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INTRODUCTION

Under stressful conditions, the immune system can func-
tion in ways that are dramatically different from those
found under normal circumstances. These stress-induced
changes can correlate with the development of autoim-
mune disease (Bigazzi 1988), immunodeficiency
(Lawrence 1981), or neoplasia (Kirkvliet and Baecher-
Steppan 1982). Cells under stressful conditions will
respond by producing a variety of stress response pro-
teins, in large part to counter the deleterious effects of
exposure to stressors, but a growing body of evidence
suggests that these stress response proteins can also con-
tribute to changes in immune function. That increases in
stress protein synthesis can alter the immune response is
not surprising, since a number of these proteins have
roles essential to the development of normal immune
function. For example, some of the heat shock proteins
can contribute to antigen processing (Pierce et al 1991).
Members of the heat shock family of proteins are
encoded within the gene complex that regulates antigen
presentation (Sargent et al 1989). Other stress proteins
facilitate appropriate folding and assembly of intracellu-
lar immunoglobulin heavy chains (Munro and Petham
1986). One of the contributions that ubiquitin makes is
to direct cells of the immune response into appropriate
circulation patterns within the body (Parakh and Kannan
1993). Under some circumstances, the production of
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stress proteins has been associated with the development
of autoimmunity specific for the stress protein itself {for
review see Kaufmann 1994), but it is also possible that
stress proteins interact with other proteins or peptides to
present them as targets for immune attack (Udono and
Srivastava 1993).

Metallothionein (MT) is an interesting example of a
stress response protein that has the potential for pro-
found effects on the development of immune function,
and lessons learned from the study of this protein may
illuminate avenues of investigation that might be simi-
larly pursued in the context of other stress proteins.
Some of the potential interactions of MT are illustrated in
Figure 1. One might expect that a thorough understand-
ing of the roles that these stress proteins play in the
immunomodulation caused by stressors would not only
enable new therapeutic approaches to the treatment of
immune disease, but would also offer the potential for
management of immune responses under normal cir-
cumstances. Since MT has several unusual characteris-
tics that distinguish it from other stress response
proteins, we will first describe some details regarding the
basic structure and function of this protein before going
on to consider potential roles for MT as an intermediary
in the development of stress-induced changes in
immune response.

PROTEIN STRUCTURE AND METAL
COMPOSITION

MT is a low molecular weight molecule (approximately 7
kDa) originally recognized as a metal-binding protein in
equine kidney (Margoshes and Vallee 1957). MTs are
characterized by an unusually rich cysteine content
(approximately 30 mol %) and these stress proteins have

99



100 Borghesi and Lynes

3. Intracellular MT
functions

cations

2. MT
synthesis

4. MT release from the!
cell

metallothionein

@ metal binding site

mm  metal cation

<— thiol

1. Inducing metal

5. Interactions of MT with
other cells

7. Delivery of metal to other
(«cells or to other apoproteins

6. Binding of other metal
cations to the apothionin

Fi_. 1 Potential interactions of MT with the immune response.

since been demonstrated to be present in a variety of
species and synthesized by nearly every tissue.
Mammalian MTs are comprised of four major isoforms
(MT-1, -I1, -111, and -IV), each of which is encoded by an
individual gene. The two isoforms that are ubiquitously
expressed, MT-I and MT-I], differ by a single amino acid
charge at neutral pH (Huang et al 1977; Soumillion et al
1992). MT-III is a brain-specific isoform containing two
insertions that distinguish it from MT-I and -1I (a threo-
nine after position 4 and six amino acids in the carboxy
terminus) (Palmiter et al 1992). MT-IV also contains an
insertion (glutamate after position 4) and is expressed
only in differentiating squamous epithelia (Quaife et al
1994). There are two immunodominant epitopes present
in MT, residues 1-5 (MDPNC) and 20-25 (KCKECK)
(Garvey 1984).

Mammalian MTs consist of two domains: the § domain
(amino acids 1-30) which has 9 cysteines, and the o
domain (amino acids 31-61) which has 11 cysteines
(Furey et al 1986; Hamer 1986). These cysteines are
arranged in highly conserved Cys-Cys or Cys-X-Cys clus-
ters that are distributed evenly throughout the amino
acid sequence. Group Ib and IIb transition metals are
organized within the protein backbone into a tetrahedral
arrangement in which each metal cation is coordinated
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to four cysteines (Furey et al 1986; Robbins et al 1991).
The general order of metal binding affinity to the protein
is (Ag > Hg > Cu > Cd > Zn > Co = Ni) (Klaassen and
Lehman-McKeeman 1989).

The specific metal content of MT varies depending
upon the tissue and history of environmental exposure
of the organism (Hamer 1986; Kagi and Schaffer 1988).
In normal fetal and adult mammalian liver, the predomi-
nant metals associated with MT are copper and zinc
(Webb 1987). These metals are thought to serve as a
reservoir for metalloproteins essential to the growth and
development of the organism. Despite the high affinity
with which MT binds to metal cations, MT does have the
capacity to exchange metals with other metalloproteins.
In vitro, Zn-thionein can donate zinc to metal-requiring
apoenzymes (Li et al 1980; Udom and Brady 1980;
Churchich et al 1989) as well as extract zinc from metal-
bound Sp1 (Zeng et al 1991).

GENE ORGANIZATION

The MT genes are arranged into a tripartite structure in
which three exons are separated by two introns in pre-
cisely conserved positions. Traditional TATAA boxes, GC-
rich regions and poly (A) adenylation sites are well
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defined (Glanville et al 1981; Shworak et al 1993) and
both inducible and constitutive regulatory regions have
been identified (for review see Andrews 1990).

Murine MT genes are tandemly arranged on chromo-
some 8 and expression of MT-I and MT-II is coordinately
regulated, although MT-1 is consistently induced approx-
imately 1.4-fold more than MT-II (Palmiter 1987). The
human MTs, which are located on chromosome 16, dis-
play much greater diversity than murine MTs. As in the
mouse, MT-I and -II vary at position 11, but in man, MT-I
itself displays microheterogeneity (Hunziker and Kagi
1985). While only one isoform of MT-II (hMT-11A) has
been identified, MT-1 is recognized to have at least 8 dis-
tinct subforms (WMT-IA, -IB, -IE, -IF, -1G, -IH, -IX, and MT-
0) (Karin et al 1984; Soumillion et al 1992; Pauwels et al
1994; Stennard et al 1994). In both mouse and human,
MT-III and -IV are distinguished from MT-I and -II by
characteristic amino acid insertions and highly restricted
gene expression. There are also several MT pseudogenes
which do not transcribe functional proteins (Karin and
Richards 1982; Schmidt et al 1985; Stennard et al 1994).

INDUCING AGENTS

The predominant site of MT synthesis is the liver,
although most non-hepatic cells, including lymphocytes
and lymphoid tissues, are capable of producing MT
under the appropriate stimulus (Harley et al 1989,
Huerta et al 1989; Pauwels 1994). The only tissue specif-
ically demonstrated not to produce MT is the testes of
certain strains of rodents (Durnam and Palmiter 1981;
Shiraishi et al 1995). Expression of MT is influenced by
an array of stressors including heavy metal cations,
inflammatory agents, free radicals and organic com-
pounds.

The most potent inducers of MT are heavy metal
cations. Cadmium and zinc can induce up to a 100-fold
increase in hepatic MT (Klaassen and Lehman-
McKeeman 1989). In hepatocytes, cadmium has been
demonstrated to induce specific isoforms differentially
(hMT-IE > IIA > IG > IF > 1A > IB} (Taplitz et al 1986;
Shworak et al 1993). Other heavy metals, including Au,
Bi, Cu, Co, Hg, Fe, In, Mn, Ni and Pt, have been demon-
strated to increase MT transcription, again to a different
extent depending upon the physiologic tissue (Durnam
and Palmiter 1981; Palmiter 1987; Klaassen and Lehman-
McKeeman 1989). Differential induction may reflect dif-
ferences in the strength of cis-acting metal regulatory
elements (Carter et al 1984; Searle 1987, Radtke et al
1993), variations in the MRE-specific DNA-binding pro-
teins (Labbe et al 1993; Radtke et al 1993; Heuchel et al
1994; Otsuka et al 1994), as well as accessibility of the
tissue to the metal cation.

Physical stresses such as starvation, immobilization
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and exposure to extreme temperature also elevate MT
synthesis (5- to 10-fold increase) (Hidalgo et al 1986;
Giralt et al 1993; Sasagawa et al 1993). In these circum-
stances, there is evidence of a role for endocrine control
in MT production, although the precise influence is
unclear. Receptor-bound glucocorticoids which bind to
cis-acting glucocorticoid regulatory elements (GRE)
(Plisov et al 1994a, 1994b) have been demonstrated to
both positively and negatively regulate MT synthesis
(Hempe et al 1991; Min et al 1992). In part, it may be that
different physiological pools of MT are individually regu-
lated. For example, while both serum and hepatic MT lev-
els are increased by acute immobilization, adrenalectomy
prior to immobilization reduced serum MT but promoted
an increase in hepatic MT (Hidalgo et al 1988).

Inflammatory agents such as lipopolysaccharide (LPS)
or the inflammatory cytokines are modest inducers of
MT, stimulating a 10- to 20-fold increase in MT levels
(Brady 1982; Cousins and Leinart 1988; Min et al 1992).
In vivo administration of LPS or turpentine, compounds
which induce inflammatory responses, produced a 12-
fold and 15-fold increase, respectively, in hepatic MT
(Min et al 1992). As with heavy metal cations, induction
of MT is both tissue- and isoform-specific (Karin 1985;
Karin et al 1985; Choudhuri et al 1993). Limited informa-
tion exists about the cis-acting DNA sequences respon-
sive to acute phase response lymphokines and
inflammatory molecules although an element required
for induction by endotoxin has been defined (Durnam et
al 1984; Hamer 1986).

MT expression is also upregulated in response to free
radicals and ionizing radiation although induction
appears to be mediated by secondary events. X-irradia-
tion, for example, has been demonstrated to increase MT
in liver (Shiraishi et al 1986) and this effect was observed
only in intact animals. Irradiation of isolated cells did not
induce MT, suggesting an indirect pathway of induction
(Sato and Bremner 1993). Adrenalectomized animals still
demonstrated elevated hepatic MT after irradiation, indi-
cating that this MT increase was not via glucocorticoid
effects (Shiraishi et al 1986; Sato and Bremner 1993).
Both X- and UV-irradiation have been demonstrated to
generate activated oxygen species including hydroxyl
radical, superoxide anions and hydrogen peroxide which
can cause tissue damage leading to release of inflamma-
tory mediators and onset of the acute phase response
(Halliwell and Aruoma 1991; Sato and Bremner 1993). In
these circumstances, MT may be induced by the acute
phase lymphokines.

Induction of MT by free radicals, organics, alkylating
agents and oxidants is also thought to be mediated
through the acute phase response that is induced by
frank hepatotoxicity or the onset of inflammation
(Daston et al 1991; Min et al 1991; DiSilvestro and
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Carlson 1992). Toxins such as CCl4, paraquat and ben-
zene were found to elicit hepatic MT. Induction of MT by
these agents paralleled increases in serum fibrinogen and
ceruloplasmin, proteins characteristic of the acute phase
response. Adrenalectomy did not diminish the degree of
MT induction by these hepatotoxins indicating that
induction of MT in these situations does not depend
upon a glucocorticoid intermediary (Min et al 1991).
CCl4 has been demonstrated to initiate hepatic lipid per-
oxidation (DiSilvestro and Carlson 1992) which can
cause widespread membrane damage. Thus, inflamma-
tion induced by hepatoxins may elicit MT production.

In summary, inducible synthesis of MT- and -1I is regu-
lated by indicators of biological stress. Some of these
inducing agents (e.g. heavy metal cations or glucocorti-
coids) directly influence gene expression while other
agents (e.g. irradiation, alkylating agents) alter MT expres-
sion by causing a physiological injury that subsequently
promotes inflammatory- or hormone-mediated MT
expression. In contrast, MT-III and -IV are not responsive
to the traditional inducers of MT. MT-IV is responsive to
zinc but not cadmium while MT-III is not induced by cad-
mium, zinc, dexamethasone or endotoxin (Palmiter et al
1992; Quaife et al 1994). Other agents to which these iso-
forms are responsive have not been identified, suggesting
unique roles for these tissue-specific MTs.

MT PROTEIN TRAFFICKING

In hepatocytes, MT mRNA is predominantly associated
with free polysomes. Less than 10% of the MT message is
associated with membrane-bound ribosomes in either
basal or induced hepatocytes, suggesting that MT is a
largely intracellular protein (Shapiro and Cousins 1980;
Palmiter et al 1992). Once translated, MT is found in
almost every subcellular compartment including mito-
chondria, endoplasmic reticulum, nucleus and cytoplasm
(Banerjee et al 1982; Goering and Klaassen 1983).
However, MT is also found in significant quantities in
normal (uninduced) physiologic fluids (human serum
0.01-1.0 ng/ml; human urine 1-10 ng/ml) and is present
in elevated levels after stress (metal or restraint stress)
(Garvey and Chang 1981; Garvey 1984; Hidalgo et al
1988). Metal-stressed individuals have been found to
have significant increases in both serum and urine MT
(Falck et al 1983; Dudley et al 1985; Chan et al 1992,
Koyama et al 1992). These observations suggest that MT
may be a secreted (or released) protein even though most
MT mRNA is associated with free polysomes. It may that
MT is released from cells via a pathway distinct from the
common secretory pathway, as has been suggested for
other stress proteins (Hightower and Guidon 1989).
Alternatively, MT may be released either by passing
through a damaged plasma membrane or from apoptitic
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cells that have avoided or exceeded the normal process-
ing capacity of the organism.

PHYSIOLOGICAL FUNCTIONS OF MT

Even though MT is well characterized biochemically, the
principal physiologic function of this protein remains
unclear. As already noted, MT has been suggested to
serve as a reservoir of essential metals such as zinc and
copper, which are required for normal cell metabolism.
MT is found in high concentration in rapidly dividing tis-
sues (Brady 1982; Andersen et al 1983; Webb 1987,
Gallant and Cherian 1989) and transformed cells under-
going rapid growth frequently have elevated levels of MT
(Waalkes and Goering 1990; Cherian et al 1993). During
murine fetal development, increases in MT precede
thymic outgrowths and MT levels are reduced during
involution (Olafson 1985). In the adult, MT levels are
maximal preceding the regeneration process after partial
hepatectomy (Margeli et al 1994; Tsujikawa et al 1994).
Taken together, these data suggest that MT contributes
to cell proliferation and differentiation.

The recently discovered isoforms, MT-III and -IV
(which are not responsive to many of the traditional
inducers of MT-I and -1II), may have a role specific to cell
maturation. Squamous epithelial cells have been shown
to undergo a switch in expression from MT-I to MT-IV
during differentiation, suggesting that MT-IV may pro-
mote events necessary for epithelial-specific develop-
ment (Quaife et al 1994). In contrast to the growth-
promoting effects of MTI, -II and -IV, MT-III has been
shown to inhibit neurotrophic activity in the brain, indi-
cating a negative role for this MT isoform (Erickson et al
1994; Masters et al 1994b; Sewell et al 1995).

Another proposed role for MT is that of a cellular
defense mechanism. Due to a high thiol content, MT is a
strong nucleophile that can bind not only metal cations
but also reactive oxygen intermediaries (ROI) and
organic radicals (Chubatsu and Meneghini 1993; Sato
and Bremner 1993). Preinduction of MT expression cor-
relates with cell survival subsequent to exposure to oth-
erwise lethal doses of metal cations, alkylating agents
and free radicals and overexpression of MT has been
demonstrated to protect cells from the toxic side-effects
of several antineoplastic agents. In view of MT’s nuclear
and cytoplasmic locations, MT can confer protection to
both DNA and cytoplasmic components (Banerjee et al
1982; Goering and Klaassen 1983; Kuo et al 1994).
Damage to MT itself can be repaired (in vitro) by glu-
tathione (Thornalley and Vasak 1985). It is possible that
MT released to the extracellular environment may also
have the capacity to serve as a biological nucleophile.
Whether detoxification is the primary biological role of
MT remains to be established.
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NON-PROTECTIVE EFFECTS OF MT

Although MT has the capacity to scavenge metal cations,
free radicals and other biological toxicants, there are
some instances in which MT does not play a protective
role. For example, Cd,Zn-MT has been shown to actually
promote genotoxicity (single-strand DNA darnage)
(Muller et al 1991, 1994). MT is also associated with the
onset of metal-mediated nephropathy (Chan et al 1992,
Wang et al 1993). Degradation of Cd-MT in the kidney
caused localized release of the metals to the S1 and S2
segments of the proximal tubule, the primary sites of
nephrotoxicity (Dorian et al 1995). MT can also cause
physiologic damage by altering essential metal availabil-
ity. MT induced by exposure of pregnant dams to
styrene, a maternal but not developmental toxin, caused
redistribution of zinc from the circulatory system to the
maternal liver. Reduction in available zinc led to pro-
found developmental toxicity in the fetus (Daston et al
1991).

DISORDERS ASSOCIATED WITH
MISREGULATION OF MT

Several pathological disorders are associated with altered
regulation of MT including Indian Childhood Cirrhosis
(ICC), Menkes’ disease and Wilson’s disease. Individuals
with ICC are uniquely sensitive to copper poisoning and
manifest symptoms of toxicity upon exposure to environ-
mental copper (e.g. via domestic copper piping). Hahn et
al (1994) demonstrated that, while copper transport into
cells was not altered, both basal and inducible expression
of hMT-IIA (mRNA and protein) was markedly reduced in
these patients. No mutations were found in the regula-
tory region of this gene, suggesting a defect in a trans-
acting factor.

Menkes’ disease is also marked by impaired copper reg-
ulation (Hunt and Clarke 1983; Leone et al 1985). Like
ICC, copper uptake by cells is normal; however, individu-
als afflicted by Menkes’ have an overabundance of MT.
The synthesis of MT in these patients is sensitive to 4-
fold lower concentrations of copper. Basal expression,
zinc-, or glucocorticoid-induced MT were not different
than controls, indicating a copper-specific defect. Again,
a trans-acting mechanism is implicated as the disease is
X-linked and thus the defect does not appear to lie within
the MT genes themselves (Riordan and Jolicoeur-Paquet
1982; Leone et al 1985).

Patients with Wilson’s disease have elevated copper
levels in liver, brain, kidney and urine leading to eventual
hepatic and neurological impairment. Although MT
mRNA is only slightly elevated, these individuals have a
substantial increase in MT protein. Research in the
murine model of Wilson’s disease, the toxic milk (tx)
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mutation, indicates that the increases in protein levels
may actually be due to an increase in the half-life of
hepatic MT (Hunt et al 1986; Koropatnick and Cherian
1993; Stephenson et al 1994). Whether the defect is due
to structural alteration rendering the MT protease resis-
tant or is a defect with the degradative enzymes them-
selves is not known. It has also been suggested that the
primary defect lies in aberrant copper transport that leads
secondarily to elevations in MT (Koropatnick and
Cherian 1994; Mercer et al 1994).

In order to further explore the functions of MT,
Palmiter et al (1993) have engineered mice that overex-
press MT-I while two other research groups have inde-
pendently developed mice lacking expression of both
MT-I and -1I (Michalska and Choo 1993; Masters et al
1994a). While maintained under ideal colony conditions,
none of these mice display overt abnormalities. However,
the mice deficient in MT were extremely susceptible to
the effects of in vivo metal exposure and cells isolated
from these mice were sensitive to the toxic effects of
oxidative stress and anticancer agents (Kondo et al 1995;
Lazo et al 1995). The MT knockout and MT transgenic
mouse strains will each serve as an interesting model in
which to study the physiologic roles of MT.

MT AND THE IMMUNE RESPONSE

In light of the rather dramatic changes to immune func-
tioning that can be elicited by heavy metals and other
inducers of MT, it is reasonable to consider the potential
role of MT as a mediator of some forms of immunomod-
ulation. Our laboratory has been engaged in a study of
the ways in which MT might act to alter immunity, both
in the context of metal- (and other toxicant-) induction
of MT, and in the context of MT synthesized as a conse-
quence of normal cellular responses to other inflamma-
tory agents. One of our original observations showed
that MT was capable of provoking murine lymphocyte
proliferation, either when added alone to splenocyte cul-
tures, or when added in the context of a T cell-specific
mitogen (Con A) or B cell-specific mitogen (LPS). MT-
mediated lymphoproliferation in the presence of mito-
gen was synergistic: MT plus mitogen was able to elicit
dramatically higher levels of proliferation than was mito-
gen or MT alone (Lynes et al 1990). This proliferation
appears to depend in part on binding to the lymphocyte
plasma membrane. Binding of MT can be observed to
occur with purified populations of T and B lymphocytes
(Borghesi et al 1996), as well as to adherent
macrophages (Youn et al 1995). Despite the binding of
MT to the T cell plasma membrane, MT was unable to
initiate proliferation in purified T cells unless added in
the context of T cell mitogen (Fig. 2). In contrast, B cells
were capable of responding to MT added alone, or in the
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Fig. 2 Effects of MT on lymphocyte proliferation. Purified splenic T
or B cells isolated from C3H/HeJ mice were cultured with mitogen
(1 pg/ml Concanavalin A or 10 pg/mi lipopolysaccharide), MT (10
HM), or mitogen plus MT for 3 days. Proliferation was assessed by
tritiated thymidine incorporation in triplicate cultures.

context of mitogen. This may suggest that targets of MT
binding on B cells include receptors that can mediate
Iymphoproliferative signals, but that the targets bound
on the T cell plasma membrane are not involved in the
Iymphoproliferative response. The ability of MT to
enhance the proliferation elicited by Con A in these T
cell preparations appears to depend upon the potential
of MT to serve as a scavenger of the oxidative by-prod-
ucts of metabolism. In support of this conclusion, MT
can block the suppressive effects of N-ethylmaleimide, a
thiol-specific agent that ordinarily is capable of sup-
pressing the proliferative response of T cells to Con A.
Intriguingly, MT is also able to induce lymphoprolifera-
tion in C3H/HeJ B cells in the presence of LPS (Fig. 2)
(Borghesi et al 1996). This is somewhat surprising since
B cells from this strain are otherwise refractive to stimu-
lation by LPS alone, due to a defect in PKC translocation
(Shinji et al 1994). This suggests that MT overcomes the
PKC defect in these cells, or alternatively, circumvents
the consequences of this defect.

MT also contributes to the functioning of
macrophages. Leibbrandt and Koropatnick (1994)
demonstrated that addition of LPS to the monocytic line
THP-1 leads to a reduction in MT synthesis. This
decrease in MT production is paralleled by an inhibition
in the ability of the THP-1 cells to undergo an LPS-
induced respiratory burst. Liebbrandt et al (1994) also
used anti-sense RNA to specifically down-regulate MT
production in THP-1 cells. Again, LPS-induced hydrogen
peroxide production was significantly decreased in these
cultures, as was the ability of these cells to adhere to a
substratum or to invade a reconstituted basement mem-
brane. These data suggest that intracellular MT may
contribute to increases in monocyte activation, and that
reduction in MT expression can limit the efficacy of this
arm of the immune response. As shown in Figure 34,
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Fig. 3 Stimulatory effects of MT on macrophage activity.

(A) Cultures of adherent BALB/cByJ macrophages were incubated
with 20 pM MT or 80 nM PMA at 37°C. Generation of superoxide
radicals was assessed by measuring the capacity of each sample
to reduce the substrate, ferricytochrome C, in the prescence or
absence of superoxide dismutase. (B) Macrophages were
incubated with opsonized Candida albicans in the presence or
absence of MT for 3 h. Following cytocentrifugation and fixation,
the number of intracellular, dead yeast was assessed using
Giemsa stain. Candidacidal activity was calculated as (number of
intracellular dead yeast/total number of intracellular yeast) x 100.

extracellular MT can induce a modest but significant
superoxide burst in peritoneal macrophages (Youn et al
1995). This increase in metabolic activity parallels an
increase in the ability of these cells to kill phagocytized
yeast, but there is no effect on attachment or engulf-
ment of the yeast by these macrophages (Fig. 3B). It may
be that increased release of MT synthesized after an
encounter with a stressor serves to activate
macrophages in ways that subsequently cause bystander
damage to surrounding tissue. If this is the case, a block-
ade of cellular interactions with extracellular MT would
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have important value in mitigating the damage associ-
ated with inflammation.

MT also has effects on the in vivo humoral immune
response. Mice immunized with either ovalbumin (OVA)
or sheep erythrocytes (sRBC) in the presence of MT
developed significantly lower antibody responses to
either antigen. For example, mice co-injected with OVA in
the presence of MT had a 20-30% decrease in circulating
anti~-OVA IgG as compared to animals injected with OVA
alone, even though the kinetics of the response was sim-
ilar in both treatment groups (Lynes et al 1993). A mono-
clonal antibody selected to be specific for MT was able to
block this immunosuppression. In the MT-treated ani-
mals, total serum IgG levels were unchanged, indicating
that MT did not cause a global immunosuppression. In
an in vitro system of antigen presentation, MT was found
to be capable of dramatic inhibitory effects on the capac-
ity of macrophages to stimulate T cell proliferation.

The molecular mechanisms by which MT mediates
changes in the immune system remain to be clarified.
Some of the interactions described above depend upon
thiols within the protein backbone. If the MT is alkylated,
or treated in a fashion that allows oxidation of the thiols,
the ability to stimulate lymphoproliferation can be elimi-
nated. Moreover, addition of 2-mercaptoethanol can also
reduce the mitogenic potential of MT. While it is possible
that some of the effects attributed to MT depend upon
the associated metal cations, and that the thionein serves
simply to deliver those cations to target tissues, certain of
these immunomodulatory effects cannot be ascribed to
the metals. We know, for example, that Cd added to cells
as a salt, in amounts equimolar to that added with MT,
will be toxic to these cells. Moreover, experiments with
apothionein have shown that the protein backbone in
the absence of metal cations is capable of some of these
same immunomodulatory activities. Finally, the observa-
tion that anti-MT antibody can suppress the effects of MT
on humoral responses supports the idea that it is not sim-
ply the presence of the metal cations that cause MT-
mediated immunosuppression.

SUMMARY

The stress response proteins each have somewhat unique
characteristics that enable them to function under condi-
tions of cellular stress, and to contribute to cellular sur-
vival in difficult times. The immune response is, by
definition, a mechanism that often operates in times of
cellular stress, and even creates stress during its opera-
tion. Cells called upon to respond to tissue damage
caused by inflammation can have extraordinary
demands placed upon them and surrounding tissue may
suffer damaging conditions that were originally estab-
lished to eliminate the source of the inflammation. Stress
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proteins may be released from some of these damaged
cells as a programmed response to the stress, or as a sim-
ple consequence of excessive damage to the plasma
membrane. In either instance, there is the opportunity
for these stress proteins to interact with cells and pro-
teins in the extracellular environment. It may be that
those same characteristics that enable stress proteins to
interact with structures within the cell also enable inter-
actions outside the cell, but with dramatically different
results. As has been found with MT, interference with
these extracellular interactions may decrease the conse-
quences of stress on the immune response, and may
enable more effective immunity. It may also be possible
to employ the various stress proteins to manipulate nor-
mal immune function.
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