
1 Model Description

1.1 The flask environment

Each flask contains a liquid matrix, the composition of which determines the environment of a micro-
bial population suspended within it. Some of the chemicals present are ‘nutrients’ (in fact, different
compounds of a particular nutrient element, e.g., nitrogen) that may be consumed as food by the
microbial population and converted to biomass, while others are non-consumable and form part of the
abiotic environment. It is assumed that the liquid medium has properties such as temperature, pH,
salinity, etc., and that these both affect, and can be affected by, microbial activity. We refer to these
non-consumable chemicals and physical properties of the flask environment collectively as ‘abiotic fac-
tors’. (While chemical nutrients are also abiotic we feel that their role as the substrates of metabolism
justifies this notational convenience.)

There is a flow of liquid medium through the flask which occurs continuously at a fixed rate. The
inflow brings with it influxes of nutrients at fixed concentrations and steady inputs to abiotic factors,
while the outflow removes a fixed proportion of stored nutrients and abiotic factors. The liquid medium
in each flask is assumed to be well-mixed, so that in the absence of perturbation the composition of
the medium in each flask will reach a homogeneous steady state. The actual composition of the abiotic
environment results from the interactions of the input and output fluxes with the collective actions of
the microbial population.

The state of the flask environment is given by a vector V :

V = (n1, ..., nN , a1, ..., aA) = (v1, ..., vN+A)

where ni is the concentration of nutrient i, ai is the level of abiotic factor i, or equivalently, vi is the
level of the ith environmental state variable. N is the number of chemical nutrients, and A is the
number of abiotic factors. The change in V over time is given by Equation 1, which relates the rate
of change of each vi over time to the rates of influx and outflux of that variable and the net effect
of microbial activity. Ii is the rate of influx of vi, Oi is the rate of outflux, and Ei is the effect on
vi of current microbial activity. The form of Equation 1 is general to nutrients and abiotic factors,
although Ei is calculated differently for nutrients and abiotic factors (see Sections 1.6 and 1.9). The
term Ψi represents the flux of material due to diffusive transfer between flasks (see Equation 14 in
Section 1.10).

dvi

dt
= Ii −Oivi + Ei + Ψi (1)

1.2 Microbes

The model microbes consume and excrete nutrients in fixed proportions and affect the levels of abi-
otic factors in their environment as a side-effect of metabolism. The precise ratios in which nutrients
are consumed and excreted, and the nature of the by-product effect on abiotic factors are genetically
encoded for each individual, as are its preferred abiotic conditions (i.e., the state of the abiotic environ-
ment in which its growth rate will be maximised). Microbes grow by converting consumed nutrients to
biomass and reproduce by splitting when their biomass reaches a fixed threshold. Biomass is reduced
at a fixed rate to represent the inevitable thermodynamic inefficiency of metabolism and the cost of
maintaining cellular machinery. Microbes die if their biomass drops below a fixed threshold, which can
happen in sustained periods of nutrient limitation.

Each model microbe is represented by a vector M :

M = (B, λ, µ, α, β)

where B is the current biomass of the microbe, λ = (λ1, ..., λN ) represents the ratio in which nutrients
are consumed, µ = (µ1, ..., µN ) the ratio in which excreta is returned to the environment as nutrients,
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α = (α1, ...αA) the microbe’s effect on abiotic factors as a side-effect of metabolism, and β = (β1, ...βA)

the environmental levels of abiotic factors at which growth rate is maximised. Clearly
∑N

i=1 λi = 1

and
∑N

i=1 µi = 1 hold since all materials consumed and excreted must be accounted for; there is no
such constraint on α since the effect of the microbe on the abiotic environmental factors does not
necessarily involve mass transfer and is thus treated generally. Of the quantities in the microbe state
vector M , only B is a variable during the lifetime of an individual, since λ, µ, α and β are genetically
encoded and thus fixed.

Most runs reported in this paper enforced a universal preference for the abiotic environment across
all microbes. This was done by setting the β vector to some fixed value aopt and not allowing it to
mutate, thus overriding the standard genetic scheme.

1.3 Genotype

The genotype for a microbe is an array with 2N +2A loci taking real values in the range [−1.00, 1.00].
The genotype is subdivided into two sets of N loci for consumption and excretion and two sets of A
loci for influence on abiotic factors and preferred environmental conditions. The microbe phenotype
is formed by mapping and transforming the values in its genotype according to fixed rules.

The consumption ratio λ (specifying the fixed microbe-specific proportions in which nutrients are
consumed) and excretion ratio µ (specifying the fixed microbe-specific proportions in which excreta is
returned to the environment as nutrients) are found by subtracting the absolute value of each excretion
allele from the absolute value of the associated consumption allele, to give a vector of N values for net
consumption. For each nutrient, positive net consumption values are then summed and normalised
to give the nutrient consumption ratio λ. Negative net consumption values are taken to mean that
a nutrient is excreted, and these values are summed and normalised to give the nutrient excretion
vector µ. For example, if N = 3, the consumption loci of the genotype are (−0.4, 0.7, 0.1), and the
excretion loci are (0.5,−0.2, 0.9), this would give a net consumption vector of (−0.1, 0.5,−0.8), and
thus phenotypic trait values of λ = (0, 1, 0) and µ = ( 1

9 , 0,
8
9 ). Microbes are constrained so that

they may not consume their own waste, which is implemented by checking each phenotype for this
occurrence; such phenotypes are declared inviable and have their consumption demands set to zero
(e.g., λ = (0, 0, 0)), preventing growth or reproduction and ensuring their rapid removal from the
population.

The vector α determining a microbe’s effect on the abiotic factors in the environment is found by
directly mapping the A alleles from the relevant part of the genotype to the values for the phenotypic
trait without scaling or transformation, i.e., values remain in the range [−1.00, 1.00]. These values give
the alteration caused in the level of each abiotic factor by the creation of a single unit of biomass during
microbe metabolism (see Section 1.9 for more details). A microbe’s preferred abiotic environment β is
determined by linear mapping of the allele values from the range [−1.00, 1.00] to the range [βmin, βmax].
The microbe’s growth rate is maximised when the state of the abiotic environment matches this
preference (see Section 1.8). Runs where abiotic preference is universally shared are achieved by
setting βmin = βmax = aopt.

The genotype-phenotype encoding determines the size of the phenotypic space for each microbe
trait, and hence the number of different varieties of microbe that are possible in the model. For nutrient
consumption and excretion traits, the value for each trait is a vector of N values in the range [0, 1];
even though each vector for a particular individual must sum to 1 and incorporate the constraint of not
consuming its own waste, any value in the range is possible in the population. For abiotic preferences,
trait values are vectors of A values in the range [βmin, βmax]. For abiotic effects, trait values are vectors
of A values in the range [−1, 1]. The range of possible phenotypic variation in the model depends on
the size of N and A; larger values give proportionately more variety.
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1.4 Reproduction and mutation

If the genetic specification of the microbe causes it to be successful in its environment (i.e., if its nutrient
demands and preferred abiotic conditions are suited to the current state of the liquid medium held
in the flask), the microbe will consume nutrients and grow by increasing its biomass. If a microbe’s
biomass reaches the reproduction threshold TR, it reproduces asexually by splitting. The parent
microbe donates half of its biomass to the offspring microbe, which also receives a copy of the parent’s
genotype. Mutation of the offspring genotype may occur during reproduction, implemented as a
potential for copying error at each locus of the genotype which causes the allele value for that locus
to be randomly reassigned from the range [−1.00, 1.00]. Mutations occur at each locus with low
probability Pmut. No mechanism for genetic recombination is implemented.

1.5 Maintenance cost and death

A fixed rate of biomass decrement is incorporated in the model as a proxy for the combined energy costs
of maintaining cellular machinery and metabolic inefficiency. This ‘cost of living’ reduces biomass at a
fixed rate γ per simulation timestep, with the decrement assumed to be lost from the flask environment
as unrecoverable heat radiation. The inclusion of this cost ensures that nutrients cannot be infinitely
recycled and thus preserves some thermodynamic integrity in the model; without this cost, system
biomass could theoretically grow indefinitely. The loss of some biomass from the system via this
’cost of living’ ultimately sets the carrying capacity of the system, which is reached when total heat
dissipation from the system is equal to the energy supplied in the form of nutrient molecules [1].

If the biomass of a microbe falls below a threshold TD the microbe is assumed to die from starvation.
In addition to this, each living microbe may die ‘from natural causes’ with a low probability PD at each
timestep. This mechanism is intended to be a catch-all for death by predation, apoptosis, organismic
senescence, etc., and serves to thin out the microbial population in an unbiased way and thus promote
continuing selection and competition between microbes. Note that the value of PD is related to the
washout rate of living microbes in chemostat models. When a microbe dies it is assumed that its
remaining biomass is lost from the system, as if the dead microbe were washed out of the flask.

1.6 Nutrient consumption/excretion

At each timestep of the simulation, each living microbe j will attempt to consume a total of Cmax
j

units of nutrient, with the contributions to this total made up of each different nutrient type fixed in
the relative proportions defined by the microbe’s genetically specified consumption ratio. No microbe
may consume a nutrient that it also excretes, with this constraint enforced as described in Section 1.3
above. The size of Cmax

j is limited by a global maximum level Cmax and is calculated on an individual
basis for each microbe j. This calculation takes into account the match between the current state of
the abiotic environment and the genetically specified preferences of microbe j and will be covered in
Section 1.8 below. The actual amount consumed Cact

j is less than or equal to Cmax
j and depends on

nutrient availability.
In order to ensure that the microbe population doesn’t consume more nutrients than currently exist

in the flask environment, individual demands may need to be scaled, and to ensure that no artefacts
are introduced into the model by this scaling, it must not favour any particular individual. At each
timestep the total nutrient demand for the entire microbe population is calculated and compared to
the amounts of nutrients available. It is assumed that all microbes are continuously and simultaneously
feeding, so in the case that there is an insufficient amount of a nutrient available to meet the entire
population demand, the demand of every individual microbe that requires that nutrient is scaled down
equally, so that the total amount consumed by the population matches what is available.

Mathematically, we have constraints Cmax
j ≤ Cmax and Cact

j ≤ Cmax
j , and then:
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Cact
j = Cmax

j

N
∏

i=1

wij (2)

where Cact
j is the actual total quantity of nutrients consumed by microbe j after scaling for nutrient

limitation has been applied and wij is the scaling factor for nutrient i for microbe j. Values for wij

are calculated sequentially by noting that the population demand Di for nutrient i (after all individual
demands for nutrient i− 1 have been scaled appropriately) and wij are related. Recalling that λij is
the proportion of consumption taken as nutrient i by microbe j and ni is the total amount of nutrient
i currently available in the flask environment, we can derive the full set of all wij and Di for every
nutrient i and living microbe j by solving iteratively for each value of D and w, starting with an
assumed value of w0j = 1 (valid since nutrient 0 does not exist).

w0j = 1 ∀j

wij =

{

min(1, ni

Di
)

1
λij > 0
λij = 0

Di =

living
∑

j

(

λijC
max
j

i−1
∏

k=0

wkj

)

Then having established the value of Cact
j we can go on to derive:

Cj = Cact
j (λ1j , ..., λNj) (3)

C
pop
i =

living
∑

j

λijC
act
j (4)

where Cj is the actual consumption vector for microbe j and details how much of each nutrient is
consumed by microbe j at a particular timestep. Cpop

i is the total amount of nutrient i consumed by
all living microbes.

This scheme means that each microbe always consumes nutrients in the relative proportions spec-
ified by its genetically determined consumption ratio. If nutrient limitation means that the amount
of a particular nutrient consumed by a microbe is scaled down, the amounts of the other nutrients it
consumes are also scaled down by an equivalent factor to maintain the fixed relative proportions of
consumption.

Consumed nutrients are converted to biomass with a standard efficiency of θ, with the waste being
excreted as nutrients (i.e., Cact

j = 10 units of food consumed with efficiency of θ = 0.6 makes 6 units
of biomass and 4 units of excreta). Excreta is returned to the environment as nutrients in the fixed
proportions specified by the microbe’s genetically determined excretion ratio. We can thus define the
excretion vector Xj for every microbe j, and an expression for the total amount Xpop

i of nutrient i
collectively excreted and returned to the environment by the population:

Xj = (1 − θ)Cact
j (µ1j , ..., µNj) (5)

X
pop
i =

living
∑

j

(1 − θ)Cact
j µij (6)
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1.7 Growth

At each timestep of the simulation a microbe j will consume Cact
j units of nutrient, which are converted

to biomass with a fixed efficiency of θ. Taking into account the previously defined maintenance cost
γ, we can now state the growth rate (rate of change of biomass) of a microbe j as:

dBj

dt
= θCact

j − γ (7)

Note that Equation 7 specifies the growth of an individual. Growth of a population occurs only as
a result of individual growth and reproduction, and is not specified a priori as in more traditional
population ecology models such as Lotka-Volterra systems.

1.8 Effect of abiotic factors on metabolic rate

The model is designed so that the state of the abiotic environment affects the growth rate of microbes,
and this is implemented as a feedback from the environmental state variables for abiotic factors onto
the consumption demands of all microbes. As mentioned above, each microbe will attempt to consume
a maximum amount Cmax

j of nutrients at each timestep, with this demand being met depending on
nutrient availability. The attempted consumption amount Cmax

j is calculated for each microbe j as a
function of the match between the current state of the abiotic environment and the microbe’s genetically
specified preferences. This function has Gaussian form and falls away smoothly from its maximum
value as the distance between the current environment and the optimum increases. Mathematically,
we can capture this as below:

Cmax
j = ψjC

max (8)

ψj = e−(τρj)
2

(9)

ρj =

√

√

√

√

A
∑

i=1

(ai − βij)2 (10)

where Cmax is a universal constant defining the maximum rate of consumption for any microbe, ψj

is a microbe-specific measure of the microbe’s satisfaction with the current abiotic environment given
its preferences, τ is a universal constant parameter that sets the level of influence of the abiotic
environment on growth rate (high τ means a stronger influence, τ = 0 means no influence), ρj is
a measure of the distance between the current environmental level of each abiotic factor ai and the
microbe’s preferred level βij .

1.9 Effect of microbial activity on environment

Microbes can affect their abiotic environment as a side effect of their metabolism. We make the size of
a microbe’s effect on the environment proportional to its growth rate, so that fast-growing and more
fecund microbial strains have a greater influence than dormant or slow-growing strains.

Equation 1 relates the rate of change of each environmental variable vi to the combined effect Ei

of the microbial population on that variable. The calculation of Ei is treated differently for nutri-
ents and abiotic factors. First of all, let the vector E be the vector of effects of the population on
all environmental variables, and note that this vector can be sub-divided into nutrient and abiotic
components.

E = (En, Ea) = (En1, ..., EnN , Ea1, ..., EaA)
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We can use our previous definitions of nutrient consumption/excretion to work out the population
effect on nutrient state variables. This gives us an expression for the effect Eni of the population on
nutrient i:

Eni = −C
pop
i +X

pop
i (11)

The effect of each microbe on each abiotic factor is determined by its genetically specified effect vector
α and is applied for every unit of biomass created. The expressions for microbe growth combined with
this vector can be used to work out the population effect Eai on each abiotic state variable i:

Eai =

living
∑

j

dBj

dt
αij (12)

1.10 Spatial structure

Spatial structure is added by connecting F flasks in a ring topology to create a simple one-dimensional
spatial environment. Connectivity is by adjacency only and no long-distance links are modelled. Thus
each flask fi is adjacent to flasks fi−1 and fi+1. Flasks fF and f1 are connected to complete the ring.

The connection between neighbouring flasks is an approximation of diffusive mixing at a steady
rate, implemented as the exchange of a fixed amount of liquid between neighbouring flasks at each
timestep. Since each flask is well-mixed it is assumed to have an even distribution of nutrients, abiotic
factors, and microbes. Thus if the total volume of a flask is VT , then diffusion acting at a rate such
that a volume VD of liquid is exported from each flask at each timestep means that a fraction VD

VT
of

all materials and microbes will leave each flask. No directionality is modelled in the flow of liquid, so
this amount is divided equally between each of the flask’s neighbours. The donor flask receives from
its two neighbours a total amount of liquid equal to the amount it exports, so the amount of liquid in
each flask remains constant. All liquid transferred carries with it material and microbes at the same
concentrations as the donor flask. If environmental gradients exist between neighbours, these will be
reduced over time by the diffusive transfer.

We begin to formalise the diffusive transfer scheme in Equation 13:

VD = RDVT (13)

where RD is the rate of diffusion. Material exchange Ψ is by removal/adding of the correct proportion
of material at each timestep:

Ψi,j = ∆vi,j = −RDvi,j +
RD

2
vi,j−1 +

RD

2
vi,j+1 (14)

where vi,j is the level of the ith environmental variable (nutrient or abiotic factor) in flask j. The
transfer of microbes is handled stochastically. The probability of a microbe being located in the
volume of liquid transferred from a donor flask is RD(= VD

VT
). Thus if Mj denotes the population size

at flask j, the change in population size at each timestep is in the limit given by:

∆Mj = −RDMj +
RD

2
Mj−1 +

RD

2
Mj+1 (15)

Microbes that are transferred are moved intact from the donor flask to the recipient flask. The recipient
flask for each microbe is chosen from the donor’s two neighbour flasks with equal probability. Microbe
biomass and genotype do not affect the transfer process, so the export group represents a fair sample
of the donor population.

The special case of perfect mixing is handled differently. Rather than use the above scheme with
RD = 1, which would be problematic, perfect mixing is implemented by re-distributing all microbes and
materials evenly across the multi-flask system at every timestep. Perfect mixing thus instantaneously
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Parameter Value Description
N 2 Number of nutrients
A 1 Number of abiotic factors
TR 120 Reproduction threshold (biomass units)
TD 50 Starvation threshold (biomass units)
Pmut 0.01 Probability of mutation at each genotype locus during reproduction
PD 0.002 Probability of death by natural causes at each timestep
γ 1 Maintenance cost (biomass units/timestep)
θ 0.6 Nutrient conversion efficiency
Cmax 10 Maximum nutrient consumption rate (units/timestep)
τ 0.02 Level of influence of abiotic environment on metabolism
Imin
N 0 Minimum rate of nutrient influx (units/timestep)
Imax
N 150 Maximum rate of nutrient influx (units/timestep)
Omin

N 0.01 Minimum rate of nutrient outflux (percentage/timestep)
Omax

N 0.25 Maximum rate of nutrient outflux (percentage/timestep)
Imin
A 10 Minimum rate of abiotic factor influx (units/timestep)
Imax
A 20 Maximum rate of abiotic factor influx (units/timestep)
Omin

A 0.1 Minimum rate of abiotic factor outflux (percentage/timestep)
Omax

A 0.25 Maximum rate of abiotic factor outflux (percentage/timestep)
Km 100 Number of individuals in flask innoculum
Tprep 500 Flask equilibriation time prior to seeding (timesteps)
Trun 30000 Duration of run (timesteps)
F 10 Number of flasks used in spatial ring topology
RD 0.01% - 100% Rate of diffusion between flasks (percentage of volume per timestep)
βmin aopt Lower bound for abiotic environmental preference
βmax aopt Upper bound for abiotic environmental preference
aopt 150 Target level for abiotic environment (universally applied)
VT 1 Nominal volume of each flask

Table 1: Parameter values used in the simulation. Sensitivity analysis on these parameters shows no
significant changes to qualitative behaviour of the model are caused by varying these values, except
where described in the text.

removes any gradients in environmental variables or microbe distributions, so that the system is always
homogeneous.

1.11 Numerical method

At the start of each simulated timestep, nutrient/abiotic influx is added to the environment. This is
followed by simultaneous update of all microbes in the population for metabolism, death (by starvation
or random selection), and reproduction, in that order. After the biota are updated, nutrient/abiotic
outflux is removed from the environment. At this point diffusive transfer of material and microbes is
performed and the system update is complete for that timestep.

The update equation for the flask environment (Equation 1) and the microbial growth equation
(Equation 7) are continuous differential equations. At each timestep these differential equations are
discretised by calculating their instantaneous value and adding it to the existing values of the quantities
concerned. For environmental update we have ∆v = dv

dt
and then vt = vt−1 +∆v. For microbe growth

we have ∆B = dB
dt

and Bt = Bt−1 + ∆B. This is equivalent to numerical integration using Euler’s
forward method with an integration timestep equal to one simulated timestep in the flask ecosystem.

7



References

[1] Williams, H. T. P & Lenton, T. M. (2007) The Flask model: Emergence of nutrient-recycling
microbial ecosystems and their disruption by environment-altering ‘rebel’ organisms. Oikos 116,
1087–1105.

8


