Supporting Information

Gongora et al. 10.1073/pnas.0801991105

PNAS PNAS

	1122222222233334 69111223445611354 79027257366105057
Ref	TTCATACATTTCCTCTC
140-CH 9-CH 5-CH 8-CH	GCGCCCTTCT GCCCTTCT .C.GCCCCTTCT GCCCCTTCT
141-CH 141-CH 17-CH 128-CH	C.TGTCC. GCGCCTTCT.T

Fig. S1. Haplotypes identified among Chilean chickens. Numbers indicate the site position of the variable sites. Dots indicate identity with the reference sequence (GenBank accession no. AB098668) (1), and different base letters denote substitution.

1. Komiyama T, Ikeo K, Gojobori T (2003) Where is the origin of the Japanese gamecocks? Gene 317:195-202.

	х.	~		

PNAS PNAS

Nucleotide Position

Fremenow

1	CONTRACTACCAGATACCCACTACAGACGTCCAAAGCCTACAAATCCTTCAAACTTACCCTACAGACTTACCGTGCACTCACAG-CTAT-TCCCTACGCCTTCCA	G12	0
2	CGATTATCTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCATCTCCCCATTCTAAACTTACCGTGCACTCACAG-TTAT-TCCCTACGCCTTCCC	G	2
3	${\tt cgattatcttactacaatactcattccctcctacaagaccttaccctaccaatcctcaccattctaaacttaccttactgccactcacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacggccttccccacag-ctat-tccctacggccttccccacag-ctat-tccctacggccttccccacag-ctat-tccctacggccttcccacag-ctat-tccctacggccttcccccacag-ctat-tccctacggccttccccacag-ctat-tccctacggccttccccacag-ctat-tccctacggccttccccacag-ctat-tccctacggccttccccacag-ctat-tccctacggccttcccacag-ctat-tccctacggccttcccacag-ctat-tccctacggccttcccacag-ctat-tccctacggccttcccctacggccttccccacag-ctat-tccctacggccttcccctacggccttcccctacggccttcccctacggccttcccctacggccttcccctacggccttcccctacggccttcccctacggccttccctacggccttcccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttcccctacggccttcccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttcccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttcccctacggccttcccctacggccttccctacggccttcccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttcctacggccttccctacggccttccctacggccttcccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttcctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttccctacggccttcctacggccttccctacggccttccctacggccttccctacggccttcctacggccttcctacggccttcctacggcctt$	G	2
4	${\tt cgatcatcttactacgatactcatttccactacgatgatcataccttaccctgcaaatccttactcctattctaaacttaccttactgccactcacag-ctat-tccctacgccttacccctacgatcataccttactgcaatcatagatgatgatgatgatgatgatgatgatgatgatgatg$	G	1
5	cgattatcttaccacgatactcatttcccctccatagacgttcaaacttaccctacaaatccttcattctcccttaccttaccttgccgctcccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttcccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttcccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttcccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttcccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttcccctacgccttccccacag-ctat-tccctacgccttcccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttcccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttcccacag-ctat-tccctacgccttccccacag-ctat-tccctacg-ctat-tccctacgccttccccacag-ctat-tccctacg	G	2
б	cgattatttaccacgacactcattcccctccatagacgctcatactacactcatccttcatcttcccttatacttaccttaccttaccttactgccactcacag-ttat-tcccttacgccttcccctccacag-ttat-tcccttacgccttccccttcctacacttattaccttacc	G 2	4
7	cgattatttactactactactactactactccctccatagacgttaaacttaccctactaatccttcatctccctatttaaacttaccttactgtgcactcacag-ctat-tccctacgccttcccctactagacgtatagacgttaacttaccctacagccttacgcttacgccttacgcttacgccttacgcttacgctta	G 2	1
8	cgattattttactacgatactcattcccctccatagacactcaaactcaccctacaaatccttcatcttcccattctgaacttactctactgtgcactcacag-ctat-iccctacgccttccc	G	5
9	cgattattttactacgacactcattcccctccatagacgctcaaactcatcctacatattcttcccattctaaacttaccttactgtgcactcacag-ttat-tccctacgccttcc	G11	5
10	CGATTATTTTACTACGACACCTATTCCCCTCCATAGACGTTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCTAAACTTACTTACGGCACCTCACAG_TTAT_TCCCCTACGCCTCCC	G 1	1
11		G	5
12		GIZ	1
1.0		G 1	1
15		G	1
16		G	1
17	CONTRACTRACTORCONTRACTORTICOCCCCATAGAGGTTCAAGAGCTTACCCTACAAATCCTTCATCTCACCCTACTACTGTGCACTCACAG-CTAT-TCCCTACGCTTCCCCCATCTAACTTACCTTAC	G	4
18	CGATTATCTTACCTATGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACGAAATCCTTCCCCCATTCTAAACTTACCTTACGTGCACTCACAG-CTAT-TCCCTACGCCTTCCC	G 1	0
19	CGATTATTTACTACGATACTCATTCCCCTCCATAGACACTCAAACTCACCCTGCAAACTCCTCCATCTTCCCCATTCTGCACTCTACTGTGCACTCACAG-CTAT-TCCCTACGCTTCCC	G 3	4
20	cgattatcttactacgatactcatttccctccatagacgtttaaacttaccctacaaatccttcatctccccattctaaacttaccttactgcactcacag-ctat-tccctacgccttccccatctaaacttaccttac	G	2
21	${\tt cgattatttactacaatactcattccctcctacaagacgttaaactcatcctacaaatccttcattctatacttaccttactgtgcactcacag-ctat-tccctacgccttccctacacgtctacgacgttaagac$	G	2
22	cgattatttgctacaatactcattccctccatagacgtttaaacttaccctacaaatccttcattctattctacacttaccttaccgcactcacag-ctat-tccctacgccttccctacgccttacggccttacgccttacgccttacggccttacgccttacggcctggccttacggcctacggccttacggcggctgggggggg	G	1
23	cgattatttactacgatactcattcccctccatagacactccatactcctcatcctcatcctacacttactcctc	G	7
24	cgattatttactacgatactcattcccccctctacgacgccttaaacccatcctacgatccttactcctcctctctacaccttaccttacctcacgcttattacccttacgccttcccccccc	G 3	0
25	cgattatttactacaatactcattcccctccatagacgccctaaactcatcatattatcttccttacattaccttaccttaccttaccttacctcacag-ttat-tccctacgccttccccacag-ttat-tccctacgccttacctta	G 3	1
26	cgatcatcttactacgatactcatttccctccatagacgttcaaacttaccctacaaatccttcatctccccattctaaacttaccttactgtgcactcacag-ctat-tccctacgccttccc	G 1	6
27	CGATTATTTACTACGATATTCATTCCCCTCTACAGACGCCTTAAACCCATCCAT	G	2
28	UGATTATUTTAUTAUGATAUTCNTTTCCCTCCATAGACGTTCANACTTACCCTACAAATCCTTCATCCCCCATTCTACCCTACCGTGCACTCACAG-TTAT-TCCCTACGCCTTCCC	G	1
29	UGATTATUTAUGATAUTAUGATAUTUATTUUUUATAGAUGITUAAAUTTACCOTACAAATCOTTCATCACCCCATTCATACCTTACCGTGCACTCACAGCCTAT-TCCCTACGCCTTCCC	G	9
30	CONTINUITICIALANIACIUNITICUCUUATAONUSITIAAUTINIULIAUANALUTIUATATUUTUAAACTIACUTTACUTTACUTTACUTAGAACTIACUTACUTACUTACUTACUTACUTACUTACUTACUTACUT	G	4 A
31	LONI INI I I INCLOLATI CULTULATINGNUSI I TAMUTI NUULI ALAMA ILUI TUANA ILUI TUATUTUUTAAAUTTAUUTTAUUTTAUUTTAUUTTAU	G ?	4
33	CGATTATTTACTACAATACTCATTCCCCCCCCATAGACGCCCAAACCCATCCAT		2
34	CGATTATTTACTACAATACTCATCCCCCCCCATAGACGCCCAAACTCATCCATC	G	2
35	CGATTATTTACTACGATACTCATTCCCCTCTACAGACGCCTCAAACCCTCCTCCTCTCTCT	G 1	8
36	CONTRATTACTACAATACTCATCACTCCCCCCCCATAGACGCCCAAACTCATCCCTACAAATCATTATCTTCCCCACTCCTAAACTTACTGTGCACTCACAG-TTAT-TCCCCTACGCCT CCC	G	6
37	cgattattttactacaatactccatcccccccatagaccgctcaaactccatcca	G	1
38	${\tt CGATTATTTTACTACAATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCATTTATCTCCCTACACTAACTTACTGTGCACTCACAG-TTAT-TCCCTACGCTTCCCTACACTACCTTACTTACTGTGCACTCACAG-TTAT-TCCCTACGCTTCCCTACACTACCTTACTTACTGTGCACTCACAG-TTAT-TCCCCTACGCTTCCCTACACTACCTTACTGTGCACTCACAG-TTAT-TCCCCTACGCTTCCTACACTACCTTACTGTGCACTCACAG-TTAT-TCCCCTACGCTTCCTACACTACCTTACTGTGCACTCACAG-TTAT-TCCCCTACGCTTCCTACACTACCTTACTGTGCACTCACAG-TTAT-TCCCCTACGCTTCCTACACTACCTTACTGTGCACTCACGGCTTCCTACGCTTCCTACGTGGCACTCACGGCTTAC-TCCCTACGCTTCCTACGCTTCCTACGTGGGCACTCACGGGCTTAC-TCCCTACGCTTCCTACGTGGGCACTCACGGGCTTCCTACGGCTTCCCTACGCTTCCTACGTGGGCACTCACGGCTTCCTACGGCTTCCTACGTGGGCACTCACGGGCTGGGCGCTGCGGCTGCGGCTGGGCGCTGGGGCGCTGGGGCGGC$	G	2
39	${\tt CGATTATTTTACTACAATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCATTTATCTTCCTCTTCAAACTTACTT$	G	1
40	${\tt cgattatttactaclastactccatccctccatagacgctcaaacccatcctgcaaatcattatcttcctactctaaacttaccttactgccactcacag-ttat-tccctacgcctgcct$	G	3
41	cgattatttactacaatactcattccctcccatagacgtttaaacttaccctacaaatccttcattctattctacacttaccttactgccactcacag-ctat-tccctacggcttcccctacggcttacggttacg	G	1
42	cgattattttactacgacactcgtcccccccatagacgcccaagccccacactcatccttcct	G	2
43	cgattatttactacaatactcattactcctacaagacgttaaacttaccctacaaatccttcatcttatacttaccttactgtcctacacg-ctat-tccctacgccttcccctacgtctacgccttacgtctacgttctacgtctacgtctacgtctacgtctacgttctacgtctacgtctacgtctacgtctacgtcta	G	4
44	cgattatttactacaatactcattccctccatagacgttaaacttaccctacatatccttcatctcctattctaaccttaccttactgtgcactcacag-ctat-tccctacgccttccccacag-ctat-tccctacgccttccctacagccttacgcttacgccttacgcttacgcttacgcttacgctgcttacgcttacgcttacgcttacgcttacgct	G	1
45	cgattattttactacaatactcattcccctccatagacgtttaaacttaccctacaaatctttcatctccctattctaaacttaccttactgcgcactcacag-ctat-iccctacgccttcco	G	1
46	cgattattttactacaatactcattccctccatagacgtttaaacttaccctacaagtctttcatctccctattctaaacttaccttactgtgcactcacag-ctat-tccctacgccttccc	G	1
47	CGATTACTTACTACANTACTCATTCCCCTCCANAGACGTTTAAACTTACCCTACAACTCCCCCAATTCCAAACTTACCTTACTGGGCACTACAGACGATTTCCCCTACGCTTCCCC	G	1
48		G	1
49		G .	1
51		G	1
52		G	1
53		G	1
54	CGATTATTTACTACAATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTCCTCATAACTTACCTTCATAATGTCCACTCACAG-TTAT-TCCCCTACGCCTTCCC	G	2
55	${\tt cgattattttactacaatactcattccctccatagacgctcaaacttatcctacaaatcattgtcttcctattctaaacttaccttactgtgcactcacag-ttat-tccctacgccttcccacgcttatcctacgccttaccctacgcttatcctacggttatcctacgcttatcctacgcttatcctacgcttatcctacgg$	G	3
56	${\tt cgattattteachatattcottcoctcotagacgtteaacttaccottaccatattcatcotcottattctaacttaccttacctgcacctcacag-ctat-tccctacgccttccctacgacgtteaacttaccottaccttaccttaccttaccttacctta$	G	1
57	${\tt cgattatttactacaatactccattcccctccatagacgccccaaacccatccat$	G	2
58	${\tt cgattatcttaccgatacccattcccattcccacagccttatacccataccacagccttatccccattctaaaccttaccttacctcacagcctat_tccccacagcctat_tcccacagcctat_tcccacagcctat_tcccacagcctat_tcccacagcct$	G	2
59	cgattatttactacaatactcatcacacceccatagacgctcaaacceatcataccetattatcttacctaaccetatacttatcttacctgcaccecacagettat-tccctacgccetccacagettat-tccctacgccetacgcetacgetacg	G	1
60	cgattatttactacgatactcattcccctctacagacgcttaaacccatcctacaaatccttcatcttctcttctaaaccttaccgtgcactcacag-ttat-tcccttacgccttccccacag-ttat-tcccttccacag-ttag-tt	G	1
61	cgattattttactactatactcattcccctccatagacgtttaaacttaccctacaatccttcatctccctattctaaacttaccttactgtgcactcacactat-tccctacgccttccctattcctattctacaatccttactgtgcactcacactat-tccctacgccttccctattcctattctacaatccttactgtgcactcacactat-tccctacgccttccctattctacaatccttactgtgcactcacactat-tccctacgccttccctattctacaatccttactgtgcactcacaatcacaatccttactgtgcactcacaatccttactgtgcactcacaatccttactgtgcactcacaatccttactgtgcactcacaatccttactgtgcactcacaatccttactgtgcactcacaatccttactgtgcactcacaatccttactgtgcactcacaatccttactgtgcactcacaatccttactgtgcactcacaatccttactgtgcactcacaatcgtgcactcacaatcgtgcactgtgcactcacaatcgtggacgtggacggac	G	1
62	CGATTATTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATTCCCTATTCTAAACTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCC	G	2
63	UGATTATTTTACTACAATACTCNTTCCCCTCCATAGACGTTTAAACTCACCCCTACAAATCCTTCATTCA	G :	2
- 64		а : с	2
60 66	CONTINUES CONTROLONING LEN FUCUE FUNCTION AGAUGUE FUNCTION AND CONTROLON TO CONTROLON AUTOMACIAN CONTROLON ACTIVATION ACTIVATIO	G	2
67	CGATTATTTATCACGATACTCATTCCCCCCCCATAGACGCCCAAACTCATCCCCGCAAACTCCTCACCCTTCCCATTCTATACTTATCTGCCATCCCCACACGCTATCCCCTACGCCCTCCCCATTCCCATTCTTATGTGCACTCACACGCTACGCCCTCCCCATCCCCATTCCCATTCTTATGTGCACTCACACGCTTATTTCCCCACACGCTTCCCCATCCCATTCCCATTCTTATGTGCACTCACACGCTTCCCCATCCCATTCCCATTCTTATGTGCACTCCCACACGCTTCCCCATCCCATTCCCATTCCCATTCCCAAACTCCTTCCCCATCCCATTCCCATTCTTATGTGCACTCCCACACGCTTCCCCATTCCCATTCCCATTCTTATGTGCACTCCCACACGCTCACGCCTCCCCATTCCCATTCTTATGTGCACTCCCACACGCTCCCAAACTCCTTCCCATTCCCATTCTTATGTGCACTCCCACACGCTTCCCCATTCCCATTCCCATTCCCATTCTTTATGTGCACTCCCACACGCTCACGCTTCCCCATTCCCATTCCCATTCCCATTCCCATTCCCCACACGCTCCCCACACGCTCCCCATTCCCCATTCCCATTCCCATTCCCAAACTCCTTCCCATTCCCAAACTCCTTCCCATTCCCATTCCCAAACTCCTTCCCATTCCCATTCCCATTCCCATTCCCAAACTCCTTCCCCATTCCCAAACTCCTTCCCATTCCCATTCCCATTCCCAAACTCCTTCCCAAACTCCTTCCCATTCCCATTCCCATTCCCATTCCCACACGCTCCCCACACGCTCCCCATTCCCAAACTCCTTCCCATTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCATTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCCATTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCAAACTCCTTCCCCAAACTCCTTCCCCAACTCCAACTCCCAACTCCAACTCCAACTCCAACTCCCAACT	G	1
68	CGATTATCTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTCACCCCTACAAATCCTTCATCTCCCCCATTCTAAACTTACCTTACTGTGCACTCACACGCTTCATAGCCGTTCAAACTCACGCCTTCCCCCATTCTAAACTTACCTTACTGTGCACTCACACAGCCTTCCCCCATCCACACGCCTTCCCCCATTCTAAACTTACCTTACTGTGCACTCACACAGCCTTCCACACGCCTTCCCCCATTCTAAACTTACCTTACTGTGCACTCACACAGCCTTCCCCCATTCTAAACTTACTT	G	7
69	CGATTATTTTACTACAATACTTATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCATTTATCTTCCTACTCTAAACTTACCTTACTGTGCACTCACAG-TTAT-TCCCTACGCCCTCCC	G	1
70	cgattattttactacaatactcattcccccccatagacgcccaaactcatcctacaatcatttatcttattcttattcttacttactgtgcactcacag-ttat-tccctacgccttccccatagacgcctacagccttaccatagacgccttaccatagacgccttaccatagacgccttaccatagacgcctacgacgcctacagacgcctacgacgcctacagacgcctacgacgcctacagacgcctacgacgcctacgacgcctacgacgcctacagacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgcctacgacgacgcctacgacgcctacgacgcctacgacgacgcctacgacgacgacgacgacgacgacgacgacgacgacgacga	G	1
71	${\tt cgattatttactacaatactccatccctccatagacgctcaaactcatcatcattatttat$	G	1
72	cgattatcttactgatacttatttccctccataggacgctcaagacttacccttgatatccttcatctccccattctaagacttaccttactgtgccctcacag-ctat-tccctacggccttccccattctaagacttaccttac	G	1
73	cgattatttactacaatactcatcacacceccatagacgccctaaacceacacatcattatcttacctaaccetatacttatcttacctgcaccecacag-ttat-tccctacgccctcccacaccetataccetacgccctcccacaccetataccetacgcccttacgccttacgcttacgcttacgccttacgccttacgcttacgcttacgcttacgcttacgcttacgcttacgcttacgctta	G	2
74	${\tt cgattatttactactatactcattcccccccccatagacgcccatactcatcctatactcttatcttcctactctatgcttatcttactgtgcactcacag-ttat-tccctacgccttcccatagacgccttcccatagacgccttcccatagacgccttatcttatcttatgtgcactcacag-ttat-tccctacgccttcccatagacgccttatgtgcactcacagacgcctacgccttcccatagacgccttatgtgcactcacagacgccttatgtgcacgacgacgacgacgacgacgacgacgacgacgacgac$	G	1
75	cgattatcctactacgatactcattccattccacagecttcaaacttaccctacaaatccttcatccccattctaaacttaccttactgcgcactcacagectat-iccct	G	1
76	UGATTATTTTACTAUGATACTCATTCCCCTCTACAGACGCTCAAAACCCATCCTACAAATCCTTCCT	G	2
77		G	2
18	CONTINUES CONTROL CONT	с :	2
19	CONTINUES CONTROLONING LEN FUCUE CLINUNGROUCH AND CONTROL TUNUNG TUNUNG CONTROL TRUCT FULTURE CONTROL C	G	1
81	CGATTATTTACTACGATACTCATTCCTCTACAGACGCGCCAAAACCCATTCTACAAATCCTTCATCTTCTTAAAACTTACCTTACTGCGCCTCCACAGACGCGCCCAAACCCATTCTCTACAAACTTCTCTTCTAAAACTTACCTTACTGCGCCTCCACAGACGCGCCCAAACCCATTCTCTACAAACTTCCTTC	G	1
82	CGATTATTTAACTACAATACCACTCATCCCCCCCCAAAGCCAAACCAATCCATCAAACCATCACCTCAAACCTACCCTACCGCACACACA	G	1
83	CGATTATTTACTACGACACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACCAAATCCTTCATCATCTGCAACTTACCTTACGTGCACTCACGCACACACGCTCACGCCTTCCCCACGCCTCCCCATCGCACTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCTCACGCCCTCACGCCCTCACGCCTCACGCCCTCACGCCCTCACGCCCTCACGCCTCACGCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCTCACGCCCCCCCC	G	6
84	CGATTATCTTACTGCGATACTCATTTCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCCATTCTAAACTTACCTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCCCATAGACTTACCTTAC	G	1
85	CGATTATTTTACCACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCACATTCCCATTCTAAACTTACCTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCC	G	2
86	cgattattttactacgatactcattcccctctacagacgcttaaacccatcctacaaatccttcaccttcttctaaacttaccttactgtgcactcacag-ttat-tccctacggcttcccttcc	G	1
87	cgattattttactacaatactcactcccccccatagacgtttaaacttaccctacaaatctttcatctccctattctaaacttaccttactgtgcactcacag-ctat-tccctacgccttccccatagacgtttaaacttaccctaccta	G 1	6
88	cgattattttactacgatactcattccccctctacagacgctcaaacccatcctgcaaatccttcatcttcttcttctgaacttaccttactgtgcactcacag-ttat-tccctacgccttcccctccttcttctgaacttaccttac	G	1
89	${\tt cgattatttttctacgatactcattcccctccatagacgctcaaactcattctgcaatccttcccattctgaacttactt$	G 1	2
90	${\tt CGATTATTTACCACGATACCCATCCCCCCTACAGACGCCCAAACCCCATCCTACAAATCCTTCCT$	G	1
91		-	
	CGATTATTTACTACGATACTCATTCCCCTCCATAGACACTCAAACCCACCGCAAATCCTTCATCTCCCCCATTCTAAACTTACTCTCATCTGGCACTCACAG-CTAT-TCCCTACGCCTTCCC	G	6
92	CRATHATTATACGARACTCACTCCCCCCCATAGRACACTCARACTCACCCCGGARATCCTTCATCTCCCCATTCTARACTACCTGCGACTCACAG-CTAT-TCCCCAGCCTTCCC CGATTATTTTATCACGACAGTCACTCCCCCCCCATAGRACACTCARACTCACAGAATCCTTCATCTCACTTCACT	G	6 4 7
92 93 04	CGATTATTTTACTACGATACTCATTCCCCTCCATAGACACTCAAACTCACCCTGCAAATCCTTCATCTCCCCATTCTAAACTTACTCTACTGTGCACTCAAAG-CTAT-TCCCTACGCTTCCC CGATTATTTTACTACGACACTCATTCCCCTCCCATAGACGCTCAAACTACCTAC	G G	6 4 7

Fig. S2a. Haplotypes and frequencies used for networks analyses from the 534-bp alignment including indels. Because of the differences in the number of polymorphic sites, it was not possible to keep the same haplogroup numbers for both the complete and truncated alignment analyses.

97 CGATTATCTTACCTACGATACTCATTCCCTCCATAGGCGTTCAAACTTACCCTACAAATCCTTCCCCATTCTAAACTTACCTTACCGTGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 98.003#797#07#07#207#07#707#702#762#762#762#762#702#77#76#70777#7#77#76#77762#7#7777#767777#767777#767777#77777 SUM TAT THE REAGANCE THE CONCERNMENT AND THE REAL TRACTACIONAL CONTACT AND THE REAL THE STREET AND THE STREET A 101 CGATTATTTTCCTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCCCTATTTCCTACAGTCTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 102 CGATTATTTACTACGACACTCATTCCCCTCCATAGACGCTCAAACTCACCCTACAAATCCTTCCCATTTTAAACTTACCTTACTGTGCACTCACAG-TTAT-TCCCTACGCCTTCCCG 105 CGATTATTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCCCTACTGCCATACGTGCACTCACAG-CTGT-TCCCTACGCCTTCCCG 106 CGATTATTITACTACGATACCCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTTACCTTCCATATCTTACTTACGTCCACTCACAG-CTAT-TCCCTACGCCTTCCCG 109 CGATTATCTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCCCCATTCTAAACTTACCTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 113 CGATTATTTTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAACTCTTCACCATTCCTAAACTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 114 CGATTATCTTACTGCGATACTCATTTCCCTCCATAGACGTTCAAACTTACCTACAAATCCTTCCCCATTCTAAACTTACCTTACGTGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 117 CGATTATTTTACTACGATACCCATTCCCCCCCATAGACGCTCAAACCCATCCTGCAAACCCTTCCCATTCCCATCCTAACGTCCCCACGCCTTCCCG 118 CGATTATCTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCCCCATTCTAAACTTACCTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCG 10 CONTRACTINGUESCICCULAR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTINGUESCICULAR CONTRACTINGUESCICULAR CONTRACTOR CONTRAC 128 CGATTATTTTACTACAATACTCATTCCCTTCCATAGATGCTCAAACTCAACTCAAATCCTTCACATTCCAATATCCACCTTATTGTGTACTCACAG-TCAT-TCCCTACGCCTTCCCG CGATTATTCTTCCACATTTCT-AGTCTATTCCATAAGCGCTTAA-CTCAACCTACAACTCTTTCACCCCTCCATTCTAAACTTACCTCATTGTGTACTCACAGGCTCAT-TCCCTACC 131 CGATTATTCTCCACATTTCT-AGTCTATTCCATAAGCGCTTAA-CTCAACCTACAACCTCTCATCTTACCTATTGTGTGTACTCACAG-TCAT-TCCCTACGCCTTCCCG 132 CGATTATTCTCCACATTTCT-AGTCTATTCCATAAGCGCTTAA-CTCAACCCACAACTCTTTCATCTTCCCATTTCTTATTGTGTACTCACAG-TCAT-TCCCTACGCCTTCCCG 136 CGATTGTTTTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAACCTTCACCATACCTTACCTTATTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 19 CONTRETENENTIAL CONTECCENCIANAMENTE L'ANNE L'ANNE L'ANNE L'ALCONTRACTIONNE L'ALCONTRE L' L'ALCONTRE L'AL 140 CGATTATTTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCTACAAATCTTTCATCTCCCTATTCTAAACTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTCCCG 142 CGATTAITITACTACGACACTCATTCCCCTCCATAGACGCTTAAGCTCATCCTACAAAATCCTTCATCTTCCCATTCTAGACTCACCGTGCACTCACAG-TTAT-TCCCTACGCC 144 CGATTATTTTACTACGACACTCATTCCCCCCCCATAGACGTTCAAACCTATCCTACAAATCCTTCCCATTCCCATTCCTAACGTCATCACGGCCTCCCCGGCCTCCCCG 145 CGATTATTTACTACGATACTCATCCCCCCCCCATAGACGCCCAAACTCATCCTACACTCCCATCCTACACTTACCTTACCTTACGCCCCCCCACAG-CTAT-TCCCCTACGCCCTCCCCA CGATTATTTTACTACGATACTCATTCCCCTCCATAGACGCTCAJACTCATCCTACAJACCCTTCCCATTCTAJACTTACCTTACGTGCACTCAAGCCATCCAGCCTAT 147 CGATTATTTTACTACGACACTCATCCCCCTCCATAGACGCCTTAAACTCATCCTACATCCTTACATTTTACTACGGCCTCACAG-TTAT-TCCCTACGCCTTCCCG 148 CGATTATTTACTACAATACTCATTCCCCCTCCATAGACGCTCAAACTCATCCTGCAATCCTTCCCATTCTGAACTTACCTTACCTGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 14 CONTINUE DE LINGUELON DE L'ACCENCIANCES COMPLEXANCENCES D'AUTORISES D'AUTORI AUTORISES D'AUTORISES D'AUTORIS 159 CANTATCTTACTACGATACTCATTTCCCTCCATAGACGFTCAAACTTACCCTACAAATCCTTCATCTCCCATTCTAAACTTACCTTACTGTGCATCTCCAG-CTAT-TCCCTACCA CGAGTATCTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAATCCTTCATCTCCCCATTCTAAACTTACCTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCGG 162 CGATTATCTTACTACGATACCCATTTCCCTCCATAGACGTTCAAACCTACCATAGACGTTCATACCCTACGACATCCCCATCCCCAG-CTAT-TCCCTACGCCTTCCCG 166 CGATTATTTACTACGATACTCATCCCCCCCATAGACACTCAACTCACCCTGCAAACCCTTCATCTTCCCATTCTGAACTCACGGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 167 CGATTATTTTATCACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCCCATTCTAAGCTTACTTTATTGTGCACTCACAG-TTAT-TTCCTACGCCTTCCCG 171 CGATTATTTACTACGATACTCATTCCCCCCCATAGACACTCAAACTCACCCTGCAAATTCTTCATCTTCCCATTCTGAACTTACTCTACTGCGCACTCACAG-CTAT-TCCCTACGGCCTTCCCG CGATTATTTTACTACGATACTCATTCCCCTCCATAGACACTCACCCCTGCAAATCCTTCATCTTCCCATTCTGAACTTACTCTACTGTGCACTCAGAG-CTATATCCCTACGCC 175 CGATTATTTACTACGATACTCATCCCCTCCATAGACACTCAACTCACCGCGCAAACCCTTCATCTTCCCATTCTGAACTCACGGCACTCACAG-CTAT-TCCCTATGCCTTCCCG 178 CGATTATCTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCCCCATTCTAAACTTACCTTACGGCACTCACAAGCTAT-TCCCTACGCCTTCCCG 179 CGATTATCTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACCTTACCCTACAAACCTTCCCCATTCTAAACTTACCTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 180 CGATTATTTTACTACAATACTCATTCCCCTCCATAGACACTCAAACTCACCCTGCAAATCCTTCATCTTCCCATTCTGAACTTACTGCACTGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 181 CGATTATTTTACTACGACACTCATTCCCCCTCCATAGACGCTTAAACTCATCCTACAAATCCTTCATCTTCCCATTCTAAACTTACCTTACTGTGCACTCACAG-TTAT-TCCCTACGCCTTCCCG Son the line head of the line $186\ CGATTATTCTACTGATACTCATTCCCCCCCATAGACGCCCCCATCCGCAAATCCTTCACCATCCCCATCTGAACTTACCTTACCGCCCTCCACAG-CTAT-TCCCCTACGCCTTCCCGAAATCCTTCCCCATCCGCATCCCCATCCGCACTCCCCAG-CTAT-TCCCCTACGCCTTCCCCATGCGCCTTCCCCATGCGCCTTCCCCATGCGCCTTCCCCATGCGCCTTCCCCATGCGCCTTCCCCATGCGCCTTCCCCAG-CTAT-TCCCTACGCCTTCCCCATGCGCCTTCCCCATGCGCCTTCCCCATGCGCCTTCCCCATGCGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCGCCTTCCCCAG-CTATCTGGCCTTCCCCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCGCCTTCCCCAG-CTATCGCCTTCCCCAG-CTATCGCCTTCCCCAG-CTATCGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCGCCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCTGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCTGGCCCTCCCAG-CTATCTGGCCCCAG-CTATCTGGCCCCAG-CTATCTGGCCCCAG-CTATCTGGCCCTCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCCAG-CTATCTGGCCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCTTCCCAG-CTATCGGCCTTCCGCCAG-CTATCGGCCTTCCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCAG-CTATCGGCCAG-CTATCGGCCCAG-CTATCGGCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCAG-CTATCGGCCAG-CTATCGGCCCAG-CTATCGGCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCCAG-CTATCGGCCCCCAG-CTATCGGCCCCAG-CTATCGGCCCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCAG-CTATCGGCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCCAG-CTATCGGCCAG-CTATCGGCCGCAG-CTATCGGCCAGCGCCAGCGCCAGCAGCGCCAGCGCCAGCGCAGCGCCAGCGCCAGCGC$ 188 CGATTATTTACTACGACACTCGTTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCCCATTTTAAACTTACCTTACTGTGCACTCACAG-TTAT-TCCCTACGCCTCCCG 9 GRATATTITACTAGRARCTOATCOCCTCOATAGRAGCTCAAGATCATCATCATCATCATCATCATCATCATACTAACTTACCTTATGTGACCTCAGAG-TTAT-TCCCTAGGCTTCCGG 190 GRATATCTTACTACGATACTCATTCCCTCCATAGRAGTTCAACTACCTACAAATCTTCATCTCCCCATTCTAAACTTACCTTACGTACCTAGGCATCAGAG-CTAT-TCCCTAGGCATCCGG 191 CGATTATTTACTACGATACTCATCCCCCCCATAGACGCTCAAACCCATCCGCAAACCCTTCCCATTCTGAACTTATTTACTGTGCACTCACAG-CTAT-TCCCTACGCCTTCCCG 193 CGATTATTTACTACAATACTCATTCCCTTCCATAGATGCTCAAACTCAACCTACAAATCCTTCCCATTCTAAATCTACCTTATTGTGTACTCACAG-TCAT-TCCCTACGCCTTCCCG 19 CANTATTITACTACAMPACTORTCCCCCCAGGACCCTAMACTORCCCCGAMATCTTCACCTCCCATTCAMACTACACTTATTGGCACCCCAG-CTAT-CCCCTAGGCCTCCCC 196 CGATATTITACTACAMPACTATTCCCCCCCCAAGACCCCAAACTACTCCCCCGAMATCTTCACCTCCCATTCTGAACTATTTTACTGGCACCACAAG-CTAT-TCCCTAGGCCTCCCA 208 CGATTATTTACTACGATACTCATTCCCCCCCATAGACGCTCAAACCCATCCACACCTCCCCATTCTAACCTTACCTTACGTGCACTCACAG-CTAT-TCCCTACGCCTCCCG 211 CGATTATTTTACTCATACCCATGGACGCCTAAGCCCCACGGAAACCCTTCATCTTCCCATTCTAAACCCACTTATTGGCACTCACAG-CTAT-TCCCTACGCCTTCCCG

Fig. S2b. Continued.

HapID	Nucleotide Position	Frequency
	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	
	000133444455555556666666777777778888889990011122223333344444455566777888999900	
	148134257923456789023458901234578912345914604567678902578924567913847179149128905	
1	CTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCATCTCCCCATTCGTAAACTTACCT	157
2	CTTACTACAATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCACCTCCCCATTCGTAAACTTACCT	2
3	CTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTGCAAATCCTTCATCTCCCTATTCGTAAACTTACCT	1
4	CTTACCACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCATCTCCCCATTCGTAAACTTACCT	9
5	TTTACCACGACACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTAAACTTACCT	29
6	TTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCCTATTTGTAAACTTACCT	21
7	TTTACTACGATACTCATTCCCCTCCATAGACACTCAAACTCACCCTACAAATCCTTCATCTTCCCATTCGTGAACTTACTC	5
8	TTTACTACGACACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTAAACTTACCT	124
9	TTTACTACGACACTCATTCCCCTCCATAGACGTTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTAAACTTACCT	12
10	TTTACTACAATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCATTTATCTTCCTACTCGTAAGCTTACCT	5
11	TTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCTATTCGTAAACTTACCT	130
12	${\tt CTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCATCTTCCCATTCGTAAACTTACCT$	5
13	cttactacaatactcatttccctccatagacgttcaaacttaccctacaaatccttcatctccccattcgtaaacttacct	11
14	${\tt CTTACTACAATACTCATTTCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTTCCCATTCGTAAACTTACCT$	1
15	${\tt TTTACTACGATACTCATTCCCCTCCATAGACATTCAACCTCACCCTGCAAATCCTTCATCTTCCCATTCGTGAACTTACTT$	1
16	${\tt CTTACTGCGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCATCTCCCCATTCGTAAACTTACCT$	5
17	${\tt CTTACTATGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCATCTCCCCATTCGTAAACTTACCT$	11
18	${\tt TTTACTACGATACTCATTCCCCTCCATAGACACTCAAACTCACCCTGCAAATCCTTCATCTTCCCATTCGTGAACTTACTCCCTTCATCTTCCCATTCGTGAACTTACTCCCTGCAAATCCTTCATCTTCCCATTCGTGAACTTACTCCCTGCAAATCCTTCATCTTCCCATTCGTGAACTTACTCCCTGCAAATCCTTCATCTTCCCATTCGTGAACTTACTCCTTCATCTTCCCATTCGTGAACTTACTCCTTCATCTTCCCATTCGTGAACTTACTCCTTCATCTTCCCATTCGTGAACTTACTCCTTCATCTTCCCATTCGTGAACTTACTCCTTCATCTTCCCATTCGTGAACTTACTCCTTCATCTTCCCATTCGTGAACTTACTCCTTCATCTTCCCATTCGTGAACTTACTCCTTCCT$	38
19	${\tt CTTACTACGATACTCATTTCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCCATTCGTAAACTTACCT$	2
20	${\tt TTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTCATCCTACAAATCCTTCATCTCCCTATTCGTAAACTTACCT$	2
21	${\tt TTTGCTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCTATTCGTAAACTTACCT$	1
22	TTTACTACGATACTCATTCCCCTCCATAGACACTCAAACTCATCCTGCAAATCCTTCATCTTCCCATTCGTAAACTTACTC	7
23	TTTACTACGATACTCATTCCCCTCTACAGACGCTTAAACCCATCCTACAAATCCTTCATCTTCCTCTTCGTAAACTTACCT	31
24	${\tt TTTACTACAATACTCATTCCCCCCCCATAGACGCTCAAACTCATCCTACAAATCATTTATCTTCCTACTCGTAAACTTACCT$	33
25	${\tt TTTACTACGATATTCATTCCCCCCCCCACAGACGCTTAAACCCATCCTACAAATCCTTCATCTTCCTCTCGTAAACCTACCT$	2
26	${\tt TTTACTACAATACTCATTCCCCCCCCATAGACGTTTAAACTTATCCTACAAATCTTTCATCTCCCCTATTCGTAAACTTACCT$	1
27	TTTACTGCAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCTATTCGTAAACTTACCT	4
28	TTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCTTTCATCTCCCTATTCGTAAACTTACCT	28
29	${\tt TTTACTACAATACTCATTCCCCCCCCATAGACGCTCAAACTCATCCTACAAATCATTTATCTTCCTCTTCGTAAACTTACCT$	4
30	TTTACTACAATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCATTTATCTTCCTATTCGTAAACTTACCT	2
31	TTTACTACGATACTCATTCCCCTCTACAGACGCTCAAACCCATCCTACAAATCCTTCATCTTCCTCTTCGTAAACTTACCT	19
32	${\tt TTTACTACAATACTCATTCCCCCCCCATAGACGCTCAAACTCATCCTACAAATCATTTATCTTCCCACTCGTAAACTTACCT$	6
33	${\tt TTTACTACAATACTCATTCCCCCCCCATAGACGCTCAAACTCATCCTACGAATCATTTATCTTCCTACTGTAAACTCACCT$	1
34	TTTACTACAATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCATTTATCTCCCCTACTCGTAAACTTACCT	2
35	TTTACTACAATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCATTTATCTTCCTCCTCGTAAACTTACCT	1
36	${\tt TTTACTACAATACTCATTCCCCCCCCATAGACGCTCAAACTCATCCTGCAAATCATTTATCTTCCTACTCGTAAACTTACCT$	3
37	TTTACTACGACACTCGTTCCCCTCCATAGACGCTCAAGCTCATCCTGCAAATCCTTCATCTTCCCATTCGTAAACTCACCT	2
38	TTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACATATCCTTCATCTCCCTATTCGTAAACTTACCT	1
39	TTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAGTCTTTCATCTCCCTATTCGTAAACTTACCT	2
40	CTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCACCTCCCCATTCGTAAACTTACCT	1
41	TTTACTACAATACTCATTCCCCTCCATAGACGCTCAAACTCATCTTACAAATCATTTATCTTCTTACTCGTAAACTTACCT	1
42	TTTACTACAATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCATTTATCTTCCTACTCGTAAACTCACCT	1
43	TTTACTACAATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCATCTATCT	1
44	TTTACTACAATACTCATTCCCUTCCATAGACGCTCAAACTTATCCTACAAATCATTTGTCTTCCTATTOGTAAACTTACCT	3
45	TTTACTACAATATTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCTATTCGTAAACTTACCT	1
46	TTTACTACAATACTCATTCCCCCCCCATAGACGCTCAAACTCATCCTACAAATCATTCAT	2
47	CTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTATCCTACAAATCCTTCATCTCCCCATTCGTAAACTTACCT	2
48	TTTACTACAATACTCATTCCCCCCCCATAGACGCTCAAACTCATCCTACAAACCATTTATCTTCCTACTCGTAAACTTATCT	1
49	TTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCTATTCGTAAACTTATCT	2
50	TTTACAATACTCATTCCCCTCCATAGACGTTTAAACTCACCCTACAAATCCTTCATCTCCCTATTCGTAAACTTACCT	2
51	CTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCATCTCCCCATTCGTAAACTTTCCT	2
52	TTTACCACGATACTCATTCCCCTCTACAGACGCTTAAACCCATCCTACAAATCCTTCATCTTCCTCTCTCGTAAACTTACCT	1
53	TTTATCACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCTTCCCATTCGTGAACTTACTT	2
PC	TTTATCACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCTTCCCATTCGTAAACTTACTT	1 7
55		1
57	THINCINCING INTO CONTROL OF THE CALCULAR AND	1
57		1
50		2
55		1
61	CCTACTACCATACTCATTTCCCTCCATAGACCTTCAAACTTACCCTACAAATCCTTCATCTCCCCCATTCGTAAACTTACCC	1
62		-
63	TTTACTACGATACTCATTCCCCTCTACAGACGCTCAAACTCCTACAAATCCTTCATCTTCCTCTCGTAAAACTTACCT	2
64	TTTACTACGATACTCATTCCCCTCTACAGACGCTCAAACCCGTCCTACAAATCCTTCATCTTCCTCTTCGTAAACTTACCT	2
65	TTTACTACGATACTCATTCCCCTCTACAGACGCTCAAACCCATTCTACAAATCCTTCATCTTCCTCTTCGTAAACTTACCT	7
66	TTTACTACGATACTCATTCCCCTCTACAGACGCTCAAACCCACCC	1
67	TTTACTACGATACTCATTCCTCTACAGACGCTCAAACCCATTCTACAAATCCTTCATCTTCCTCTTCGTAAACTTACCT	1
68	TTAACTACAATACTCATTCCCCCCCCCATAGACGCTCAAACTCATCCTACAAATCATTTATCTTCCTACTCGTAAACTTACCT	1
69	TTTACTACGACACTCATTCCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTGAACTTACCT	7
70	CTTACTGCGATACTCATTTCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCCATTCGTAAACTTACCT	1
71	TTTACCACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCACCTTCCCATTCGTAAACTTACCT	2
72	TTTACTACGATACTCATTCCCCTCTACAGACGCTTAAACCCATCCTACAAATCCTTCACCTTCCTCTTCGTAAACTTACCT	1
73	TTTACTACAATACTCACTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCTTTCATCTCCCTATTCGTAAACTTACCT	16
74	TTTACTACGATACTCATTCCCCTCTACAGACGCTCAAACCCATCCTGCAAATCCTTCATCTTCCTCTTCGTGAACTTACCT	1
75	TTTTCTACGATACTCATTCCCCCTCCATAGACGCTCAAACTCATTCTGCAAATCCTTCACCTTCCCATTCGTGAACTTACTT	13
76	TTTACTACGATACTCATTCCCCTCCATAGACACTCAAACTCACCCTGCAAATCCTTCATCTCCCCATTCGTAAACTTACTC	6
77	TTTACTACGACACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTGAACTTACCT	1
78	${\tt cttactacgatactcatttccctccataggcgttcaaacttaccctacaaatccttcatctccccattcgtaaacttacct$	2
79	TTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCCTTCATCTCCCCATTCGTAAACTTACCT	1
80	${\tt cttactacgatactcattccccctccatagacgttcaaacttaccctacaaatccttcatctccccattcgtaaacttacct$	1
81	${\tt TTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCACCTCCCTATTCGTAAACTTACCT$	5
82	${\tt ttcctacaatactcattcccctccatagacgtttaaacttaccctacaaatccttcatctccctattcgtaaacttacct$	1
83	TTTACTACGACACTCATTCCCCTCCATAGACGCTCAAACTCACCCTACAAATCCTTCATCTTCCCATTTGTAAACTTACCT	1
84	TTTACTACGATACTCATTCCCCTCCATAGACACTCAAACTCACCCTGCAAATCCTTCATCTTCCCATTCGTAAACTTACTC	1
85	${\tt TTTACCACAATACTCATTCCCCTCCGTAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCTATTCGTAAACTTACCT$	1
86	${\tt TTTACTACGATACCCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTTACCTTCCCATTCGTAAACTTACCT$	1
87	${\tt TTTACTACGACACTCATTCCCCCCCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTTGTAAACTTACCT$	3
88	${\tt cttactacgatactcatttccctccatagacgttcaaacttaccctacaaatccttcatctccccattcgtgaacttacct$	1
89	${\tt TTTACTACAATACTCATTCCCCTCCATAGACACTCAAACTCACCCTGCAAATCCTTCATCTTCCCATTCGTAAACTTACTC$	15
90	${\tt cttaccacgatactcatttccctccatagacgttcaaacttaccctacaaatccttcatctccccattcgtaaacttaccg}$	1
91	${\tt TTTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCTTCCCATTCGTAAACTTACCT$	7
92	${\tt TTTACTACAATACTCATTCCCCTCCATAGACGTTTATACTTACCCTACAAATCCTTCATCTCCCTATTCGTAAACTTACCT$	1
93	${\tt TTTACTACGATACCCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCTTCCCATTCGTAAACTTACCT$	6
94	TTTACTACGGTACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCTTCCCATTCGTGAACTTACCT	1
95	${\tt TTTACTACGATACTCATTCCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCTTCCCATTCGTGAACTTACCT$	6
96	TTTACTACGATACTTATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCCTCCCATTCGTAAACTTACCT	1

Fig. S3a. Haplotypes and frequencies used for networks analyses from the 205-bp alignment including the archaeological DNA sequences. Because of the differences in the number of polymorphic sites, it was not possible to keep the same haplogroup numbers for both the complete and truncated alignment analyses.

SANG SANG

97	TTTACTACGATACTCATCCCCCCCCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCTTCCCATTCGTGAACTTACCT	1
98	TTTACTACAATACTCATTCCCTTCCATAGATGCTCAAACTCAACCTACAAATCCTTCACCTTCCCATTCGTAAATCCACCT	2
99	TTTACTACAATACTCATTCCCTTCCATAGACGCCCAAACTCAACCTACAAATCCTTCACCTTCCCATTCGTAAATCTACTT	2
100	TCTTCCACATTTCT-AGTCTATTCCATAAGCGCTTAA-CTCAACCTACAACTCTTTCACCCTCCCATTCGTAAACTTACCT	1
101	TCTTCCACATTTCT-AGTCTATTCCATAAGCGCTTAA-CTCAACCTACAACTCCTTCATCTTCCCATTGGTAAACTTATCT	1
102	TCTTCCACATTTCT-AGTCTATTCCATAAGCGCTTAA-CTCAACCCACAACTCTTTCATCTTCCCATTGGGAACTTATCT	1
103	TTTACTACAATACTCATTCCTCTCCATGGACGCTTAAACTCACCCTGCAAATTCTTCATCTTCCCATTCGTAAACTCACTT	1
104	TTTACTACAATACTCATTCCCCTTCATAGACGCTCAAACTCATCCTGCAAATCCCTCATCTTCCCATTCGTAAACTCACTT	1
105	TTTACCACGATACTCATTCCCCTCCATAGACGCTCAAATTCATCCTACAAATCCTTCATCTTCCTCTTCGTAAACTTACCT	1
106	TTTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCTTCCCATCCGTAAACTTACCT	2
107	TCTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCTTCCCATTCGTGAACTTACCT	1
108	TTACTACGATACTCATTCCCCTCTACAGACGCTCAAACCCATTCTACAAATCCTTCATCTTCCTCCTCGTGAATTTACCT	5
109	TTACTACGATACTCATTCCCCTCTACAGACGETCAAACCCATCCTACAAATCCTTCATCTTCCTCTCGTAAGCTTACCT	1
110	TTTACTACGACACTCATTCCCCTCCATAGACGCTTAAGCTCATCCTACAAATCCTTCATCTTCCCATTCGTAGACTCACCT	2
111		1
112		1
112		-
11.0		1
114		1
115		1
110	TTTACTACARTACTCATTCCCCTCCATAGACGCCCTCAAACTCATCCTGCAAATCCTTCACCTTCCCCATTCGGGAACTTACCT	1
117	TTTACTACGACACTCATTCCCCTCCATAGACGCGTTAAACTCATCCTACATACTTCCCTTCATCTTCCCATTCCGTAAACTTACCT	4
110	TTTACTACGATACTCATTCCCCCCCATAGACACTCAAACTCACCCTGCAAATCCTTCATCTTCCCATTCGTGAACTTACTC	10
119		10
120	CTTACTACGATACCCATTCCCTCCATAGACGTCAAACTTACCCTACAAATCCTTCATCTCCCCATTCGTAAACTTACCT	5
121	TTTATCACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCACCTTCCCCTTCGTAAGCTTACTT	12
122	TTTACTACGATACTCATTCCCCCCCATAGACACTCAAACTCACCCTGCAAATCCTTCATCTTCCCCATTCGGGAACTTACTC	1
123	TTTACTACGATACTCATTCCCCCCCATAGACATCCAAACTCCTGCAAATTCTTCATCTTCCCCATTCGTGAACTTACTC	1
124	TTTACTACAATACTCATTCCCCTCCATAGACACTCAAACTCACCCTGCAAATCCTTCATCTTCCCATTCGTGAACTTACTC	1
125	TTTACTACGACACTCATTCCCCTCCATAGACGCTTAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTAAACTTACCT	1
126	TTTACCACGACACTCATTCCCCTCCATAGACGCTCAAACTTATCCTACAAATCCTTCATCTTCCCATTCGTAAACTTACCT	3
127	TCTACTACGATACTCATTCCCCTCCATAGACGCTCTAACTCATCCTGCAAATCCTTCACCTCCCCATTCGTGAACTTACCT	2
128	TTTACTACGACACTCGTTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTTGTAAACTTACCT	7
129	CTTACTACGATACTCATTTCCCTCCATAGACGTTCAAACTTACCCTACAAATCTTTCATCTCCCCATTCGTAAACTTACCT	1
130	TTTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCTTCCCATTCGTGAACTTATTT	3
131	TTTACTACAATACTCATTCCCTTCCATAGATGCTCAAACTCAACCTACAAATCCTTCACCTTCCCATTCGTAAATCTACCT	2
132	TTTACTACAATACTCATTCCTCTCCATGGACGCTTAAACTCACCCTGCAAATCCTTCATCTTCCCATTCGTAAACTCACTT	1
133	TCTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGTAAATCCTTCACCTTCCCATTCGTGAACTTACCT	1
134	TTTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCTTTCACCTTCCCATTCGTAAACTTACCT	2
135	TTTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCCTCCCATTCGTGAACTTACCT	1
136	TTTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCCTTCACCCTCCCATTCGTAAACTTACCT	1
137	TTTACTACGATACTCATTCCCCTCCATAGACACTCAAACTCACCCTGCAAATCCTTCATTTTCCCATTCGTAAACTTACTC	1
138	TTTACTACGATACTCATTCCCCTCCATAGACACTCAAACTCACCCTGCAAATCCTTCATCTTTCCATTCGTGAACTTACTC	1
139	TTTACTACAATACTCATTCCTCTCCATGGACGCTTAAGCTCACCCTGCAAATCCTTCATCTTCCCATTCGTAAACTCACTT	1
140	TTTACTACGACACTCATTCCCCTCCATGGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTAAACTTACCT	4
141	TTTACTACAATACTCATTCCCCTCCATAGACGTTTAAACTTACCCTACAAATCCTTCATCTCCCTATTCGTAAACTCACCT	1
142	TTTACCACGACACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTAAANNNNNN	1
143	TTTAUTAUGAUAUTUATTUUCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTAAANNNNNNN	1
144	NNNNTACGACACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTAAACTTACCT	1
145	${\tt TTTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCTTTCACCTTCCCATTCGTGAACTTACCT$	2
146	NTTACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCTTTCACCTTCCCATTCRTGAACTTACCT	2
147	NNNACYACGACACTCATTCCCCTCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCRTAAACTTACCT	1
148	NNNACTACGATACTCATTCCCCTCCATAGACGCTCAAACTCATCCTGCAAATCTTTCACCTTCCCCATTCCTGAACTTACCT	1
149	NNNNCTACGACACTCATTCCTCCCATAGACGCTCAAACTCATCCTACAAATCCTTCATCTTCCCATTCGTAAACTTACCT	1
101010:	.01010101010101010101010101010101010101	1010011010101010101010101010101010101010

PNAS PNAS

Fig. S3b. Continued.

Fig. S4. Median-joining network start showing the position of 41 Chilean modern chickens (yellow) among native and wild junglefowl from Asia, Africa, and Europe. Only major and relevant networks are presented here by using 534 bp of the mtDNA CR. Circle size is proportional to the frequency of the corresponding haplotypes, and the geographical origin of the haplotypes are distinguished by use of color codes described in the table next to the figure. Most of the Chilean chickens cluster with Indian subcontinental/European/Chinese chickens, whereas other Chilean chickens cluster with haplogroups predominant of South and eastern Chinese/Japanese/Indonesian chickens.

Fig. S5. Simplified median-joining networks showing the relationships and clustering of 205 bp of the mtDNA control region from worldwide, Chilean Araucana, pre-Columbian, and ancient Pacific/Polynesian chickens. The numbers next to the circles correspond to the haplotype clade number. The area of each circle is proportional to the frequency of the corresponding haplotypes, and the geographical origins of the haplotypes are distinguished by use of color codes described in the table next to the figure. Most of the Chilean chickens cluster with Indian subcontinental/European/Chinese chickens, more specifically with haplotype numbers 5, 8, 9, 128, and 140. The other Chilean chickens cluster with haplotypes predominant in South and eastern Chinese/Japanese/Indonesian chickens (haplotypes numbers 11, 17, and 141). Pre-Columbian sequence clusters with haplotype number 8. A more complete description of this MJN is presented in Fig. 1. Certain closely related haplotypes described in this and other figures have collapsed into others because of ambiguities and different length sequences.

Fig. S6. Strict consensus MP tree. It was constructed from 30,276 trees left as described in Materials and Methods.

DNAS

Fig. S7. MJN showing eight haplotypes of 41 modern Chilean chickens based by using 530 bp of the mtDNA CR sequences. The area of each circle is proportional to the frequency of the corresponding haplotypes described in supporting information (SI) Table S1. Clustering of these sequences among native chickens and wild junglefowl from Asia, Africa, and Europe is shown in yellow in Fig. 1 and Figs. S4 and S5.

DNAS Nd

Table S1. Voucher information of modern Chilean chicken samples collected from latitudes 33° to 40° S

Sample ID Breed or type CHL1 Ketro		Flock	Sex (♀/♂)	Chilean haplotype name	Haplotype no. as indicated in network analyses	
		A Pirque 1, Santiago (Lat 33° 40' S, Long 70° 28' W)	ð	11-CH	11	
CHL2	Kollonca	ੱ	8-CH	8		
CHL3	Kollonca	Ŷ				
CHL4	Kollonca	Ŷ				
CHL5	Creole/naked neck	ð	17-CH	17		
CHL6	Kollonca	Ŷ	11-CH	11		
CHL7	Creole	B Pirque 2, Santiago (Lat 33° 39' S, Long 70° 27' W)	ð	8-CH	8	
CHL8	Kollonca	C Antiquina, Arauco (Lat 38° 11′ S, Long 73° 25′ W)	ð	8-CH	8	
CHL9	Kollonca	ð	8-CH	8		
CHL10	Ketro	Ŷ	140-CH	140		
CHI 11	Kollonca de Aretes	Ŷ	8-CH	8		
CHI 12	Kollonca	ф Ф	8-CH	8		
CHI 13	Kollonca	Ť.	8-CH	8		
CHL14	Creole	D Malihue, Valdivia (Lat 39° 44' S, Long 72° 38' W)	ç	8-CH	8	
CHI 15	Creole	γ <u></u>	8-CH	8		
CHL16	Kollonca	G Cañete, Arauco (Lat 37° 47' S, Long 73° 23' W)	ð	Ū.		
CHI 17	Ketro	, <u>, , ,</u>	11-CH	11		
CHI 18	Kollonca	ð	8-CH	8		
CHL19	Creole	E Ninhue, Chillán (Lat 36° 21′ S, Long 72° 23′ W)	Ŷ	8-CH	8	
CHL20	Creole	F Yumbel, Chillán (Lat 37° 02′ S, Long 72° 32′ W)	Ŷ	140-CH	140	
CHL21	Kollonca	G Cañete, Arauco (Lat 37° 47′ S, Long 73° 23′ W)	ð	8-CH	8	
CHL22	Ketro	Ŷ	140-CH	140		
CHL23	Ketro	Ŷ	5-CH	5		
CHL24	Kollonca	Ŷ	9-CH	9		
CHL25	Ketro	Ŷ	8-CH	8		
CHL26	Kollonca	Ŷ	5-CH	5		
CHL27	Kollonca	Ŷ	8-CH	8		
CHL28	Ketro	ð	8-CH	8		
CHL29	Ketro	Ŷ	140-CH	140		
CHI 30	Kollonca	Ŷ	8-CH	8		
CHL31	Kollonca	B Pirque 2, Santiago (Lat 33° 39' S, Long 70° 27' W)	ð	17-CH	17	
CHL32	Kollonca	Ŷ	128-CH	128		
CHL33	Ketro	Ŷ	8-CH	8		
CHI 34	Japanese Long Tail ancestry	ð	8-CH	8		
CCHI 35	Kollonca	ð	8-CH	8		
CHI 36	Kollonca	Ŷ	11-CH	11		
CHI 37	Ketro	Ť.	11-CH	11		
CHI 38	Creole	¢	8-CH	8		
CHI 39	Passion fowl	+ 0	8-CH	8		
	Passion fowl	+ H Viña dol Mar, Valparaíso (Lat 22º 50'	3-CI1	8_CH	Q	
		S, Long 71° 33′ W)	0	о-сп о	o	
CHL40	Passion towi	Ċ O	ð-CH	ŏ		
CHL42	Passion Towl		8-CH	8	<u>,</u>	
CHL43	Ketro	J Melipilla, Santiago (Lat 33° 42' S, Long 71° 13' W)	ð	8-CH	8	
CHL44	Passion fowl/Sebright ancestro	I EI Monte, Santiago (Lat 33° 42' S, Long 70° 58' W)	Ŷ	141-CH	141	

Creole translates from "criollo" and stands for an unselected smallholder chicken typical of the countryside. DNA extraction precedures failed for samples 3, 4, and 16.

PNAS PNAS

ΔR	Marine C, %	Calibration dataset	Radiocarbon on chicken bones from the El Arenal-1, Chile ($n = 622 \pm 35$)
0 ± 0	0	SHCal04	AD1304–1424
154 ± 131	10	Mixed marine SoHem	AD1387–1449
154 ± 131	20	Mixed marine SoHem	AD1395–1492
154 ± 131	30	Mixed marine SoHem	AD1412–1620
154 ± 131	40	Mixed marine SoHem	AD1440–1644
154 ± 131	50	Mixed marine SoHem	AD1439–1796

Table S2. Calibration of one direct date on chicken bone with increasing proportion of marine-derived carbon

 ΔR of 137 \pm 114 based on Ingram and Southon's (1) single bivalve determination from Valparaiso, Chile combined with Taylor and Berger's (2) gastropod date from approximately the same location. Given the problems inherent with the use of gastropods for characterizing marine reservoir effects, the derived ΔR value is used simply for illustrative purposes. All calibrated dates are reported at 2σ . Bold type denotes pre-Columbian values.

 Ingram BL, Southon JR (1996) Reservoir ages in Eastern Pacific coastal and estuarine waters. Radiocarbon 38:573–582.
Taylor RE, Berger R (1967) Radiocarbon content of marine shells from the Pacific coasts of Central and South America. Science 158:1180-1182.

PNAS PNAS

Table S3. Frequency of modern Chilean chicken haplotypes

Haplotype	Frequency
17-CH	2
11-CH	5
141-CH	1
140-CH	4
5-CH	2
9-CH	1
8-CH	25
128-CH	1
Total	41

PNAS PNAS

Table S4. ΔR values for the west coast of South America (after Reimer and Reimer 2008)

Collection Reservoir

Longitude	Latitude	ΔR	Location	Ref	year	age	¹⁴ C age	Lab no.	Таха	Diet
-80.00	-3.00	-216 ± 37	Guayaquil, Ecuador*	10	1927	85 ± 38	235 ± 37	UCIA-1249A	Cerithidea valida	Deposit feeder
-80.00	-3.00	84 ± 45	Guayaquil, Ecuador*	10	1927	386 ± 46	536 ± 45	UCLA-1249B	Thais biserialis	Carnivore
-80.00	-10.00	243 ± 49	Northern Peru*	10	1935 [†]	544 ± 50	700 ± 49	UCLA-1282	Strombus peruvianus	Herbivore/omnivore
-78.00	-14.00	670 ± 44	Peru*	10	1935 [†]	971 ± 45	1127 ± 44	UCLA-1279	Oliva peruviana	Unknown
-70.00	-24.00	175 ± 34	Antofagasta, Chile*	10	1925	477 ± 35	626 ± 34	UCLA-1277	Concholepas concholepas	Carnivore
-72.00	-33.00	313 ± 76	Valparaiso, Chile*	10	1935 [†]	614 ± 77	770 ± 76	UCLA-1278	Tequla aler	Unknown
-71.80	-33.10	61 ± 50	Valparaiso, Chile	6	1939 [‡]	370 ± 51	520 ± 50	CAMS-17919/1	Mytilus californianus	Suspension feeder
-72.65	-51.70	221 ± 40	Puerto Natales, Chile	6	1939 [‡]	530 ± 41	680 ± 40	CAMS-17918	Mytilus californianus	Suspension feeder

Marine reservoir effects for Chile are poorly resolved. There are eight ΔR values published for the west coast of South America between the equator and Cape Horn. All but one of these values can be shown to be problematic. Six of these values were published by Taylor and Berger (10) on the basis of dating of gastropods. Over the last 20 years, several studies have indicated that detrital feeders are potentially problematic because ingested organic carbon from diverse sources can become incorporated into shell structures through metabolic action (5, 9). These effects have been found to be particularly problematic in limestone-dominated areas (1, 4). It is for this reason that the use of suspension feeders, herbivores, and omnivores is recommend in ΔR research. Taylor and Berger's sample contains two carnivores, a deposit feeder, and two other gastropods for which dietary information is lacking. Only the determination on *Strombus peruvianus* from northern Peru is unproblematic as a herbivore/omnivore, resulting in $\Delta R = 243 \pm 49$. In Ingram and Southon's (6) more recent study focused on California included two samples of the suspension-feeding bivalve *Mytilus californianus* from Chile. The sample from Puerto Natales is an estuarine reservoir value, potentially influenced by terrestrial runoff and incomplete exchange with the open ocean and therefore may not reflect open water reservoir conditions (11). This leaves the determination from Valparaiso in central Chile, resulting in $\Delta R = 61 \pm 50$. This single ΔR value provides the single reliable estimate for marine reservoir effect in near-shore open waters in southern South America. However, this value is likely to underestimate ΔR in the region because of heavily depleted Antartic source waters brought to the Chilean coastline by the Antartic circumpolar current. Seven values are reported in the Marine Reservoir Database for northern Antartica (7) giving a combined $\Delta R = 871 \pm 176$ (see refs. 2, 3, 8). We believe, therefore, that the $\Delta R = 61 \pm$

*Approximate location.

[†]Mid-point. Collected between 1930–1940 (10).

[‡]Ingram and Southon (1996:574) state that "*n most cases, it is uncertain whether these specimens were collected live or not.*"

1. Anderson AT, Higham FG, Wallace R (2001) The radiocarbon chronology of the Norfolk Island archaeological sites. Rec Australian Mus 27(Supplement):33-42.

Berkman PA, Forman SL (1996) Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean. Geophys Res Lett 23:363–366.
Bjorck S, Hjort C, Ingolfsson O, Skog G (1991) Radiocarbon dates from the Antarctic peninsula region—problems and potential. Radiocarbon Dating: Recent Applications and Future Potential, ed Lowe JJ (Quaternary Research Association, Cambridge, UK), Quaternary Proceedings 1, pp 55–65.

4. Dye T (1994) Apparent ages of marine shells: Implications for archaeological dating in Hawaii. Radiocarbon 36:51-57.

5. Hogg AG, Higham TFG, Dahm J (1998) ¹⁴C dating of modern marine and estuarine shellfish. Radiocarbon 40:975–984.

6. Ingram BL, Southon JR (1996) Reservoir ages in Eastern Pacific coastal and estuarine waters. Radiocarbon 38:573-582.

7. Reimer P, Reimer R (2008) Marine reservoir correction database. http://calib.qub.ac.uk/marine, accessed February 10, 2008.

8. Peck LS, Brey T (1996) Bomb signals in old Antarctic brachiopods. Nature 380:207-208.

9. Tanaka N, Monaghan MC, Rye DM (1986) Contribution of metabolic carbon to mollusk and barnacle shell carbonate. *Nature* 320:520–523.

10. Taylor RE, Berger R (1967) Radiocarbon content of marine shells from the Pacific coasts of Central and South America. Science 158:1180-1182.

11. Ulm S (2002) Marine and estuarine reservoir effects in central Queensland, Australia: Determination of ΔR values. Geoarchaeology 17:319–348.

12. Taylor RE, Berger R (1967) Radiocarbon content of marine shells from the Pacific coasts of Central and South America. Science 158:1180–1182.

Other Supporting Information Files

Table S5 (XLS) Table S6 (XLS)