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Methods. The objective of this study was to evaluate a range of
nonpharmaceutical interventions (NPIs) and their consequences
in mitigating influenza pandemics of increasing severity. This
supporting information is organized into four sections: (i) De-
scription of Nonpharmaceutical Interventions; (ii) Epidemic Mod-
els: Nonpharmaceutical Interventions, which provides a detailed
derivation of the model used to evaluate various NPIs discussed
in the first section; (iii) Stochastic Poisson Simulation of Disease
Progression, which provides details of the simulation method
implemented in this study; and (iv) Calculation of the Basic
Reproduction Number, which outlines the computation of the
basic reproduction number (R0).

Description of Nonpharmaceutical Interventions. Before defining
nonpharmaceutical intervention plans, it is necessary to define
a baseline scenario. Our scenario assumed visitors maintained
their 2-h (per week) visiting periods, staff reported for their 8-h
(5-day) work shifts, and no transmission reduction measures
were implemented by staff or visitors. This scenario assumed
that visits to the facility did not depend on any individual’s
then-current infectious state, i.e., all individuals reported to work
and visiting hours regardless of the infectious state (susceptible,
exposed, infected, or recovered) of the staff member, visitor, or
resident. We recognize that it is more realistic that a portion of
infected and symptomatic individuals would likely be unwilling
or physically unable to leave their homes, so the baseline scenario
mimics a worst-of-usual possible situation.

The NPIs proposed in this study are control measures that can
plausibly be implemented by resident care facility personnel
during an influenza pandemic. The first level of control efforts
(plan category 1–2) was aimed at reducing contacts that staff and
visitors might have with potentially infected individuals outside
a facility. Our model assumed that staff and visitors reduced
their contacts with potentially infected individuals and thereby
reduced their risk of transmission to residents by 50% (�i � 0.5).
These reductions were to be accomplished by the use of face-
masks, gowns, or other protective clothing, and the adoption of
social distancing measures in high-density public gatherings such
as churches, schools, and theaters. This plan also assumed that
staff further reduced their risk of infection during the time spent
outside a facility, and covered anticipated absenteeism and
reduced the risk of introducing the pandemic virus by 20% (one
fewer reentry) by switching their working schedule from an 8-hr
to a 12-h-per-day average time spent in a facility.

The second level of control measures (plan category 3–4)
simulated in our study augmented the interventions described in
category 1–2 by extending staff schedules to four-days-on/4-days-
off-site periods. In addition, staff and visitors entering a facility
were monitored for elevated temperature and a history was
documented and signed. The effectiveness of monitoring was
captured by the parameter pi, where i indexed exposed, asymp-
tomatic, and infected individuals. For exposed individuals, pE
described the probability that exposed but asymptomatic indi-
viduals became infectious either before or during work (staff) or
visiting periods (visitors). The off-site 4-day portion of the
augmented staff schedule included a period of isolation from the
community in the company of the staff person’s living group that
began the evening of the second day off and included the full
third and fourth day before reentering a facility (2.3 days of
self-isolation). The length of the isolation period was chosen to
reduce the probability of a virus introduction on reentry by 75%,

and to increase the chances that monitoring would detect
infected individuals when entering a facility. The probability that
an asymptomatic individual would actually not be infected at the
end of the self-isolation period was estimated as follows: The
time interval in which an individual was off-site and out in the
community was divided into 10 equal subintervals. The likeli-
hood that an individual might be exposed to the pandemic virus
was assumed to be equal in each subinterval. We estimated the
probability that an individual who was exposed in each subin-
terval would be asymptomatic at the end of the self-isolation
period as the product of the probability of having been infected
in each subinterval multiplied by the probability that a person
who had been exposed in that subinterval would still remain
asymptomatic at the time the person was to report for work. We
used crude data on infection with the A(H3N2) pandemic virus
(R. Couch and P. Glezen, personal communication) to estimate
the distribution of time to first symptoms. For self-isolation
periods of 1.3, 2.3, and 3.3 days, this calculation produced
estimates that a person with access to the community over the
2.7, 1.7, and 0.7 days preceding the self-isolation period, respec-
tively, and who remained asymptomatic at the end of isolation
period would reduce the likelihood of introduction of the
pandemic virus by levels of 0.5, 0.75 and 0.86, respectively.

For asymptomatic and infected individuals, pA and pI, respec-
tively, represented the probabilities that these individuals passed
undetected through the monitoring process. Therefore, pI � 0.1
implied a 10% chance that an infected and infectious individual
reported to work and entered undetected by the monitoring
process. Asymptomatic individuals represented the highest po-
tential risk to a facility because symptoms would never be
apparent and monitoring efforts would be ineffective (pA � 1).

The third level of control measures addressed the scenario of
a severe pandemic (plan category 5). This plan assumed com-
plete visitor restrictions and staff social distancing transmission
control measures that reduced the risk of transmission to
residents by 95%, and self-isolation periods of 3.3 days in a
4-day-on/-day-off staff shift implementation. The simulated
implementation of these control measures effectively prevented
introduction of a pandemic virus into a facility, but it also placed
strong constraints on visitors and staff.

Epidemic Models: Nonpharmaceutical Interventions. We used an
extension of a Susceptible–Exposed–Infected–Recovered
(SEIR) model within a stochastic framework to study the
dynamics of a pandemic virus introduction and its propagation
among individuals in a resident care facility that is part of a larger
community. We used the average size of nursing home popula-
tions in the United States (200 residents), an effective daily staff
size of 83 to accommodate reports of 3 h of daily staff contact
time with each patient, and a coterie of 40 visitors (only one in
five residents are reported to receive visitors). In the absence of
a vaccine (assumed to be unavailable early in a pandemic),
individuals left the susceptible class only when exposed to the
pandemic virus. For seasonal influenza, it is not uncommon for
individuals to become infected with the circulating influenza
virus and to remain asymptomatic not only for a short period
after viral shedding (and therefore infectiousness) has begun,
but throughout the course of the infection. However, for pan-
demic viruses, experience with the A(H3N2) viruses responsible
for the last pandemic suggests the following:

1. There will be few, if any, asymptomatic carriers.
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2. The time between the onset of infectiousness and the ap-
pearance of symptoms will be very short or nonexistent (P.
Glezen, R. Couch, and R. Belshe, personal communications).

3. In the event that antiviral agents are available and deployed,
it is possible that, in individuals for whom these agents are
only partially effective, an asymptomatic (but still infectious)
condition could exist.

With the above in mind, we modeled the total population of
individuals inside (Nin) and outside (Nout) a facility by dividing
these populations into subpopulations according to their current
epidemiological state: Susceptible (Si), Exposed (Ei), Asymp-
tomatic (Ai), Infected (Ii), Recovered (Ri), and disease-induced
Dead (D). The index i was used to denote the resident (R), visitor
(VC and VF), staff (SC and SF), and community (C) populations.
Visitors and staff were indexed according to their location in a
facility (VF, SF) or the community (VC, SC).

Resident Model. Susceptible residents (SR) acquired infection with
a force of infection, �in, on contact with symptomatic (infectious)
individuals (IR � IVF � ISF) or asymptomatic (assumed less
infectious) individuals (AR � AVF � ASF) circulating within the
facility. We assumed that residents interacted directly with
visitors (VF) and staff (SF) during the time spent in a facility. The
force of infection for residents in a facility was given by �in �
[¥i�R,SF,VF�i(�iIi � �i�iAi]/Nin, where �i (0 � �i � 1) accounted
for the relative infectiousness of asymptomatic individuals.
Similarly, �i (0 � �i � 1) and �i (�i � �i � 1) represented the
reduction in disease transmission produced by the control mea-
sures when applied to infected and asymptomatic persons,
respectively. A fraction, m, of exposed residents (ER) progressed
to symptomatic infection (IR) at a rate �R, whereas the remaining
fraction, 1 � m (asymptomatic but potentially infectious) moved
into AR at the same rate. Infectious and symptomatic residents
recovered at a rate �I or succumbed to disease at a rate �I.
Mortality rate was adjusted according to the case fatality pro-
portion (CFP) such that �I � ((CFP/(1 � CFP)))�I, where 1/�I
was the average time spent infectious before succumbing to
disease. Therefore, mortality for each scenario is simply the total
number of cases multiplied by the value of the case fatality
proportion. Asymptomatic residents recovered at a rate �A.
Because the time scale of a pandemic is small compared with that
of human demographics, we excluded natural mortality but
included disease-induced mortality. Based on these assumptions,
the resident model was given by the following system of differ-
ential equations:

ṠR 	 �� inSR

ĖR 	 � inSR 
 �m�R � �1 
 m��R�ER

ȦR 	 �1 
 m��RER 
 �AAR

İR 	 m�RER 
 �� I � � I�IR

ṘR 	 �AAR � � I IR

ḊR 	 � I IR

[1]

Visitor and Staff Model. We modeled the interaction of visitors and
staff with residents in a facility and community individuals by
dividing these populations into epidemiological classes similar to
those assumed in the resident model. Susceptible individuals (Si)
became exposed (Ei) at a rate �i, a fraction, m, of these
individuals progressed to the infectious class (Ii) at a rate �i. The
remaining fraction, 1 � m, continued into the asymptomatic (Ai)
class. Recovery rates were defined to be the same as in the
resident model. The model was indexed by i, where i � VC, VF,
SC, SF denoted visitors and staff inside and outside (in the

community) a facility. We expressed the probability that persons
who might be infectious or become so while on-site would be
undetected by the monitoring process among exposed, asymp-
tomatic, and infected individuals circulating between the com-
munity and a facility by pE, pA, and pI, respectively. For simplicity
of computation, we assumed that the period that a staff member/
visitor spent in the residential facility/community was exponen-
tially distributed, and therefore, that the average time that staff
and visitors spent between changes in location was denoted by
1/�i (see supporting information (SI) Table S3). The equations
describing the dynamics of visitors in the community and in a
facility follow:

ṠVC 	 �VFSVF 
 ��out � �VC�SVC

ĖVC 	 �VFEVF � �outSVC 
 � pE�VC � m�1 
 pE��VC

� �1 
 m��1 
 pE��VC�EVC

ȦVC 	 �VFAVF � �1 
 m��1 
 pE��VCEVC


 ��A�1 
 pA� � pA�VC�AVC

İVC 	 �VFIVF � m�1 
 pE��VCEVC 
 ��I � pI�VC�IVC

ṘVC 	 �VFRVF � �IIVC � �A�1 
 pA�AVC 
 �VCRVC

ṠVF 	 �VCSVC 
 ��in � �VF�SVF

ĖVF 	 pE�VCEVC � � inSVF 
 �m�VF � �1 
 m��VF � �VF�EVF

ȦVF 	 pA�VCAVC � �1 
 m��VFEVF 
 ��A � �VF�AVF

İVF 	 pI�VCIVC � m�VFEVF 
 �� I � �VF�IVF

ṘVF 	 �VCRVC � � IIVF � �AAVF 
 �VFRVF

[2]

The force of infection for individuals outside a facility included
the contributions of community members (indexed by C), staff
in the community (indexed by SC), and visitors in the community
(indexed by VC). This rate was denoted by �out �
[¥i�C,SC,VC�i(�iIi � �i�iAi]/Nout. The model equations for the
staff population can be derived by replacing indices VC and VF
in Eq. 2 with SC and SF, accordingly.
The Force of Infection. The expression for the forces of infection
inside (�in) and outside (�out) a facility assumed that transmission
reduction measures could be applied with different levels of
effectiveness to asymptomatic and symptomatic individuals. In
the case in which transmission reduction was equally applicable
to symptomatic and asymptomatic persons (�i � �i), of course,
�i � �i � 1. However, some NPIs, such as isolation, are strictly
inapplicable to asymptomatic persons, and it is likely that many
other NPI forms will not be applied with equal rigor to both
obviously infectious and symptom-free individuals. We believe,
therefore, that in practice, �i will be closer to 1 than �i. We have
presented the results of simulations for the extreme values for �i.
The small difference in the results is consistent with our as-
sumption of a small number and low infectiousness associated
with the asymptomatic state for pandemic viruses.
The Community Model. To assess the contributions of staff and
visitors to the risk of a virus introduction, we simulated their
interactions during the time spent in the community. Although
community members did not interact directly with residents,
their contacts with visitors and staff outside the facility could
indirectly impact (modeled in �out) the risk of transmission to
residents. By using the same epidemiological classes: susceptible
(SC), exposed (EC), asymptomatic (AC), infectious (IC), and
recovered (RC), we derived the following system of equations for
the community:
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ṠC 	 ��outSC

ĖC 	 �outSC 
 �m�C � �1 
 m��C�EC

ȦC 	 �1 
 m��CEC 
 �AAC

İC 	 m�CEC 
 � IIC

ṘC 	 � IIC � �AAC

[3]

Stochastic Poisson Simulation of Disease Progression. Compartmen-
tal deterministic models are frequently applied to study the
spread of communicable diseases that impact human popula-
tions. These models assume homogeneous mixing that arguably
may overestimate an outbreak size, and hence, underestimate
the effect of NPIs. Such models implicitly assume that the
populations under study are sufficiently ‘‘large’’ and, therefore,
neglect ‘‘small’’ stochastic event variations. Because the model
discussed in this study involved a facility of only 200 residents, 83
staff, and 40 visitors, we implemented a stochastic model and
solved it numerically via a Poisson simulation (8).

We illustrate the Poisson simulation approach (8) in a deter-
ministic differential equation Susceptible–Infected–Recovered
(SIR) model given by:

dS
dt

	 ��S
I
N

dI
dt

	 �S
I
N


 �I

dR
dt

	 �I

[4]

where disease transmission coefficient and duration of infec-
tiousness are given by � and T � 1/�, respectively. The transition
rate from S to I (force of infection) is given by � I/N and the
density of new infections is given by �SI/N. Applying the Euler
algorithm and a Poisson simulation approach we rewrite the
deterministic model into a stochastic model with the following
form:

S�t � �t� 	 S�t� 
 �t r1�t�

I�t � �t� 	 I�t� � �t �r1�t� 
 r2�t��

R�t � �t� 	 R�t� � �t r2�t�

[5]

The deterministic mechanism transferring fractions (�S I/N and
�I) of individuals between stages during a time step in model 1

is replaced by a stochastic mechanism based on integer numbers
of individuals with fractions given by r1(t) � Poisson

� � t S� t� I� t��

N� t� � � � t and r2(t) � Poisson � � t I� t��

N� t� � � � t. These

transitional events mimic a stochastic mechanism with an un-
derlying Poisson distribution. In this case, events are indepen-
dent for a short, fixed interval �t, and we can assume that the
number of transferred cases during t and t � �t are Poisson
distributed with expected values �t r1(t) and �t r2(t).

We applied this approach to numerically simulate the disease
dynamics of residents, visitors, staff, and community individuals.
We carried out a sensitivity analysis to determine an appropriate
time step (�t � 0.01) in the simulations and to monitor for and
prevent the occurrence of negative population sizes. Table S1
contains a detailed description of the population initial condi-
tions assumed in these simulations.

Calculation of the Basic Reproduction Number. The basic reproduc-
tion number, denoted by R0, may be taken to be equal to the
average number of secondary infections generated by a primary
case in a susceptible population (9, 10). The contributions to the
epidemiological threshold R0 involve properties that define the
course of infection in an individual, as well as attributes of the
host population, such as susceptible pool densities and contact
(mixing) rates. In particular, these contributions include the
number of susceptibles present for contact with the primary case,
the length of time the primary case is infectious to others, and
the transmission coefficient (rate of effective mixing). This
quantity (R0) is critical in determining the conditions that may
lead to the invasion or extinction of an infectious disease in a
population. In general, an infectious agent invades if R0 	 1 and
it dies out for values �1.

Given the relatively high dimensionality of the models pre-
sented in this study, we evaluated the expression for the basic
reproduction number numerically. First, we applied the next
generation-operator approach (9, 10) to study the eigenvalues of
the next-generation matrix associated with our deterministic
systems of Eqs. 1–3 described in Epidemic Models: Nonpharma-
ceutical Interventions. The method entails finding two matrices F
and V, for the new infections and transition terms, respectively,
and then computing the spectral radius (dominant eigenvalue) of
the next-generation matrix FV�1. The dominant eigenvalue of
FV�1 gives the basic reproduction number. For the model
systems 1–3, it was not feasible to express the associated basic
reproduction number in closed form. Therefore, we numerically
evaluated the basic reproduction number for various pandemic
severity regimes (Table S3).
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Table S1. Confidence intervals (95%) for the probabilities p(Intro), p(Outbreak,Intro), and p(Outbreak�Intro)

Lower-bound (LB), Mean (M), and upper-bound values (UB) are denoted. These simulations assumed that pi � 1.
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Table S2. Confidence intervals (95%) for the probabilities p(Intro), p(Outbreak,Intro), and p(Outbreak�Intro)

4–3yrogetaC2–1yrogetaC

R 0 p(Intro) p(Outbreak,Intro) p(Outbreak |Intro) p(Intro) p(Outbreak,Intro) p(Outbreak |Intro)

1.4 (0.38, 0.46, 0.54) (0.01, 0.04, 0.07) (0, 0.09, 0.40) (0.12, 0.18, 0.24) (0, 0, 0) (0, 0, 0)

1.6 (0.50, 0.58, 0.66) (0.03, 0.07, 0.11) (0, 0.12, 0.53) (0.07, 0.14, 0.17) (0, 0, 0) (0, 0, 0)

1.8 (0.54, 0.62, 0.70) (0.07, 0.12, 0.17) (0, 0.19, 0.71) (0.09, 0.15, 0.21) (0, 0, 0) (0, 0, 0)

2 (0.55, 0.63, 0.71) (0.07, 0.12, 0.17) (0, 0.19, 0.70) (0.13, 0.20, 0.27) (0, 0.02, 0.04) (0, 0.10, 0.32)

2.2 (0.62, 0.70, 0.78) (0.21, 0.28, 0.35) (0, 0.40, 1) (0.12, 0.18, 0.24) (0, 0.03, 0.06) (0, 0.17, 0.43)

2.4 (0.70, 0.77, 0.84) (0.34, 0.42, 0.50) (0, 0.55, 1) (0.35, 0.43, 0.51) (0.01, 0.04, 0.07) (0, 0.09, 0.41)

2.6 (0.89, 0.93, 0.97) (0.69, 0.76, 0.83) (0.20, 0.82, 1) (0.59, 0.67, 0.75) (0.22, 0.29, 0.36) (0, 0.43, 1)

2.8 (0.86, 0.91, 0.96) (0.81, 0.87, 0.93) (0.63, 0.96, 1) (0.78, 0.84, 0.90) (0.51, 0.59, 0.67) (0.01, 0.70, 1)

Lower-bound (LB), Mean (M), and upper-bound values (UB) are denoted. These results pertain to plan category 1–2 and plan category 3–4 assuming that
pi � �i.
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Table S3. Variables, parameter definitions, values, and initial conditions assumed in the numerical simulation of a resident facility

†i � R, SF, VF, SC, VC.
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Table S4. Initial conditions for community members (indexed by C), facility residents (indexed by R), visitors (indexed by VC, VF), and
staff (indexed by SC, SF)

†i � C, R, VC, VF, SC, SF.
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