

where ϕ is defined as

ϕ = lim
n→∞

`
∆(n) − 1)

q(n)
⇔ ∆(n) ≃ 1 + q(n)ϕ, n → ∞.

while the graph growth rate in terms of number of links is given by,

(1 − q)Γs + qΓo + qΓn = 1 + q(2γso + 2γsn − 2) + O(q2),

at first order in q. Since the number of nodes can not grow more rapidly than the number of links, we can conclude that
ϕ ≤ 2γso + 2γsn − 2, in addition to, ϕ ≤ 1, correponding to the maximum growth rate. Focussing the analysis on the case
γso + γsn > 1 for which the graph does not vanish, one finds that the “characteristic” function hl(α) is always convex, and
the following results are obtained as in the asymptotic analysis of Sec. 3 in Supp. Information:

• When h′
l(0) < 0 and h′

l(1) < 0 the characteristic equation has a solution, α∗ > 1, and the limit degree distribution is
asymptotically scale-free pk ∝ k−α∗−1 with α∗ varying on the interval [1,∞) (depending on parameters γso and γsn)
while ϕ = hl(1).

• For h′
l(1) = 0 precisely, the singular term of the asymptotic solution becomes (1 − x) ln(1 − x) and the limit degree

distribution decreases as pk ∝ k−2, for k ≫ 1.

• When h′
l(0) < 0 and h′

l(1) > 0, scale-free regimes with slowly decreasing degree distributions are expected in general
with ϕ ≤ min(2γso + γsn − 2, 1) and the corresponding 0 < α < 1.

• For h′
l(0) > 0 the mean degree distribution is not stationary, ϕ = 1.

Fig. S2 summarizes these results for the limit degree distribution. More generally for

q
`
〈N〉

´
=

A

〈N〉β , A > 0, β > 0,

when β > 1, nodes a rarely duplicated so that the interval between two succesfull duplications in number of steps is
approximately

n ∝ 〈N (n)〉β−1.

Therefore β > 1 gives a model equivalent to β = 1 with a change of time scale. On the other hand, for 0 < β < 1 a set of
nontrivial models is obtained.

6 General Duplication-Divergence models including self-interacting proteins

One type of interactions, which is not included in the main GDD model, Fig. 1 and Eq. 2, corresponds to self-interacting
loops, Fig. S3. Although self-link loops exist and might have played a critical role in the actual emergence of molecular
interaction networks during early evolutionary times, they can be shown to have very little effects on the long time scale
evolution of PPI networks under GDD model dynamics, which is why we have omitted them for simplicity in the main text.
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Actually, the possibility of protein homo-oligomerization can be explicitly taken into account by introducing 2 types
of nodes corresponding respectively to i) self-interacting proteins with self-link loops and ii) non-self-interacting proteins
without self-link loops, Fig. S3. Available data on PPI networks reveals that about 10 to 15% of interacting proteins are
self-interacting [5]. In principle, the detailed evolution of PPI network conservation and topology is affected by self-link
loops which provide a source of duplication-derived de novo interactions between “old” and “new” copies of duplicated
self-interacting proteins. We introduce four new evolutionary parameters, µs, µo, µn and µon, corresponding, respectively,
to the probability to conserve a self-link interaction on a “singular” gene, “old” or “new” duplicated genes or to retain the
duplication-derived de novo interaction between an old and new pair of gene copies from a duplicated self-interacting genes,
Fig. S3. Together with previous “1q +6γ” evolutionary parameters this defines an homogeneous “1q +6γ +4µ” GDD model
where all γ’s are independent from the self-interacting or non-self-interacting nature of each protein partner.
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Figure S3: GDD model of PPI network evolution including self-link interactions (“1q+6γ+4µ” parameters).

From a theoretical perspective, we now have to solve two coupled functional recurrences for the generating functions, F
(n)
ℓ (x)

and F
(n)
nℓ (x), respectively, with and without self-link loops. The global generation function including all network nodes is

then simply F (n)(x) = F
(n)
ℓ (x) + F

(n)
nℓ (x).

Hence, we readily obtain, using the same notation as before, in addition to the self-link “µ” parameters,
• Generating function WGD recurrence for the self-link loops, F

(n)
ℓ (x):

F
(n+1)
ℓ (x) = (1 − q)µsF

(n)
ℓ

`
As(x)

´
+ q
`
µonx + 1 − µon

´h

µoF
(n)
ℓ

`
Ao(x)

´
+ µnF

(n)
ℓ

`
An(x)

´i

, (S29)

• Generating function WGD recurrence without self-link loops, F
(n)
nℓ (x):

F
(n+1)
nℓ (x) = (1 − q)

h

F
(n)
nℓ

`
As(x)

´
+ (1 − µs)F

(n)
ℓ

`
As(x)

´i

+ q
h

F
(n)
nℓ

`
Ao(x)

´
+ F

(n)
nℓ

`
An(x)

´i

+ q
`
µonx + 1 − µon

´h

(1 − µo)F
(n)
ℓ

`
Ao(x)

´
+ (1 − µn)F

(n)
ℓ

`
An(x)

´i

(S30)

• And the global generating function including all network nodes, F (n)(x) = F
(n)
ℓ (x) + F

(n)
nℓ (x):

F (n+1)(x) = (1 − q)F (n)
`
As(x)

´
+ q
h

F (n)
`
Ao(x)

´
+ F (n)

`
An(x)

´i

+ qµon(x − 1)
h

F
(n)
ℓ

`
Ao(x)

´
+ F

(n)
ℓ

`
An(x)

´i

(S31)

Note, in particular, that,

- i) the evolution of self-link loops, F
(n)
ℓ (x), is not coupled to non-self-interacting proteins, F

(n)
nℓ (x), while the global network

evolution, F (n)(x), is formally different from Eq.(2) if and only if µon 6= 0.

- ii) the existence of self-link loops in the PPI network does not affect the arguments of any generating functions, leading
instead to self-link-dependent prefactors in all three generating function recurrences. This implies that the leading term of
successive derivatives at x = 1 of these generating functions involve successive powers Γk

i , k ≥ 1 where Γi = ∂xAi|x=1, for
i = s, o, n, as before.

Hence, applying the same asymptotic method approach as described in the main text readily yields the following asymptotic
regimes for i) self-interacting proteins and ii) global PPI network,

• i) we always have ∆ℓ = (1 − q)µs + q(µo + µn), for the exponential growth rate of the number of self-link loops, and for
scale-free regimes, M ′ = maxi(Γi) > 1, ∆ℓ = (1− q)µs + q(µo + µn) = (1− q)µsΓ

αℓ
s + q[µoΓ

αℓ
o + µnΓαℓ

n ], which defines the
power law exponent, αℓ, for the limit degree distribution of self-interacting proteins, pℓk ∝ k−αℓ−1, k ≫ 1.
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• ii) there are two cases for the global network topology in linear regimes, which we only consider here (i.e. same network
growth rates in terms of node or link numbers, see main text):

1- either ∆ℓ = (1− q)µs + q(µo + µn) < (1− q)Γs + q[Γo + Γn] = ∆ = (1− q)Γα
s + q[Γα

o + Γα
n ], then the network growth

rate ∆ is dominated by non-self-interacting proteins, which implies a negligeable effect of self-link loops and no changes
from the paper conclusions, in particular α = αnℓ, corresponding to the scale-free exponent without self-link loops defined
as (1 − q)Γs + q[Γo + Γn] = (1 − q)Γαnℓ

s + q[Γαnℓ
o + Γαnℓ

n ] as in main text.

2- or ∆ℓ = (1− q)µs + q(µo +µn) = ∆ = (1− q)Γα
s + q[Γα

o +Γα
n] > (1− q)Γs + q[Γo +Γn] = (1− q)Γαnℓ

s + q[Γαnℓ
o +Γαnℓ

n ],
and the network growth rate ∆ is then dominated by self-interacting proteins, which implies some non negligeable effects of
self-link loops but actually no changes from the paper main conclusions on network conservation and topological regimes,
except for the precise value of the power law exponent α in scale-free regimes, which increases from α = αnℓ to αnℓ < α < αℓ.
Note, however, that self-interacting proteins exhibit a larger connectivity exponent αℓ than the global PPI network, α < αℓ.

Hence, overall, the general conservation and topological properties of PPI networks is actually little affected by the
presence of self-link loops, in the asymptotic limits of large PPI networks and large node degrees. As can be seen from the
above argument, this is because conservation and topological properties of PPI networks are controlled by the exponential
increase of their node degrees, k → kΓi, for i = s, o, n, while the contribution of de novo interactions arising from duplicated
self-interacting proteins can at most lead to a linear increase of node degrees, with a maximum increment of +1 link per
duplication event and protein. Thus, although an abundance of self-interacting proteins can significantly affect the evolution
of low connectivity proteins, it cannot lead to a change of topological regimes for the highly connected nodes of the PPI
networks (e.g. from exponential to scale-free node degree distribution or vice versa). Hence, to a first approximation, self-
interacting proteins can be simply ignored to establish the asymptotic conservation and topology regimes of PPI network
evolution, as we have done in the main text

Note, however, that self-link loops might still be important for the evolution of certain network motifs whose initial
emergence might precisely depend on the presence of self-interacting proteins (e.g. the triangle motif unless one triangle at
least is already present in the initial network).

7 General duplication-divergence hybrid models

We start the analysis of GDD hybrid models with the case of two duplication-divergence steps involving some fractions
q1 and q2 of duplicated genes, introducing explicit dependencies in q and x for Ai(q, x) and Γi(q) = ∂xAi(q, 1) functions
(i = s, o, n), Ai(q, x) = (1−q)(γisx + δis) + q(γiox + δio)(γinx + δin) and Γi(q) = (1−q)γis + q(γio + γin).

An evolutionary recurrence for the hybrid generating function can be found by introducing the intermediate step
explicitly, p̃(n) → r̃(n) → p̃(n+1) where,

r̃(n)(x) =
(1−q1)p̃

(n)
`
As(q1, x)

´
+ q1 p̃(n)

`
Ao(q1, x)

´
+ q1 p̃(n)

`
An(q1, x)

´

∆
(n)
1

∆
(n)
1 = −(1−q1)p̃

(n)̀ As(q1, 0)
´
− q1 p̃(n)̀ Ao(q1, 0)

´
− q1 p̃(n)̀ An(q1, 0)

´
> 0,

and then r̃(n) → p̃(n+1) with,

p̃(n+1)(x) =
(1−q2)r̃

(n)
`
As(q2, x)

´
+ q2 r̃(n)

`
Ao(q2, x)

´
+ q2 r̃(n)

`
An(q2, x)

´

∆
(n)
2

∆
(n)
2 = −(1−q2)r̃

(n)̀ As(q2, 0)
´
− q2 r̃(n)̀ Ao(q2, 0)

´
− q2 r̃(n)̀ An(q2, 0)

´
> 0,

which finally yields for the effective p̃(n) → p̃(n+1) step,

p̃(n+1)(x) =
(1−q2)

“

(1−q1)p̃
(n)
`
As(q1, As(q2, x))

´
+ q1p̃

(n)
`
Ao(q1, As(q2, x))

´
+ q1p̃

(n)
`
An(q1, As(q2, x))

´”

∆
(n)
1 ∆

(n)
2

+
q2

“

(1−q1)p̃
(n)
`
As(q1, Ao(q2, x))

´
+ q1p̃

(n)
`
Ao(q1, Ao(q2, x))

´
+ q1p̃

(n)
`
An(q1, Ao(q2, x))

´”

∆
(n)
1 ∆

(n)
2

+
q2

“

(1−q1)p̃
(n)
`
As(q1, An(q2, x))

´
+ q1p̃

(n)
`
Ao(q1, An(q2, x))

´
+ q1p̃

(n)
`
An(q1, An(q2, x))

´”

∆
(n)
1 ∆

(n)
2
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Expressing successive derivatives at x = 1, ∂k
xp(1), for k ≥ 2 in the asymptotic limit p(n)(x) → p(x) and ∆

(n)
1 ∆

(n)
2 → ∆2

for n → ∞, yields, ∂k
xp(1) = (1−q2)(1−q1)Γ

k
s(q2)Γ

k
s(q1)∂

k
xp(1) + (1−q2)q1Γ

k
s(q2)Γ

k
o(q1)∂

k
xp(1) + · · · and hence,

∂k
xp(1)

»

1 −

“

(1 − q1)Γ
k
s(q1) + q1Γ

k
o(q1) + q1Γ

k
n(q1)

”“

(1 − q2)Γ
k
s(q2) + q2Γ

k
o(q2) + q2Γ

k
n(q2)

”

∆2

–

=

kX

l=[k/2]

αk,l ∂l
xp(1), (S32)

In fact, this simple duplication-divergence combination can be generalized to any duplication-divergence hybrid models
with arbitrary series of the 1+6 microscopic parameters {q(n), γ

(n)
ij }

R
∈ [0, 1], for i, j = s, o, n and 1 ≤ n ≤ R. Each

duplication-divergence step then corresponds to a different linear operator M(n) defined by q(n) and the functional arguments
A

(n)
i (q(n), x) = (1−q(n))(γ

(n)
is x + δ

(n)
is ) + q(n)(γ

(n)
io x + δ

(n)
io )(γ

(n)
in x + δ

(n)
in ) and Γ

(n)
i = ∂xA

(n)
i (q(n), 1) for i = s, o, n (with

A
(n)
i (q(n), 1) = 1). Hence, applying the same reasoning as in Asymptotic methods to the series of linear operators {M(n)}R

implies that any duplication-divergence hybrid model converges in the asymptotic limit (at least for simple initial conditions).
In the following, we first assume that the evolutionary dynamics remains cyclic with a finite period R, before discussing

at the end the R → ∞ limit, which can ultimately include intrinsic stochastic fluctuations of the microscopic parameters.
In the cyclic case with a finite period R, successive derivatives at x = 1, ∂k

xp(1), can be expressed in the asymptotic
limit, p(n)(x) → p(x) as,

∂k
xp(1)

 

1 −
QR

n

h

(1 − q(n))Γ
(n)
s

k
+ q(n)Γ

(n)
o

k
+ q(n)Γ

(n)
n

k
i

∆R

!

=
kX

l=[k/2]

αk,l ∂l
xp(1), (S33)

Network conservation for such general duplication-divergence hybrid model corresponds to the condition M > 1, where
the conservation index M now reads

M =

„ RY

n

h

(1−q(n))Γ(n)
s + q(n)Γ(n)

o

i«1/R

(S34)

while the nature of the asymptotic degree distribution is controlled by the network topology index,

M ′ =

„ RY

n

max
i

`
Γ

(n)
i

´
«1/R

(S35)

with M ′ < 1 corresponding to exponential networks and M ′ > 1 to scale-free (or dense) networks with an effective node
degree exponent α and effective node growth rate ∆ that are self-consistent solutions of the generalized characteristic
equation,

h(α) =

„ RY

n

h(n)`α, q(n)´
«1/R

= ∆ (S36)

The resolution of this generalized characteristic equation is done following exactly the same discussion for singular regimes
as with constant q and Γi (Fig. 3 and main text) due to the convexity of the generalized h(α) function, ∂2

αh(α) ≥ 0.
Indeed, the first two derivatives of h(α) yield (with implicit dependency in successive duplication-divergence steps, q ≡ q(n),

Γi ≡ Γ
(n)
i , etc, for i = s, o, n),

∂αh(α) =

„ RY

n

h(α, q)

«1/R
1

R

RX

n

∂αh(α, q)

h(α, q)

=

„ RY

n

h(α, q)

«1/R
1

R

RX

n

(1 − q)Γα
s ln Γs + qΓα

o ln Γo + qΓα
n ln Γn

(1 − q)Γα
s + qΓα

o + qΓα
n

∂2
αh(α) =

"

1

R

RX

n

(1−q)qΓα
s Γα

o

`
ln Γs − ln Γo

´2
+ (1−q)qΓα

s Γα
n

`
ln Γs − ln Γn

´2
+ q2Γα

o Γα
n

`
ln Γo − ln Γn

´2

h2(α, q)

+

„
1

R

RX

n

∂αh(α, q)

h(α, q)

«2
# „ RY

n

h(α, q)

«1/R

≥ 0

Let us now show that the solution of the generalized characteristic equation corresponding to α = 1 implies h′(1) = 0,
which is an essential condition to prove the existence of scale-free asymptotic regimes with a unique power law exponent,
pk ∝ k−α⋆−1, with α⋆ > 1 (see main text).

The generalized functional equation defining the limit degree distribution for a GDD hybrid model with an arbitrary
sequence of duplications contains a sum over 3R terms with R times nested functional arguments,

p̃(x) =
1

∆R

X

I

cI · p̃(A(1)
i1

(q(1), A
(2)
i2

(q(2), A
(3)
i3

(q(3), . . . A
(R)
iR

(q(R), x))))))
| {z }

R times
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with all possible ij = s, o, n for 1 ≤ j ≤ R, and a prefactor cI for I = {i1, . . . , iR} equal to a product of (1 − q(j)) or q(j)

corresponding to each occurence of A
(j)
s (q(j), · · · ) or A

(j)
o,n(q(j), · · · ), respectively, within the nested functional argument.

Inserting the expansion anzats for α = 1 near x = 1,

p̃(x) = −a1(1 − x) − a′(1 − x) ln(1 − x) + O
`
(1 − x)2 ln(1 − x)

´

in the general functional equation yields the following form for each of the 3R terms p̃(AI(x)) of the functional sum (where
AI(x) is the nested functional argument),

p̃(AI(x)) → −a1(1 −AI(x)) − a′(1 −AI(x)) ln(1 −AI(x)) =

−a1A′
I(1)(1 − x) − a′A′

I(1) lnA′
I(1)(1 − x) − a′A′

I(1)(1 − x) ln(1 − x) + O
`
(1 − x)2 ln(1 − x)

´
.

where,

A′
I(1) =

RY

n

∂xA
(n)
in

(q(n), 1) =
RY

n

Γ
(n)
in

, and
X

I

cIA′
I(1) = [h(1)]R

Hence, after collecting all 3R terms together we get for the functional equation,

p̃(x) = −a′(1 − x)
1

∆R

X

I

cIA′
I(1) lnA′

I(1) − a1

“h(1)

∆

”R

(1 − x) − a′

„
h(1)

∆

«R

(1 − x) ln(1 − x).

As the solution α = 1 implies ∆ = h(1), the last two terms on the right side of the functional equation correspond exactly
to the expansion anzats of p̃(x) near x = 1 for α = 1, implying that the first term must vanish (with a′ 6= 0). This imposes
the supplementary condition,

X

I

cIA′
I(1) lnA′

I(1) = 0

which is in fact equivalent to h′(1) = 0.
Finally, let us discuss the case of infinite, non-cyclic series of duplication-divergence events, which can include intrinsic

stochastic fluctuations of all microscopic parameters. Formally, analyzing non-cyclic, instead of cyclic, infinite duplication-
divergence series implies to exchange the orders for taking the two limits p(n)(x) → p(x) and R → ∞ (with 1 ≤ n ≤ R).
Although this cannot be done directly with the present approach, either double limit order should be equivalent, when there
is a unique asymptotic form independent from the initial conditions (and convergence path). We know from the previous
analysis that it is indeed the case for the linear evolutionary regimes (with h(1) = ∆) leading to exponential or scale-free
asymptotic distributions (with a unique α⋆ ≥ 1). Hence, the main conclusions for biologically relevant regimes of the GDD
model are insensitive to stochastic fluctuations of microscopic parameters.

On the other hand, when the asymptotic limit is not unique, as might be the case for non-linear evolutionary regimes,
the order for taking the double limit p(n)(x) → p(x) and R → ∞ (with 1 ≤ n ≤ R) might actually affect the asymptotic
limit itself. Still, asymptotic convergence remains granted in both limit order cases (see above) and we do not expect that
the general scale-free form of the asymptotic degree distribution radically changes. Moreover, numerical simulations seem
in fact to indicate the existence of a unique limit form (at least in some non-linear evolutionary regimes) but after extremely
slow convergence, see Numerical simulations below. Yet, the unicity of the asymptotic form of the GDD model for general
non-linear evolutionary regimes remains an open question.

Combining local and global duplications
We now outline the predictions for a realistic GDD model combining R−1 ≫ 1 local duplications (q ≪ 1) for each whole
genome duplication (q = 1). This hybrid model of PPI network evolution amounts to a simple extension of the initial GDD
model with fixed q.

Network conservation is now controlled by the cummulated product of connectivity growth/decrease rates over one
whole genome duplication and R−1 local duplications, following the most conserved, “old” duplicate lineage,

M =
“

Γo(1) ·
ˆ
(1−q)Γs(q) + qΓo(q)

˜R−1
”1/R

(S37)

where we note the explicit dependence of Γi in q (i = s, o, n): Γi(q) = (1−q)γis + q(γio + γin). Hence, conserved [resp.
non-conserved] networks correspond to M > 1 [resp. M < 1].

A similar cummulated product also controls the effective node degree exponent α and node growth rate ∆ which are
self-consistent solutions of the characteristic equation,

“

h(α, 1) ·
ˆ
h(α, q)

˜R−1
”1/R

= ∆ (S38)

where we note the explicit dependence of function h(·) for α and q: h(α, q) = (1−q)Γα
s (q) + qΓα

o (q) + qΓα
n(q) as before.
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Hence, the asymptotic degree distribution for the hybrid model is controlled by the averaged topology index,

M ′ =
“

Γo(1) · max
i

`
ΓR−1

i (q)
´”1/R

(S39)

with M ′ > 1 [resp. M ′ < 1] for scale-free (or dense) [resp. exponential] limit degree distribution. In particular, assuming

Γs(q) ≥ Γo(q), we find M ′R = Γo(1)Γ
R−1
s (q) and thus,

M ′R = Γo(1) · γR−1
ss

“

1 + q
`γso + γsn

γss
− 1
´”R−1

≃ Γo(1)
p

[h(1, q)]R−1 for γss = 1, Rq2 ≪ 1

The square root dependency in terms of cummulated growth rate by R−1 local duplications, [h(1, q)]R−1, implies that
non-conserved, exponential regimes for whole genome duplications (if Γo(1) < 1) are not easily compensated by local
duplications, suggesting that asymmetric divergence between duplicates is still required, in practice, to obtain (conserved)
scale-free networks. In this case, the asymptotic exponent of the hybrid model αh lies between those for purely local (αℓ)
and purely global (αg) duplications, that are solution of h(αℓ, q) = ∆ℓ and h(αg, 1) = ∆g, with typical scale-free exponents
αℓ + 1, αg + 1 and, hence, αh + 1 ∈ [2, 3], for k < ∞. Analysis of available PPI data is discussed in [1].

8 Non-local properties of GDD Models

The approach, based on generating functions we have developped to study the evolution of the mean degree distribution
can also be applied to study the evolution of simple non-local motifs in the networks. Here, we consider two types of motifs:
the two-node motif, N

(n)
k,l (Fig. S4B), that contains information about the correlations of connectivities between nearest

neighbors, and the three-node motif, T
(n)
k,l,m (Fig. S4C), describing connectivity correlations within a triangular motif. Two

generating functions can be defined for the average numbers of each one of these simple motifs,

H(n)(x, y) =
X

k≥0, l≥0

〈N (n)
k,l 〉x

kyl, (S40)

T (n)(x, y, z) =
X

k≥0, l≥0, m≥0

〈T (n)
k,l,m〉xkylzm. (S41)

By construction these functions are symmetric with respect to circular permutations of their arguments.
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Figure S4: Simple correlation motifs in PPI networks.

By definition and symmetry properties of these generating functions, one obtains the mean number of links 〈L(n)〉 or
triangles 〈T (n)〉, by setting all arguments to one,

H(n)(x = 1, y = 1) = 2〈L(n)〉,
T (n)(x = 1, y = 1, z = 1) = 6〈T (n)〉,

Hence, we can appropriately normalize these generating functions as,

h(n)(x, y) =
X

k≥0, l≥0

〈N (n)
k,l 〉

2〈L(n)〉x
kyl, (S42)

t(n)(x, y, z) =
X

k≥0, l≥0, m≥0

〈T (n)
k,l,m〉

6〈T (n)〉 xkylzm (S43)
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which yields two rescaled generating functions, varying from zero to one, for the two motif distributions.
Linear recurrence relations can then be written for these generating functions H(n), T (n), h(n) and t(n), using the

same approach as for the evolutionary recurrence Eq.(S2) (see Appendix B for details). These relations which contain all
information on 2- and 3-node motif correlations, can also be used to deduce simpler and more familiar quantities, such as
the average connectivity of neighbors [4,6], g(k), and the clustering coefficient [7,8], C(k).

g(k) is defined on a particular network realization as,

g(k) =
X

i:di=k

X

j∈〈i〉

dj/kNk,

where di denotes the connectivity of node i. This can be expressed in terms of the two-node motif of Fig. S4B and averaged
over all trajectories of the stochastic network evolution after n duplications as,

g(n)(k) =

*P

l≥0(l + 1)N
(n)
k−1,l

kN
(n)
k

+

≃
P

l≥0(l + 1)〈N (n)
k−1,l〉

k〈N (n)
k 〉

, (S44)

where the average of ratios can be replaced, in the asymptotic limit n → ∞, by the ratio of averages for linear growth
regimes, for which fluctuations of N

(n)
k do not diverge (see section on Statistical properties of GDD models). Note, however,

that this requires N
(n)
k ≫ 1 which excludes by definition the few most connected nodes (or “hubs”, k ≥ kh) for which

〈N (n)
k 〉 ≤ 1 (See section on Numerical simulations, below).
With this asymptotic approximation (k ≤ kh), g(n)(k) can then be expressed in terms of h(n)(x, y) and its derivatives,

g(n)(k) =
∂k−1

x h
(n)
1 (x)|x=0

∂k−1
x h

(n)
0 (x)|x=0

+ 1 (S45)

where h
(n)
1 (x) = ∂yh(n)(x, y)|y=1, and h

(n)
0 (x) = h(n)(x, y = 1). Hence, we can reduce the recurrence relation on h(n)(x, y)

to two recurrence relations on single variable functions h
(n)
1 (x) and h

(n)
0 (x) with,

h
(n)
0 (x) =

`
k

(n)´−1
∂xp(n)(x)

using the mean distribution function defined in Eq.(4).
By construction g(k) reflects correlations between connectivities of neighbor nodes and can actually be related to the

conditional probability p(k′|k) to find a node of connectivity k′ as a nearest neighbor of a node with connectivity k

p(k′|k) =
Nk−1,k′−1

kNk
, g(k) =

X

k′

p(k′|k)k′.

It is important to stress that g(n)(k) defined in this way might be non-stationary even though a stationary degree
distribution may exists. Indeed, by definition g(n)(k) satisfies the following normalization condition,

k2
(n)

=
X

k

k2p
(n)
k =

X

k

kg(n)(k)p
(n)
k . (S46)

which implies that g(n)(k) should diverge whenever k2
(n)

does so (and k
(n) → k < ∞). This is in particular the case for

actual PPI networks with scale-free degree distribution pk ∝ k−α−1 with 2 < α + 1 ≤ 3. When comparing actual PPI
network data with GDD models (as discussed in ref. [1]), we have found that such divergence can be appropriately rescaled

by the factor k
(n)

/k2
(n)

, which yields quasi-stationary rescaled distributions k
(n)

g(n)(k)/k2
(n)

(see Numerical Simulations).

The clustering coefficient, C(k), is traditionally defined as the ratio between the mean number of triangles passing by
a node of connectivity k and k(k − 1)/2, the maximum possible number of triangles around this node. When replacing the
mean of ratios by the ratio of means in the asymptotic limit, as above, we can express C(n)(k) as,

C(n)(k) =

P

l≥0, m≥0〈T
(n)

(k−2,l,m)〉
k(k − 1)〈N (n)

k 〉
. (S47)

Hence, this distribution is entirely determined by the following two generating functions p(n)(x) and t
(n)
0 (x) = t(n)(x, 1, 1)

C(n)(k) =
6〈T (n)〉

k(k − 1)〈N (n)〉
∂k−2

x t
(n)
0 (x)|x=0

∂k
xp(n)(x)|x=0

, (S48)

where 6〈T (n)〉 = t
(n)
0 (1). A self-consistent recurrence relation on t

(n)
0 (x) can be deduce from the general recurrence relation

on T (n)(x, y, z). We postpone the detailed analysis of these quantities to futur publications.
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9 Numerical simulations – GDD model convergence versus Empirical network data

We present in this section some numerical results which illustrate the main predicted regimes of the GDD model. The most
direct way to study numerically PPI network evolution according to the GDD model is to simulate the local evolutionary
rules on a graph defined, for example, as a collection of links. This kind of simulation gives access to all observables associated
with the graph, while requiring a memory space and a number of operations per duplication step roughly proportional to
the number of links. On the other hand, if we are interessed in node degree distribution only, a simpler and faster numerical
approach can be used: instead of detailing the set of links explicitly, one can solely monitor the information concerning
the collection of connectivities of the graph, ignoring correlations between connected nodes. At each duplication-divergence
step, a fraction q of nodes from the current node degree distribution is duplicated and yields two duplicate copies (“old”
and “new”) while the complementary 1 − q fraction remains “singular”. Duplication-derived interactions are then deleted
assuming a random distribution of old/new vs singular neighbor nodes with probability q vs 1 − q. The evolution of the
connectivity distribution derived in this way corresponds exactly to the evolution of the average degree distribution; even
though particular realizations are different, we obtain on average the correct mean degree distribution. This simulation only
requires a memory space proportional to the maximum connectivity and a number of operation that is still proportional
to the number of links. Since the number of links grows exponentially more rapidly than the maximum connectivity, this
numerical approach provides an efficient alternative to perform large numbers of duplications as compared with direct
simulations. The numerical results presented below are obtained using either approach and correspond only to a few
parameter choices of the GDD model in the whole genome duplication-divergence limit (q = 1). These examples capture,
however, the main features of every network evolution regimes.

From scale-free to dense regimes

We first present results for the most asymmetric whole genome duplication-divergence model [1] q = 1, γoo = 1 and γnn = 0
for four values of the only remaining variable parameter γon = γ = 0.1, 0.26, 0.5 and 0.7, Figs. S5A&B. As summarized on
the general phase diagram for q = 1, Fig. S2B, this model does not present any exponential regime, but a scale-free limit
degree distribution pk∼k−α⋆−1 with a unique α⋆ satisfying

(1 + γ)α⋆

+ γα⋆

= 1 + 2γ

for γ < 0.318, and a non-stationary dense regime for γ > (
√

5−1)/2 ≃ 0.618, while the intermediate range 0.318 < γ < 0.618
corresponds to stationary scale-free degree distributions in the non-linear asymptotic regime (i.e. (1+γ)α+γα = ∆ ≤ 1+2γ)
which we would like to investigate numerically in order to determine whether or not it corresponds to a unique pair (α, ∆),
see discussion in Asymptotic methods.

As can be seen in Fig. S5A, for γ = 0.1 the degree distribution becomes almost stationary with the predicted power
law exponent (α⋆ + 1 ≃ 2.75) for more than a decade in k and typical PPI network sizes (about 104 nodes). Besides, this
small value γ = 0.1 appears to be within the most biologically relevant range of GDD parameters to fit the available PPI
network data, Fig. S6A (orange curves), with a refined duplication-divergence model of PPI network evolution at the level
of protein domains instead of entire proteins, Fig. S6B. Details about this model, which can also take into account indirect
interactions within protein complexes and protein domain shuffling events, are discussed in ref. [1]. Fig. S5A also shows
that the degree distribution and average connectivity of first neighbors are already essentially stationary at small k ≤ 20 for
PPI networks including 103 − 104 nodes corresponding to typical sizes of empiral PPI networks. The best one-parameter
fit of this PPI network data (pk and gk) corresponds to γ = 0.26, see Figs. S5 & S6 (cyan curves) and ref. [1]. On the other
hand, numerical node degree distributions are still quite far from convergence at large k ≥ 20 for γ = 0.26 and even more
so in the non-linear regime with γ = 0.5 (green curves), even for very large PPI network sizes > 105 connected nodes. This
is related to the very slow global convergence for γ = 0.26 or γ = 0.5 by contrast with γ = 0.1, as discussed below, Fig. S7.

Simulation results for the distributions of average connectivity of first neighbor proteins g(k) [4, 6] are also shown in
Fig. S5A. g(k) is in fact normalized as g(k) · k/k2 to rescale its main divergence [1]. A slow decrease of g(k) is followed
by an abrupt fall at a threshold connectivity kh beyond which nodes (with k > kh) are rare and can be seen as “hubs” in
individual graphs of size N (kh corresponds to N ·pkh

∼1). Degree distributions for large k > kh are governed by a “hub”
statistics which is different, in general, from the predicted asymptotic statistics (although this is not so visible from the
node degree distribution curves).

Fig. S5B shows the evolution of the node degree distribution for the same most asymmetric whole genome duplication-
divergence model with γ = 0.7, corresponding to the predicted non-stationnary dense regime. As can be seen, the numerical
curves obtained for different graph sizes are clearly non-stationary in the regions of small and large k, with local slopes
varying considerably with the number of duplications (and mean size). This was obtained using the efficient numerical
approach ignoring connectivity correlations (see above), which cannot, however, be used to study the average connectivity
of first neighbor proteins g(k) (direct simulations can be performed though up to about N = 104 nodes, as shown in
Fig. S5B).
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Figure S5: Simulation results in the whole genome duplication-divergence limit with largest divergence asymmetry

(q = 1, γoo = 1, γnn = 0, γon = γ = 0.1, 0.26, 0.5, 0.7) A. Distribution pk and g(k) obtained for γ = 0.1 with n = 50 (magenta,

N = 7×103, L = 9×103) and n = 60 (red, N = 4×104, L = 5.3×104); for γ = 0.26 with n = 25 (cyan, N = 1.7×104, L = 3.5×104)

and n = 30 (blue, N = 1.3 × 105 L = 2.9 × 105); for γ = 0.5 with n = 16 (light green, N = 1.3 × 104, L = 6.4 × 104) and n = 18

(green, N = 4.6 × 104, L = 2.7 × 105); average curves are obtained for 1000 iterations. B. Distribution pk obtained for γ = 0.7 with

n = 12 (black, N = 4 × 103, L = 3.6 × 104, g(k) is also shown in this case), n = 16 (red, N = 6 × 104, L = 1.2 × 106) and n = 20

(green, N = 9 × 105, L = 3.9 × 107). Distributions are averaged over 2000 iterations.
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Figure S6: Comparison between empirical PPI network data and finite-size, duplication-divergence simulations.

A. Comparison with protein direct interaction data for Yeast from BIND [9] database (4576 proteins, 9133 physical interactions,

k = 3.99, k2 = 106). Both connectivity distribution pk (open circles) and average connectivity of first neighbor proteins gk [6] (open

triangles) are shown. Data are statistically averaged to account for gaps in connectivities for large k ≥ 20, due to the finite size of

Yeast PPI network. (cyan curves) Best one-parameter fit of the data (pk and gk) with the previous genome duplication-divergence

model with γ = 0.26, Fig. S5A (cyan curves). Numerical distributions are averaged over 10,000 network realizations (central cyan

lines) and averaged distributions plus or minus two standard deviations (±2σ) are also displayed to show the predicted dispersions

(upper and lower cyan lines). (orange curves) Best two-parameter fit of the data with a genome duplication-divergence model at

the level of protein domains (see B) with effective shuffling of protein domains (see ref. [1] for details about this model). The two

adjusted parameters (γ = 0.1 and λ = 0.3) correspond to a network growth rate of 20% (1 + 2γ) and an average of 1.5 (1/(1 − λ))

protein-binding domains per protein, in good agreement with known estimates [1]. (magenta curve) The connectivity distribution

of the underlying single-domain network (corresponding to γ = 0.1 and λ = 0.0 in Fig. S5A, magenta) is also shown to illustrate

the corresponding changes from the single-domain network (magenta curve) to the multi-domain protein network (orange curves with

λ = 0.3). B. PPI network model based on domain-domain interactions and multi-domain proteins with 1/(1−λ) domains per protein.
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Finally, we have studied numerically the convergence of the GDD model for these four parameter regimes, γ = 0.1,
0.26, 0.5 and 0.7. The results are presented in terms of ∆(n) (Fig. S7A) and its distribution (Fig. S7B) as well as through

the node variance χN
(n) =

`
〈N (n)2〉− 〈N (n)〉2

´1/2
/〈N (n)〉 (Fig. S7C). Fig. S7A confirms that the convergence is essentially

achieved for γ = 0.1 while γ = 0.26, γ = 0.7 and above all γ = 0.5 are much further away from their asymptotic limits.
For instance, we have ∆(n) ≃ 1.86 for γ = 0.5 when 〈N (n)〉 ≃ 107 nodes, while we know from the main asymptotic
analysis detailed earlier that 1.9318 ≤ ∆ ≤ 2 in the corresponding asymptotic limit. Yet, it is interesting to observed that
these numerical simultations suggest that the asymptotic form for the non-linear regime γ = 0.5 might still be unique, as
convergence appears to be fairly insensitive to topological details of the initial graphs (Fig. S7A) and stochastic dispersions
of the evolutionary trajectories: distributions of ∆(n) become even more narrow with successive duplications (Fig. S7B),
while the dispersion in network size given by χN

(n) is typically smaller for non-linear than linear regimes with a very slow
increase for large network size 〈N (n)〉 > 10, 000 nodes (Fig. S7C). Still, a formal proof of such a unique asymptotic form (if
correct) remains to be established, in general, for non-linear asymptotic regimes of the GDD model.
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Figure S7: Asymptotic convergence for the whole genome duplication-divergence limit with largest divergence asym-

metry. A. Asymptotic convergence of ∆(n) from a simple initial link (black), triangle (green) or 6-clique (red) for the GDD model

with q = 1, γoo = 1, γnn = 0 and four values of γon = γ = 0.1, 0.26, 0.5 and 0.7. The corresponding asymptotic limits, ∆ = 1.2, 1.52,

[1.9318;2] and 2, as well as the linear to non-linear regime threshold are shown on the right hand side of the plot. B. Distribution

of ∆(n) for successive duplications from different initial network topologies in the non-linear regime with γ = 0.5. C. Node variance

χN
(n) =

`

〈N(n)2〉 − 〈N(n)〉
2´1/2

/〈N(n)〉 for the GDD model with q = 1, γoo = 1, γnn = 0 and four values of γon = γ = 0.1, 0.26, 0.5

and 0.7 and starting from a simple link (2-clique).

From exponential to dense regimes

An example of GDD model exhibiting an exponential asymptotic degree distribution can be illustrated with a perfectly
symmetric whole duplication-divergence model q = 1, γoo = γon = γnn = γ ≤ 0.5. The corresponding Fig. S8A shows
a good agreement between theoretical prediction and the quasi exponential distribution obtained from simulations with
γ = 0.4 ≤ 0.5 (as γ ≥ 0.5 correspond to non-stationary dense regimes, see below).

Finally, the same symmetric whole genome duplication-divergence model exhibits also a peculiar property due to the
explicit form of its recurrence relation

p(n+1)(x) = p(n)
`
(γx + δ)2

´
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which happens to be precisely of the class of the link probability distribution Eq.(S49) studied in Appendix A. Hence, in
the limit of large n the corresponding degree distribution should have a scaling form as defined by Eq.(S50). Indeed, the

simulation results depicted in Fig. S8B show that the scaling functions k
(n)

p
(n)
k = w(k/k

(n)
) plotted for different graph

sizes are perfectly close in the asymptotic limit, although the overall evolutionary dynamics is in the non-stationary dense

regime, here, with γ = 0.6 ≥ 0.5 (i.e. k
(n) → ∞ and p

(n)
k → 0 when n → ∞).
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Figure S8: Simulation results in the whole genome duplication-divergence limit with symmetric gene divergence.

A. Distribution pk obtained for γ = 0.4 with n = 15 (black, N = 1.2 × 103, L = 1.1 × 103) and n = 20 (blue, N = 1.2 × 104,

L = 1.2 × 104); B. Scaling function w
`

k/k
(n)´

(see text) obtained for γ = 0.6 with n = 10 (black, N = 1.2 × 103, L = 6.3 × 103),

n = 12 (blue, N = 4.7× 103, L = 3.7× 104) and n = 13 (magenta, N = 9.3× 103, L = 8.8× 104) ; w
`

k/k
(n)´

is shown in both log-log

and log-lin (inset) representations; average curves are obtained for 1000 iterations.

Appendices

A Scaling for Probability Distributions

Let p
(n)
k be a probability distribution whose generating function P (n)(x) =

P

k p
(n)
k xk satisfies the following recurrence

relation
P (n+1)(x) = P (n)

ˆ
a(x)

˜
, (S49)

with a(x) a polynome with positive coefficients of degree m > 1 with a(1) = 1 and a′(1) > 1. This probability distribution
can be shown to exhibit a scaling property

p
(n)
k = [a′(1)]−nF

`
k/[a′(1)]n

´
, n ≫ 1. (S50)

Indeed, we first remark that any polynome of this kind can be decomposed as

a(x) =

m1Y

i=1

(δi + γix)

m2Y

j=1

(aj(x + cj)
2 + bj), m1 + m2 = m,

where the first product collects the real roots of the polynome while the second product corresponds to all pairs of complex
conjugate roots. Since all coefficients are positive, γi, δi, aj , bj and cj are also positive. In addition, we can choose γi+δi = 1
and aj(1 + cj)

2 + bj = 1 for all i and j.
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Then, the recurrence relation Eq.(S49) is equivalent to

p(n+1)
s =

DnX

k=[s/m]

p
(n)
k

kX

l1=0

· · ·
kX

lm1
=0

“ k
l1

”

· · ·
“ k

lm1

”

γl1
1 δk−l1 · · · γlm1

δk−lm

kX

h1=0

2h1X

s1=0

· · ·
kX

hm2
=0

2hm2X

sm2
=0

“ k
h1

”“ 2h1

s1

”

· · ·
“ k

hm2

”“ 2hm2

sm2

”

ah1

1 bk−h1

1 c2h1−s1

1 · · · ahm2
m2

b
k−hm2
m2

c
2hm2

−sm2
m2

δ
“X

i

li +
X

j

sj − s
”

(S51)

where Dn = nmD0 is the degree of P (n)(x). In the following, we fix n ≫ 1 and suppose that the first moment is large
A = [a′(1)]n ≫ 1, so that we can rescale all the variables as

x = s/A, y = k/A, yi = li/A, wj = hj/A, zj = sj/A

and finally replace the sums by integrals over rescaled variables. We choose also n to be sufficently large to have Dn/A ≫ 1.
We then apply Stirling formula to get a continuous approximation for binomial coefficients and use the expected scaling
form of p

(n)
k from Eq.(S50), so that, when replacing sums by integrals in the continious approximation, we obtain,

p(n+1)
s = A−nAm1/2+m2−1

Z ∞

x/m

dyF (y)

Z y

0

· · ·
Z y

0

dy1 . . . dym1

Z y

0

dw1

Z 2w1

0

dz1 . . .

Z y

0

dwm2

Z 2wm2

0

dzm2

δ
`X

i

yi +
X

j

zj − x
´
eAfG(y, . . .), (S52)

with

f(y, {yi}, {wj}, {zj}) =
X

i

„

y ln y − (y − yi) ln(y − yi) − yi ln yi + yi ln γi + (y − yi) ln δi

«

+

X

j

„

y ln y − (y − wj) ln(y − wj) − wi ln wj + wi ln aj + (y − wj) ln bj +

+2wi ln 2wj − (2wj − zj) ln(2wj − zj) − zj ln zj + (2wj − zj) ln cj

«

and

G(y, z1, . . . , zm) =

m1Y

i=1

„
y

2πyi(y − yi)

«1/2 m2Y

j=1

„
2y

(2π)2zj(y − wj)(2wj − zj)

«1/2

.

Since A is large, we can apply the Laplace method first to the m1 + 2m2 internal integrals. We have to minimize f with
respect to yi, wj and zj given that

P

i yi +
P

j zj = x. This can be performed by the Lagrange multiplier method by looking
for the minimum of

f(y, {yi}, {wj}, {zj}) − λ(
X

i

yi +
X

j

zj − x)

and setting
P

i yi +
P

j zj = x for the solution.
In this way we obtain a unique minimum at

y0
i =

y

ai
, w0

j =
y

hj
, z0

j =
2y

hjgj
,

with

ai = 1 +
δi

γi
eλ, gj = 1 + cje

λ, hj = 1 +
bje

2λ

ajg2
j

and λ is determined implicitly as a function of x and y from the normalization condition

y
X

i

1

ai
+ 2y

X

j

1

hjgj
= x.

After some algebra, we find that the values of f in the minimum is given by

w(y, x) = f(y, {y0
i }, {w0

j}, {z0
j }) = y

X

i

„

−(1 − a−1
i ) ln(1 − a−1

i ) − a−1
i ln a−1

i + a−1
i ln γi + (1 − a−1

i ) ln δi

«

+

y
X

j

„

−(1 − h−1
j ) ln(1 − h−1

j ) − h−1
j ln h−1

j + h−1
j ln aj + (1 − h−1

j ) ln bj +

−2h−1
j

ˆ
−(1 − g−1

j ) ln(1 − g−1
j ) − g−1

j ln g−1
j + (1 − g−1

j ) ln cj

˜
«
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Therefore we write the leading contribution from the m1 + 2m2 internal integrals in Eq.(S52) as,

eAw(y,x)g(y,x)A−(m1+2m2−1)/2, (S53)

with g(y, x) collecting all the contributions of the integrals, while the power of A can just be determined by the number of
integrations left after integrating the delta function.

The last integral to calculate in Eq.(S52) is on y

A−1/2

Z ∞

x/m

dyH(y,x)F (y)eAw(y,x)

where we have collected all slow varying terms and constants in H(y, x). When applying the Laplace method we calculate
the derivative of w(y, x) with respect to y that turns out to have a simple expression

∂yw(y0, x) =
X

i

ln
` δiai

ai − 1

´
+
X

j

ln
` bjhj

hj − 1

´
=
X

i

ln(δi + γie
−λ) +

X

j

ln
`
aj(e

−λ + cj)
2 + bj

´
= 0.

The last condition is equivalent to
Q

i(δi + γie
−λ)

Q

j

`
aj(e

−λ + cj)
2 + bj

´
= 1 which has a unique solution λ = 0, and for

the saddle point we get y0 = x/(
P

i γi + 2
P

j aj(1 + cj)) = x/a′(1).

Now it is just a matter of tedious calculations to prove that the prefactor shrinks to 1/a′(1) so that

p
(n+1)
k = [a′(1)]−n−1F

„

k/[a′(1)]n+1

«

, [a′(1)]n+1 = A · a′(1),

as anticipated from the scaling expression Eq.(S50). We were not able to determine the exact shape of the scaling function
F which is strongly dependent on the initial probability distribution (an example is shown in Fig. S8B).

B Recurrence relations on H(n) and T (n)

In order to relate H(n) and H(n+1) we remark that by partial duplication process one motif (k, l) of type Fig. S4B can
generate up to three new motifs of this kind. If the middle link of this motif links two s nodes (probability (1 − q)2), the
motif itself is kept with the probability γss and its external connectivities are modified in the same way as the connectivities
in the fundamental evolutionnary recurrence, i.e.,

xkyl 7→ [As(x)]k[As(y)]l,

so that the contribution of ss links to the H(n+1) is given by

(1 − q)2γssF
(n)(As(x),As(y)).

If the middle link of the motif connects one s and one o nodes (proba q(1 − q)), the link is presented with probability
γso, and we have to substitute

xkyl 7→ [As(x)]k[Ao(y)]l

for external links plus one new link sn which gives the factor (δsn + γsnx). By itself this link can create a new motif whose
consecutive substitution is

xkyl 7→ [As(x)]k[An(y)]l.

Therefore, the contribution of these two kinds of motifs is

q(1 − q)γso(δsn + γsnx)H(n)(As(x),Ao(y)) + q(1 − q)γsn(δso + γsox)H(n)(As(x),An(y)),

and the contribution from motifs with the middle link os is just obtained through the permutation x↔y

q(1 − q)γso(δsn + γsny)H(n)(Ao(x), As(y)) + q(1 − q)γsn(δso + γsoy)H(n)(An(x),As(y)).

Finally, motifs with the middle oo link can create 3 new motifs whose common contribution is obtained the same way as
above

q2γoo(δon + γonx)(δon + γony)H(n)(Ao(x),Ao(y)) + q2γon(δoo + γoox)(δnn + γnny)H(n)(Ao(x), An(y)) +

+q2γon(δnn + γnnx)(δoo + γooy)H(n)(An(x),Ao(y)) + q2γnn(δon + γonx)(δon + γony)H(n)(An(x), An(y))



By consequence, when collecting all this contributions we get a recurrence relation on the generating function H(n)

H(n+1)(x, y) = (1 − q)2γssF
(n)(As(x), As(y)) + (S54)

+q(1 − q)γso(δsn + γsnx)H(n)(As(x),Ao(y)) + q(1 − q)γsnH(n)(As(x),An(y)) + (x ↔ y) +

+q2γoo(δon + γonx)(δon + γony)H(n)(Ao(x),Ao(y)) + q2γon(δoo + γoox)(δnn + γnny)H(n)(Ao(x), An(y)) +

+q2γon(δnn + γnnx)(δoo + γooy)H(n)(An(x), Ao(y)) + q2γnn(δon + γonx)(δon + γony)H(n)(An(x), An(y))

This relation preserves explicitly the symmetry with respect to x ↔ y.
The recurrence relation on T (n) is derived using the same arguments as above. We remark first that a triangle already

presented in the graph can generate at most 7 new triangles, or more precisely no new triangle if it has 3s nodes, one new
triangle if it has 1o/2s nodes, up to 3 new triangles for 2o/1s nodes, and at most 7 new triangles when it consists of 3o
nodes. As previously, for external links of the motif we just have to replace x, y or z by the respective functions As, Ao or
An. The contribution of 3s triangles is

(1 − q)3γ3
ssT

(n)(As(x),As(y),As(z)),

the contribution of 1o/2s triangles

q(1 − q)2γ2
soγss(δsn + γsny)(δsn + γsnz)T (n)(Ao(x),As(y),As(z)) + (S55)

+ q(1 − q)2γ2
snγss(δso + γsoy)(δso + γsoz)T (n)(An(x),As(y), As(z)) + (x→y →z) (S56)

where the last term stands for 4 terms obtained by circular permutations of 3 variables. The contribution of 2o/1s triangle
will contain 4 terms plus 8 terms resulting from circular permutations of variables

q2(1 − q)γ2
soγoo(δsn + γsnx)2(δon + γony)(δon + γonz)T (n)(As(x),Ao(y), Ao(z)) +

q2(1 − q)γsoγonγsn(δsn + γsnx)(δso + γsox)(δoo + γooy)(δnn + γnnz)T (n)(As(x), Ao(y),An(z)) +

q2(1 − q)γsoγonγsn(δsn + γsnx)(δso + γsox)(δnn + γnny)(δoo + γooz)T (n)(As(x), An(y),Ao(z)) +

q2(1 − q)γ2
snγnn(δso + γsox)2(δon + γony)(δon + γonz)T (n)(As(x), An(y),An(z)) +

+(x→y →z).

(S57)

The contribution of 3o triangles contains 8 terms

q3γ3
oo(δon + γonx)2(δon + γony)2(δon + γonz)2T (n)(Ao(x), Ao(y),Ao(z)) +

q3γ3
nn(δon + γonx)2(δon + γony)2(δon + γonz)2T (n)(An(x),An(y), An(z)) +

q3γooγ
2
on(δnn + γnnx)2(δoo + γooy)2(δoo + γooz)2T (n)(An(x), Ao(y),Ao(z)) + (x→y →z) +

q3γnnγ2
on(δoo + γoox)2(δnn + γnny)2(δnn + γnnz)2T (n)(Ao(x), An(y),An(z)) + (x→y →z).

When getting all these contributions together, the full recurrence relation on T (n) is obtained.
The mean number of triangles is evaluated from this relation by setting all variables to one, or directly when applying

previous arguments to triangles irrespective of their external connectivities

〈T (n+1)〉 =
ˆ
(1 − q)3γ3

ss + q(1 − q)2γss(γ
2
so + 3γ2

sn) + (S58)

+ q2(1 − q)(γooγ
2
so + 3γnnγ2

sn + 6γsoγsnγon) + (S59)

+ q3(γ3
oo + 3γooγ

2
on + 3γnnγ2

on + γ3
nn

˜
〈T (n)〉. (S60)

It evidently presents an exponential growth, that is common for many extensive quantities related to the graph dynamics.
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