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1 Theoretical comparison between MDE and MLE

Both minimum distance estimator and maximum likelihood estimator belong to the Minimum distance (MD)
family. Given the vector of parameters of interest 6y € © where © is the set of possible parameter values,
MD estimator can be generalized as minimizing a criterion function:

F(0) = 9(0) D (0) (1)

where §(0) is a function of the data y; that will verify §(6y) — 0, and D,,(0) being a weighted distance
matrix. Depending on the choices of §(f), different estimators can be generated.

In particular, a minimum divergence estimator, which incorporates minimum distance and maximum
likelihood, is proposed [1] as an alternative to non-parametric density estimation. Density-based minimum
divergence methods include those estimate parameters through minimizing some pre-defined divergence
between the assumed model density and the true model density underlying the data, e.g. maximum likelihood
method and minimum chi-squared method. The criterion is given by

n

0 = argminl [ 1(2l0)" o = L2 3" f(fo)e) 2

=1

with a metaparameter o > 0. MDE corresponds to a = 1 while MLE corresponds to a@ — 0.

An example of the two estimation criteria, for normal density X ~ N(u,0?):

AMLE = argmaleog $wilp, %) (3)
|
/i = arg min( ! —zi¢(ﬂc| %) (4)
KMDE = aIg w2 /T n 4= il O

While the aim of MDE is to maximize the sum of the densities, MLE tries to maximize the product of the
densities.



2 Simulated dataset patterns

Simulated dataset is generated from the following patterns, with parameters generated from normal distri-
butions:

x1(i,j) = 0.1 4 sin(1/35) + (4, )

22(i,7) = —0.1 + sin(1/3j — 1) + £(i, §)

23(i,§) = 1.2sin(2/5j — 2) + £(i, j) (5)
x4(i, j) = 1.5sin(1/35 — 3.5) +€(i, j)

x5(4,j) = 0.5sin(2/55 — 2.2) + (i, j)

26(i, §) = 0.6sin(1/3j — 3.8) + £(i, 5)



3 Additional Figures
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Figure 1: The resulting clusters by the partial regression clustering algorithm for the simulated dataset. The
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right plot in the third row is the whole dataset and the left plot are the outliers.
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Figure 2: The original partition, bottom right plot is the whole dataset
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