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Transformation of rodent cells by human adenoviruses is a well-established model system for studying the ex-
pression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic
adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major
histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell
surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the
result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves
interference with processing of a posttranscriptional product. The two mechanisms operate both for the
endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells.

The major histocompatibility complex (MHC) class 1
genes play a key role in numerous immunological processes.
Among these is the restricted recognition of foreign antigens
by cytotoxic T lymphocytes (CTL) (35). It is therefore
plausible that one of the mechanisms by which the immune
system is able to control the growth of tumor cells depends
on the presence of these antigens on the cell surface (17, 19).

The commonly accepted view is that lowered class I
expression in adenovirus type 12 (Ad12)-transformed cells
leads to escape from T-cell-mediated immune surveillance
and is the cause of the increased oncogenicity of Ad12 (11,
16, 29, 31). Yewdell et al. (34) found a marked decrease in
the susceptibility of influenza virus-infected Adl2-trans-
formed cells to lysis by flu-specific CTL in comparison with
AdS-transformed cells. However, Mellow et al. (25) failed to
find a similar decrease in susceptibility to allogeneic CTL
among Ad12-transformed rat cell lines, and Haddada et al.
(18) found no association between the level of class I
antigens and tumorigenicity among adenovirus-transformed
hamster cell lines.

The mechanism of regulation of class I genes following
Ad12 transformation is also a subject to some controversy.
Ad12 was reported to increase transiently the levels of class
I transcripts following infection (28) but also to decrease the
expression of class I antigens on transformed cells (29, 33).
Down regulation of class I genes was reported to operate on
the level of transcription (1, 15, 16, 21, 24) or maturation (32)
of mRNA.

The reasons for the variable results found in different
experimental systems are not clear. To further understand
the regulatory mechanisms that operate to alter class I gene
expression in Ad12-transformed cells, we infected and iso-
lated a large panel of transformed cell lines that were derived
from embryos of class I transgenic mice; these cell lines
were recently described (12, 13). The transgene, which is a
miniature swine class I gene (PD1) (14), was examined in
parallel with the endogenous genes to determine whether the
regulatory mechanisms under study are conserved among
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FIG. 1. Expression of class I MHC antigens by Adl12-trans-
formed cell lines. Cell surface expression of PD1 (A) and H-2K®/D®
(B) was analyzed by using the following antibodies: PT85A (10),
20-8-4S (recognizes a public determinant on H-2K® and H-2D"), and
fluorescein isothiocyanate-conjugated goat anti-mouse immunoglob-
ulin G (Jackson ImmunoResearch Laboratories, Inc., ENCO, Jerus-
alem, Israel). Each cell line was tested four times. Results are mean
relative number of positive cells + standard error. M1 and M2,
spontaneously transformed cell lines; MEF, mouse embryonal fi-
broblasts; VAD12, cell lines transformed by Ad12.
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FIG. 2. General suppression of expression of class I MHC antigens and B2-microglobulin in Ad12-transformed cells. Cell surface
expression of PD1, H-2K®/DP, and B2-microglobulin was analyzed as described in Materials and Methods. The following antibodies were

used: (A, C, and E) PT85A (PD1; .......... ) and 20-8-4S (H-2K®/DP; . .

. .); (B, D, and F) 28-14-8S (H-2D® [2, 3, 26]; . . . .), B8-24-3 (H-2K®

[American Type Culture Collection]; ....... ), and mc-B2m-B, (B,-microglobulin [7]; —— -). ——, background. Cell lines: (A and B) M1; (C and

D) VADI12.36; (E and F) VAD12.44. F.U., fluorescein units.

different class I genes and among class I genes from different
species and whether the positioning of the class I genes
(which is the MHC for the endogenous genes but not for the
transgene) has differential effects on their regulation. We
demonstrate that in Adl12-transformed cells, regulation of
the endogenous MHC class I genes and the transgene is
highly complex and involves both transcriptional and post-
transcriptional mechanisms.

Cell surface expression of H-2 and PD1 antigens following
transformation with Ad12. Mouse embryonal fibroblasts
from transgenic mice (PD1.C57BL/10) were infected with
Ad12 (9, 23). The cells were kept in culture until colonies of
transformed cells appeared, and individual colonies were
picked and expanded (20). Twenty-seven cell lines trans-
formed by the virus and two spontaneously transformed cell
lines from the same pool of primary cells (30a) were tested
for the expression of class I antigens. All of the Adl2-
transformed cell lines but one (VAD12.66) have similar fully
transformed phenotypes. The cells are not contact inhibited
and form variable numbers of colonies in agar. The spon-

tanously transformed cells are contact inhibited. Figure 1
shows a large variability in the expression of class I antigens
among the different cell lines. The variability is observed
both for the endogenous antigens and for PD1. Nevertheless,
26 of the cell lines demonstrate weaker expression of the
H-2K°/DP antigens than do the spontaneously transformed
cell lines (M1 and M2), and 22 of the cell lines show weaker
expression of these antigens than do primary embryonal
fibroblasts. Twenty-two of the cell lines demonstrate weaker
expression of PD1 than do the spontaneously transformed
cell lines; in 18 cell lines, expression of these antigens is
lower than in primary embryonal fibroblasts. Among the cell
lines that are negative for cell surface expression of H-2
antigens, at least three (VADI12.27, VADI12.23, and
VADI12.12) express significant levels of the PD1 antigen.
These results indicate the existence of a common regulatory
mechanism(s) for the two genes but also the existence of a
regulatory mechanism that is gene or locus specific.
Coregulated expression of class I antigens and B2-micro-
globulin in transformed cell lines. To determine whether both
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A FIG. 3. Regulation of class I MHC genes in Ad12-transformed

1224,868 7 8 91017 12 cell lines. Cytoplasmic RNA (15 pg) was loaded on formaldehyde-
formamide gels and stained with ethidium bromide. (A) Lanes: 1,
VADI12.39; 2, VADI12.26; 3, VADI12.44; 4, VADI12.42; 5§,
VADI12.12; 6, VADI12.52; 7, VADI12.28; 8, LPD1; 9, Ltk™; 10,
VADI2.78; 11, VADI12.25; 12, M1. (B) Lanes: 1, VADI2.1; 2,
VADI12.23; 3, VADI12.27; 4, M2; 5, VADI12.2; 6, VADI12.36; 7,
VADI12.48; 8, VADI2.34; 9, VADI2.54; 10, VADI2.19; 11,
VADI12.20; 12, VADI12.38; 13, VADI2.31; 14, VADI12.79; 15,
VADI12.43; 16, VAD12.21; 17, VAD12.66; 18, VAD12.76. (C to E)
Expression of class I MHC genes in Ad12-transformed cell lines
(Fig. 1) after densitometric scanning of the hybridization signals in
the Northern (RNA) blot (see text), normalized to expression of the
spontaneously transformed cell line, M1. Results are sorted accord-
ing to the cell surface expression of either PD1 (C) or H-2K®/D" (D).
(E) Results of mRNA expression sorted according to expression of
E1A. D.U., densitometric units (results of densitometric scanning of
the specific hybridizing signals from the relevant X-ray films).
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cell lines, specific monoclonal antibodies against the two
antigens and a monoclonal antibody against CS7BL 2-
microglobulin were used to analyze cell surface expression.
Figure 2 demonstrates that the expression of all three
antigens is suppressed in Ad12-transformed cell lines.

Transcriptional and posttranscriptional regulation of MHC
class I genes in Ad12-transformed cells. Cytoplasmic RNA
was prepared from transformed cell lines (5) (Fig. 3A and B)
and hybridized with probes specific for H-2 (22), PD1 (30),
El (an EcoRI fragment of pAdl2 EcoRI-C), and actin (8)
(results not shown). All of the cell lines but one (VAD12.66)
express class I and E1 mRNA (Fig. 3). Additional hybrid-
ization with a B2-microglobulin probe showed that hybrid-
ization occurred with this probe as well (results not shown).
2 1 The findings that (i) all of the cell lines express class I RNA

M % Pos. Cells VAD/M1 ) and (i) even in lines that express weakly, only a twofold
] RNA VADMI I decrease was seen in the amount of stable specific RNA raise
the possibility that at least two types of regulatory mecha-
nisms can occur in this system. To distinguish between the
two groups of cell lines, we analyzed the results by normal-
izing both cell surface expression and hybridization signals
following densitometric scanning to the expression of one of
h the spontaneous cell lines, M1. The results in Fig. 3 lead to
L
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the following conclusions. First, in four cell lines that
express high levels of PD1 RNA (VADI12.79, VADI12.42,
VADI12.21, and VADI12.12), expression of cell surface levels
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& ° evident in any of the cell lines. Finally, both types of

° regulatory mechanisms appear to operate both for endoge-
@ nous H-2 genes and for the transgene, PD1.

g To analyze the regulation of class I MHC genes following

X viral oncogenesis, we tested the effects of Ad12 transforma-

tion on the expression of these genes. We used primary cells

from class I transgenic mice to investigate whether the

position of the class I gene and its origin play a role in
Ad12-mediated regulation. We screened a large panel of
transformed cell lines for expression of the endogenous
antigens and the transgene product. Our results establish
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that most cell lines express lower levels of class I antigens
than do primary embryonal fibroblasts and spontanously
transformed cell lines. Thus, following transformation, the
selected cells are those that express low levels of class I
antigens.

The data presented in this report clearly show that both
transcriptional and posttranscriptional mechanisms operate
to regulate class I gene expression in Adl12-transformed
cells. Preliminary data in our laboratory demonstrate that in
the group of cell lines that express low levels of cell surface
expression of class I antigens but high levels of class I
mRNA, the class I MHC molecules are highly unstable. A
mechanism that involves the binding of class I heavy chains
in the endoplasmic reticulum by the adenovirus product
E3/19K is known to exist following infection of susceptible
cells with adenoviruses of the nononcogenic subgroups B, C,
and D but not for viruses of the oncogenic group A, to which
Ad12 belongs (4, 6, 27). It is possible that a similar mecha-
nism exists in Ad12-transformed cells which express class I
mRNA. Such cells escape the viral suppressive mechanisms
that operate on the transcriptional level but are subjected to
a second suppressive mechanism that is mediated by the
viral antigens. Further experiments are under way to deter-
mine the nature of the common and specific regulatory
elements and to identify the binding factors involved in both
the transcriptional and posttranscriptional control of class I
MHC genes in Ad12-transformed cells.
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