Supplemental figures and tables

Supplemental Fig. 1. Negative-stain EM micrographs of CsgA, Δ R2, Δ R3 and Δ R4 fibers assembled *in vivo* at high magnification.

Negative-stain EM micrographs of wild-type strain MC4100 and *csgA* mutant cells containing the indicated plasmids. Cells were grown on YESCA plates for 48 hrs at 26°C prior to staining with uranyl acetate. Scale bars are equal to 200 nm.

Supplemental Fig. 2. Negative-stain EM micrographs of csgA cells expressing CsgA, Δ R1 or Δ R5 for a long-term growth.

Negative-stain EM micrographs of *csgA* mutant cells containing the indicated plasmids. Cells were grown on YESCA plates for 100 hrs at 26°C prior to staining with uranyl acetate. Scale bars are equal to 500 nm.

Supplemental Fig. 3. *In vitro* polymerization of CsgA mutant proteins under the quiescent condition.

13 μ M CsgA (A) and Δ R5 at various concentrations (B) were incubated at room temperature without agitation in the presence of 0.02% NaN₃. At the indicated time points, samples were withdrawn, ThT was added at a concentration of 20 μ M and fluorescence was measured at 495 nm after excitation at 438 nm by a Spectramax M2 plate reader (Molecular Devices, Sunnyvale, CA). ThT fluorescence was normalized as described in the Materials and Methods.

Supplemental Fig. 1

2

Supplemental Fig. 2

Supplemental Fig. 3

Strains or			
Plasmids	Relevant characteristics	References	Primer used
Strains			
csgA (LSR10)	MC4100 $\Delta csgA$	(Chapman et al., 2002)	
csgBA (LSR13)	MC4100 $\Delta csgBA$	(Hammer et al., 2007)	
LSR12	C600 $\Delta csgBA$ and $\Delta csgDEFG$	(Chapman et al., 2002)	
Plasmids		-	
pCsgA (pLR5)	csgA sequence in pLR2	Hultgren lab	
pLR2	Control vector containing csgBA		
	promoter	(Robinson et al., 2006)	
p∆R1	csgA without R1(S ⁴³ to N ⁶⁵) in pLR2	This Study	FpLR5, RpLR5,
			p∆R1 P1, P2
p∆R2	<i>csgA</i> without R2 (S ⁶⁶ to D ⁸⁷) in pLR2	This study	FpLR5, RpLR5,
			p∆R2 P1, P2
p∆R3	<i>csgA</i> without R3 (S^{88} to N^{110}) in pLR2	This study	FpLR5, RpLR5,
			p∆R3 P1, P2
p∆R4	<i>csgA</i> without R4 (S ^{111} to N ^{132}) in pLR2	This study	FpLR5, RpLR5,
	-		p∆R4 P1, P2
$p\Delta R5$	<i>csgA</i> without R5 (S^{133} to Y^{151}) in pLR2	This study	FpLR5, p Δ R5 P1
-	- · · · ·	-	
p∆R1&5	csgA without R1 and R5 in pLR2	This study	FpLR5, p∆R5 P1 ^b

Supplemental Table 1. Strains and plasmids used in this study^a

^a Vectors used for expression and purification are not listed. These vectors were constructed by insertion of PCR amplified mutant *csgA* sequences with C-terminal hexahistidine tag into NdeI/EcoR1 sites in pMC3 (Chapman et al., 2002) replacing sequence encoding CsgA-his.

^b $p\Delta R1$ was used as template for PCR to make $p\Delta R1\&5$.

	1	Supplemental	Table 2.	Sequence of	primers	used in	this study
--	---	---------------------	----------	-------------	---------	---------	------------

Primer Name	Sequence
FpLR5 ^a	5' CATGCCATGGCGAAACTTTTAAAAGTAGC 3'
RpLR5 ^b	5' CGGGATCCTGTATTAGTACTGAT 3'
p∆R1 P1 [°]	5' AATAGTCAAGTCAGAATTTGGGGCCGCTATT 3'
$p\Delta R1 P2^{d}$	5' AATAGCGGCCCAAATTCTGACTTGACTATT 3'
pΔR2 P1	5' GATCGATTGAGCTGTTACGGGCATCA 3'
pΔR2 P2	5' TGATGCCCGTAACAGCTCAATCGATC 3'
pΔR3 P1	5' CCGTCATTTCAGAGTCATCTGAGCCCT 3'
pΔR3 P2	5' AGGGCTCAGATGACTCTGAAATGACGG 3'
p∆R4 P1	5' CGTTGACGGAGGAATTTTTGCCGTTC 3'
pΔR4 P2	5' GAACGGCAAAAATTCCTCCGTCAACG 3'
pΔR5 P1	5' CGGGATCCTGTATTAGTTAGATGCAG 3'

2

^a FpLR5 is paired to noncoding strand immediately upstream of the start codon of *csgA* in pLR5.

^b RpLR5 is paired to coding strand immediately downstream of the stop codon of *csgA* in pLR5.

5 ^C The primers with odd number such as $p\Delta R1 P1$ are paired to the coding strand of *csgA* template.

6 ^d The primers with even number such as $p\Delta R1 P2$ are paired to the noncoding strand of *csgA*

7 template.

8

9 Supplemental References:

Chapman, M. R., Robinson, L. S., Pinkner, J. S., Roth, R., Heuser, J., Hammar, M., Normark, S.,
and Hultgren, S. J. (2002). Role of Escherichia coli curli operons in directing amyloid fiber
formation. Science 295, 851-855.

- Hammer, N. D., Schmidt, J. C., and Chapman, M. R. (2007). The curli nucleator protein, CsgB,
 contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci U S
 A. 93, 6562-6566
- 16 Robinson, L. S., Ashman, E. M., Hultgren, S. J., and Chapman, M. R. (2006). Secretion of curli
- 17 fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol **59**,
- 18 870-88