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Phylogenetic analysis of 42 membrane protein (M) genes of influenza A viruses from a variety of hosts and
geographic locations showed that these genes have evolved into at least four major host-related lineages: (i)
A/Equine/Prague/56, which has the most divergent M gene; (ii) a lineage containing only H13 gull viruses; (iii)
a lineage containing both human and classical swine viruses; and (iv) an avian lineage subdivided into North
American avian viruses (including recent equine viruses) and Old World avian viruses (including avianlike
swine strains). The M gene evolutionary tree differs from those published for other influenza virus genes (e.g.,
PB1, PB2, PA, and NP) but shows the most similarity to the NP gene phylogeny. Separate analyses of the Ml
and M2 genes and their products revealed very different patterns of evolution. Compared with other influenza
virus genes (e.g., PB2 and NP), the Ml and M2 genes are evolving relatively slowly, especially the Ml gene.
The MI and M2 gene products, which are encoded in different but partially overlapping reading frames,
revealed that the Ml protein is evolving very slowly in all lineages, whereas the M2 protein shows significant
evolution in human and swine lineages but virtually none in avian lineages. The evolutionary rates of the Ml
proteins were much lower than those of M2 proteins and other internal proteins of influenza viruses (e.g., PB2
and NP), while M2 proteins showed less rapid evolution compared with other surface proteins (e.g., H3HA).
Our results also indicate that for influenza A viruses, the evolution of one protein of a bicistronic gene can affect
the evolution of the other protein. It is apparent that conservation of the Ml protein places constraints on Ml
gene evolution and in turn affects the evolution of the M2 gene and its product.

The genome of influenza A viruses consists of eight
single-stranded RNA segments of negative sense (22). Influ-
enza A viruses can infect a variety of avian and mammalian
hosts, including humans. Mixed infection with different
influenza virus strains can lead to reassortment of the
genomic RNA segments (25, 26), a process that may be
involved in the origin of new influenza pandemics (45).
Hence, analysis of the nucleotide sequences of each of these
gene segments may provide valuable information about the
evolutionary relationships among influenza A viruses iso-
lated from different hosts. Influenza A virus surface proteins
(hemagglutinin [HA] and neuraminidase [NA]) have been
widely studied (5, 12, 20, 21, 28) in contrast to the internal
and nonstructural protein genes (PA, PB1, PB2, NP, and
NS), whose evolutionary pathways were established only
recently (13-15, 19, 32, 33).
The membrane protein (M) gene of influenza A viruses

is 1,027 nucleotides long and encodes two proteins, MI
and M2, derived by splicing of mRNA (1, 22). An open
reading frame, beginning at nucleotide 26 and extending
to nucleotide 781 (MI gene), encodes the Ml protein,
while nucleotides 26 to 51 and 740 to 1,004 in a spliced
+1 reading frame (M2 gene) encode the M2 protein. The
Ml internal protein (252 amino acids long) is a major
component of the virus particle with an essential role in
virus assembly and budding (10). M2 (97 amino acids long)
is a membrane-associated protein with an undefined role
in virus replication (24). Recently, Sugrue et al. (44) sug-
gested that M2 may function to protect the structural in-
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tegrity of the acid-sensitive glycoprotein (e.g., HA) by
modulating the effect of low pH encountered in the trans-
Golgi network.
The available evidence indicates that M genes are highly

conserved (22, 23, 39) and that the same M gene has been
retained throughout the antigenic shift of HA and NA in
human pandemics (17, 40). It has been reported that human
and avian virus M genes can be distinguished by several
amino acid substitutions in both Ml and M2 proteins (7).
Otherwise, there is little information about the evolutionary
relationships among M genes isolated from different host
species.
The influenza A virus M gene is bicistronic, as described

above. Other RNA viruses also have different overlapping
cistrons (e.g., paramyxoviruses, rhabdoviruses, reoviruses,
coronaviruses, etc. [43]). It is possible that the evolution
of the products of polycistronic virus genes with overlapp-
ing regions are tightly linked, as has been shown before
(42). However, the effect of this linkage on the evolution
of polycistronic genes has not been investigated in de-
tail. Because influenza A virus Ml and M2 proteins are
obviously different in their structure and function, they
might serve as evolutionary models of polycistronic genes.
We therefore addressed the following questions in a phylo-
genetic study of influenza A virus M genes: (i) What are the
evolutionary pathways of influenza A virus M genes isolated
from a variety of hosts, and how do these pathways compare
with those of other influenza virus genes? (ii) How do the
evolution rates of Ml and M2 proteins, which are derived
from the same RNA segment in different reading frames,
compare?
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TABLE 1. Influenza virus strains used in phylogenetic analyses

Strain Abbreviation reference

A/Equine/Prague/1/56(H7N7)
A/WS/33(H1Nl)
A/WSN/33(HlNl)
A/Puerto Rico/8/34(HlNl)
A/Fort Warren/1/50(HlN1)
A/USSR/90/77(HlNl)
A/Singapore/l/57(H2N2)
A/Ann Arbor/6/60(H2N2)
A/Korea/426/68(H2N2)
A/Aichi/2/68(H3N2)
A/Udorn/307/72(H3N2)
A/Port Chalmers/1/73(H3N2)
A/Bangkok/1/79(H3N2)
A/Memphis/8/88(H3N2)
A/Swine/Iowa/15/30(HlN1)
A/Swine/29/37(H1N1)
A/Swine/March/52(HlN1)
A/Swine/May/54(HlN1)
A/Swine/Wisconsin/1/61(H1N1)
A/Swine/Tennessee/24/77(H1N 1)
A/Swine/Ontario/2/81(HlNl)
A/Wisconsin/3523/88(HlN1)
A/Swine/lowa/17672/88(H1N1)
A/Budgerigar/Hokkaido/1/77(H4N6)
A/Chicken/Victoria/1/85(H7N7)
A/Duck/Czechoslovakia/56(H4N6)
A/Swine/Hong Kong/127/82(H3N2)
A/Swine/Netherlands/12/85(HlNl)
A/FPV/Dobson/27(H7N7)
A/FPV/Weybridge/27(H7N7)
A/FPV/Rostock/34(H7Nl)
A/Chicken/Pennsylvania/1370/83(H5N2)
A/Chicken/Pennsylvania/1/83(H5N2)
A/Turkey/Minnesota/833/80(H4N2)
A/Equine/Tennessee/5/86(H3N8)
A/Equine/Kentucky/2/86(H3N8)
A/Mallard/NY/6750/78(H2N2)
A/Pintail/Alberta/119/79(H4N6)
A/Turkey/Minnesota/166/81(HlN1)
A/Gull/Massachusetts/26/80(H13N6)
A/Gull/Maryland/1824/78(H13N9)
A/Gull/Maryland/1815/79(H13N6)
B/Lee/40

EQPR56
WS33
WSN33
PR8-34
FW50
USSR77
SING57
AA60
KOREA68
AICH168
UDORN72
PC73
BANG79
MEM88
SWIA30
SW29-37
SWMAR52
SWMAY54
SWWIS61
SWTN77
SWONT81
WIS88
SWIA88
BUDHOK77
CKVIC85
DKCZ56
SWHK82
SWNED85
FPVD27
FPVW27
FPVR34
CKPEN1370-83
CKPEN1-83
TYMN80
EQTN86
EQKY86
MLRDNY78
PINALB79
TYMN81
GULMA80
GULMD78
GULMD79
B-LEE40

This report
50
27
46
50
37
50
11
This report
This report
23
50
34
This report
This report
This report
This report
This report
This report
This report
This report
This report
This report
This report
This report
This report
This report
This report
This report
27
29
4
This report
This report
This report
This report
7
30
This report
This report
This report
This report
6

EQPR56 (H7N7)
WS33 (HlNl)

1920. WSN33(HlNl)
PR8-34 (HIN1)

FW50(H1N1)
/t _ USSR77(HlNl)

1923/ SING57(H2N2)
/ -AA60 (H2N2 )

1905 1940 / KOREA68(H2N2)
\ 1952 _ AICHI68(H3N2)
/ / _ tUDORN72 (H3N2)

1912 1958 / PC73(H3N2)
1961 / BANG79(H3N2)

1965 MEM88(H3N2)
B/Lee4O SWIA30(H1N1)

SW29-37 (HlNl)
SWMAR52(H1N1)

1930 SWMAY54(H1N1)
1935 SWWIS61(H1N1)

1940 SWTN77(HlNl)
1953 SWONT81(HlNl)

1969 < WIS88(HlNl)
1977 SWIA88(H1N1)

BUDHOK77 (H4N6)
CKVIC85 (H5N2)

DKCZ56 (H4N6)
SWHK82 (H3N2)
SWNED85 (HlNl)
FPVD27 (H7N7)

FPVW27 (H7N7)
FPVR34 (H7N1)

CKPEN1370-83 (H5N2)
CKPEN1-83 (H5N2)

TYMN80 (H4N2)
EQKY86 (H3N8)
EQTN86 (H3N8)

MLRDNY78 (H2N2)
10 PINALB79(H4N6)

TYMN81(HlNl)
Nucleotide GULMA80(H13N6)
Changes GULMD78 (H13N9)

GULMD79 (H13N6)

FIG. 1. Phylogenetic trees for influenza A virus M genes. Nucle-
otide tree rooted to B/Lee/40 M (left). Full-length sequences of 42 M
genes were analyzed with PAUP, which relies on a maximum
parsimony algorithm. The lengths of the horizontal lines are propor-
tional to the minimum number of nucleotide differences required to
join nodes and M gene sequences. Vertical lines are used to separate
progeny virus lineages at the point where they branch off from the
common ancestral virus lineage. Their lengths are not important.
The nucleotide sequence of the B/Lee/40 M gene (6) was aligned
with the influenza A virus M genes by use of the Needleman-
Wunsch pairwise alignment algorithm. Alignment was achieved with
no deletion from residue 1 to 756. The aligned B/Lee/40 M gene
sequence shows 644 to 661 base differences (or 65.8 to 67.5%
differences) compared with those for influenza A virus M genes.
Amino acid trees of Ml (center) and M2 (right) proteins were
generated by using the topology option of PAUP to make predicted
amino acid sequences conform to the full-length nucleotide tree
(left). Strain abbreviations are listed in Table 1.

MATERIALS AND METHODS

Viruses and viral RNA extraction. Twenty-seven viral
isolates representing a spectrum of geographic locations,
host species, and dates of isolation were drawn from the
repository at St. Jude Children's Research Hospital, Mem-
phis, Tenn. Fifteen additional influenza A virus and
B/Lee/40 M gene sequences were taken from the literature
and data bank sources (Table 1). The viral isolates were

grown in 11-day-old embryonated chicken eggs at 35°C for 2
days and purified by differential sedimentation through 25 to
70% sucrose gradients in a Beckman SW28 rotor. Viral RNA
was isolated by treatment of purified virus with proteinase K
and sodium dodecyl sulfate, followed by extraction with
phenol-chloroform (1:1), as described previously (3).

Molecular cloning of the M genes. Full-length cDNA was

prepared by reverse transcription of virion RNA of each
virus as previously described (18). Briefly, cDNA was syn-

thesized from the viral RNA template by using a 12-base
synthetic primer complementary to the 3' terminus of the
template in the presence of [cx-32PjdATP. Second-strand

DNA synthesis was carried out with a 13-base synthetic
primer complementary to the 3' end of the cDNA and the
Klenow fragment of Escherichia coli DNA polymerase I.
Double-stranded cDNAs were then blunt-end ligated into the
PvuII site of pATX vector DNA (a derivative of pAT153,
courtesy of Clayton Naeve, St. Jude Children's Research
Hospital, Memphis, Tenn.).

Nucleotide sequencing. The nucleotide sequences of the
cloned M cDNA were determined by the dideoxynucleotide
chain termination method (38). Oligodeoxynucleotide prim-
ers were annealed to double-stranded template DNA dena-
tured with NaOH as described by Chen and Seeburg (9) and
extended with modified T7 DNA polymerase (Sequenase;
U.S. Biochemical, Cleveland, Ohio).

Oligonucleotide primers complementary to the M gene
segment were synthesized on an Applied Biosystems model
380A DNA synthesizer by the cold-phase phosphoramidite
method. The reaction products were resolved on 6% poly-
acrylamide-7 M urea thin gels containing a 1 to 5 x TBE (90
mM Tris-borate [pH 8.0], 1 mM EDTA) gradient. The
nucleotide sequences of A/Equine/Prague/1/56 (H7N7) and

J. VIROL.
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FIG. 1-Continued.

A/Swine/Wisconsin/1/61 (HlNl) were determined by direct
sequencing of viral RNA. The primers were annealed to
virion RNA and extended with avian myeloblastosis virus
reverse transcriptase in the presence of [a-32P]dATP.
Sequence analysis. Phylogenetic analysis of sequence data

was performed with the PAUP software package version
2.4 (David Swofford, Illinois Natural History Survey,
Champaign, Ill.). PAUP employs the maximum parsimony
method to generate phylogenetic trees. Trees of the shortest
length (most parsimonious) were found by implementing the
MULPARS, SWAP=GLOBAL, and HOLD=10 options of
PAUP.

Nucleotide sequence accession numbers. The sequences
discussed here are available from the GenBank data base
(accession numbers M63515 through M63540).

RESULTS AND DISCUSSION

Comparative analysis ofM gene nucleotide sequences. Each
of the cloned M genes comprised an identical number of
nucleotides (1,027 bases); no insertions or deletions were

found in any of the sequences.
A phylogenetic analysis of 42 influenza virus M gene

segment nucleotide sequences is presented in Fig. 1. Exclud-
ing the B/Lee/40 sequence, PAUP identified nine evolution-
ary trees of equal length, consisting of 956 steps (nucleotide
changes). The next-shortest trees were two steps longer.
These nine trees varied only in the attachment of SING57
and AA60 with adjacent terminal branches. We chose one of
them with a branching order for the two viruses that were
most consistent with the sequence of isolation dates (Fig. 1,
left). The aligned B/Lee/40 M sequence is separated from the
root of influenza A virus M genes by a branch distance of 613
nucleotide changes (not shown).
Our analysis indicates that M genes have evolved into at

least four major host-related lineages rooted at the deep

forks of the tree. The first lineage is that of EQPR56 (Table
1), which contains the most-divergent M gene. The next
major fork is represented by the split between H13 gull M
genes and those of human, swine, and avian viruses. The
third fork of the tree represents a separation of human and
classical swine viruses (i.e., those related to Swine/Iowa/15/
30) from avian lineages. M genes of the avian lineage are

subdivided into Old World and North American groups, the
latter containing representatives of recent equine virus M
genes (EQKY86, EQTN86). Within the Old World avian
group are M genes of avianlike swine viruses (SWHK82,
SWNED85). The PA, PB1, and NP genes of these avianlike
swine viruses show the same evolutionary patterns (14, 19,
33), demonstrating that H3N2 and HlNl avian viruses can
infect swine hosts.
The distant relationship of EQPR56 to other influenza

viruses is also seen in the evolution ofNP and PB2 genes (14,
15). The coupling of classical swine and human M gene
lineages indicates that they share a common ancestor, which
has been shown in previous evolutionary analyses of PA,
PB2, and NP genes (13-15, 33). The M gene of the human
virus isolate WIS88 is contained within the classic swine
virus group and is consistent with its identification as a swine
virus (36). A major difference in the evolutionary history of
the M gene and that of the NP protein was seen. The NP
gene of the equine H3 virus isolates form a divergent group
with no close relatives in other species. The M genes of these
viruses, however, appear to have been derived relatively
recently from North American avian viruses. This indicates
that these genes have been reassorted at different times.

Evolutionary relationships of Ml and M2 proteins. To
investigate the evolutionary relationships between the two
M gene products, we translated the Ml and M2 open reading
frames and then analyzed their amino acid sequences (Fig.
2). Amino acid substitutions were observed at 62 (24.6%)
positions among the 252 amino acid residues of the Ml

EQPR56
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FIG. 2. Predicted amino acid sequences of the Ml (A-1 and A-2) and M2 (B) proteins. To facilitate detection of patterns of derived amino
acid substitutions, we have written in full the sequence of the M gene of TYMN80, which is the most primitive gene (the closest to the root
of the tree). Only differences from the TYMN80 baseline are shown for other sequences. All of the strains represented are listed in Table 1.
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FIG. 2-Continued.

protein; differences were distributed uniformly throughout
the protein (Fig. 3). Amino acid sequence divergence was
greater in the M2 protein, with 47 (48.5%) of the 97 amino
acids showing differences, mainly within residues 10 to 28,
54 to 57, and 77 to 93. A minimum of 18 N-terminal amino
acids of the M2 protein are exposed at the cell surface
(extracellular domain, Fig. 3, A [24]), a single hydrophobic
domain of 19 amino acids is anchored in the cell membrane
(transmembrane domain, Fig. 3, B), and 54 C-terminal
residues are located on the cytoplasmic side of the cell
membrane (cytoplasmic domain, Fig. 3, C). An extensive
region of high divergence is evident between the extracellu-
lar and transmembrane domains of the M2 protein. Two
less-extensive regions of amino acid substitutions are evi-
dent in the cytoplasmic domain.
The amino acid terminal region shared by the Ml and M2

genes (nucleotides 26 to 51; nine amino acid residues) was

completely conserved in all strains used in our study (Fig. 2
and 3). In the region of overlap between Ml and M2,
constraints imposed by the Ml protein have clearly affected
the changes in the M2 protein. Although this region of M2
shows high variability (10 of 13 amino acids vary), all of
these mutations are second-codon position changes that
result in third-position, silent changes in Ml. In this region,
there are only three third-codon changes in M2, and only two
amino acid substitutions in Ml.
To compare the evolution of Ml and M2, we constructed

phylogenetic trees for each of the proteins, showing the
amino acid changes occurring on the evolutionary pathways

0

--3+

Amino Acid Position
50 100 150 200 252

NH'l l1

NIC

II 1111 lii iiiin

1 A2

N3oIIII

NH II I COO~

coo

0 50 97

FIG. 3. Summary of the amino acid substitutions in 42 M pro-
teins of influenza A viruses. Vertical lines show the positions of
amino acid substitutions in more than two strains. The dashed lines
indicate the region where nucleotides of the Ml and M2 genes
overlap. A, B, and C indicate the extracellular, transmembrane, and
cytoplasmic domains of M2 protein, respectively, as suggested by
Lamb et al. (24).
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A---~~~^ more than 9 times slower in swine strains).

M2, a surface protein, may be subject to greater host-
-* immune selective pressures than Ml, an internal protein,

although the latter may be recognized by cytotoxic T cells
0° o0 (16, 49). Other internal virus proteins are evolving faster

° co ---A -- than Ml: human virus NP and PB2 proteins are evolving at
. 1.14 x 10-3 and 0.46 x 10-3 amino acid changes per residue
1960 1970 1980 1990

per year (14, 15), respectively, compared with 0.08 x 10-3
of Isolation amino acid changes per residue per year for human virus Ml.

onary rates for M genes (top) and The high degree of conservation among Ml proteins may be
es were estimated by regression of related to functional constraints that could arise from possi-
le or amino acid changes from the ble multiple interactions with other internal virus proteins.
logenetic trees per 100 sites (Fig. 2). Although the functional relationships between the Ml pro-

tein and other influenza virus proteins are not yet clear, Ml
does bind to ribonucleoprotein complexes (35, 51) and at

Le nucleotide sequence. This least two RNA binding domains, centered around residue 80
omologous branches in nucle- to 109 and 129 to 164, have been suggested (47). Our results
or differences in the effect of show that there are some amino acid substitutions in these
changes among lineages (14). sites (Fig. 2), but they do not change the hydrophilicity of the

id tree show much less evolu- molecule, an important requirement for RNA binding activ-
gene segment, indicating that ity. It has also been suggested that the N-terminal third of
ie M gene are silent. Thus, the Ml serves to anchor the protein in the lipid bilayer of the
erved across the various host- viral envelope (48). This region is extremely conserved
-latively few amino acid differ- among all strains used in this study (Fig. 2).
as found in fowl plague virus Divergence dates for the hypothetical common ancestor.
appreciable evolution relative Estimates of evolutionary rates based on the whole M gene
oteins. By contrast, the M2 phylogeny were used to calculate dates of divergence from
evolution among the human the hypothetical ancestral nodes of the human and classical

Ily none in the avian lineages. swine lineages. This was done by dividing the branch-
;enes and their products. The internodal distance by the evolutionary rate, yielding a
-rgence of M2 compared with distance in years (14). The estimated divergence dates for
Liggests that they are evolving the human and classical swine lineages are 1905 and 1912,
o selective pressures or struc- respectively (Fig. 1, left). These estimates are within the
tigate this possibility more ranges estimated for the NP (1914) and PB2 (1910) genes (14,
)lutionary rates of human and 15), supporting the idea that the human and classical swine
and their products by plotting virus lineages diverged from a common ancestor before

i against the branch distance to 1918.
Ie (Fig. 4). Because the Ml and
ngths, the rates are expressed
A regression was not possible
of a lack of correspondence

solation and lineage position.
d equine lineages could not be
ill number of datum points.
the USSR77 isolates, data for
appear to be in order (Fig. 1).
evolutionary rates, we treated
appeared in 1950 because this
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