

Supplemental Figure S1. Isolation of $[^{3}H]TDBzl$ -Etomidate-labeled $\alpha M2$ and $\alpha M4$ by reversed-phase HPLC fractionation of EndoLys-C digests of aV8-20 (A) and trypsin digests of α V8-10 (B). The α subunits were isolated from nAChR-rich membranes photolabeled with 1 μ M [³H]TDBzl-Etomidate in the absence (\bigcirc) or presence (\bigcirc) of 0.1 mM tetracaine. V8 protease digests of the α subunits were fractionated by SDS-PAGE (Experimental Procedures), visualized by Coomassie blue stain, and material was eluted from the gel bands containing $\alpha V8$ -20 and α V8-10. Digests were fractionated by reversed-phase HPLC. 10 % of each fraction was assayed for ${}^{3}H(\bullet, \bigcirc)$, and also plotted as dashed lines are the HPLC gradients in percent solvent B (organic phase). A, Fractionation of EndoLys-C digests of the α V8-20 samples (-tetracaine, 56,000 cpm injected, 85 % recovered; +tetracaine, 27,000 injected, 118 % recovered). Sequence analysis of the pools of fractions 33 & 34 (20% of recovered 3 H), which contained a fragment beginning at the N-terminus of $\alpha M2$ ($\alpha Met-249$), are shown in Figure 5A. **B**, Fractionation of trypsin digests of αV8-10 (-tetracaine, 26,000 cpm injected, 91 % recovered; +tetracaine, 24,000 injected, 95 % recovered). Sequence analysis of the pools of fractions 28-30 (80 % organic, ~51 % of recovered ³H) identified α Tyr-401 (1.5 pmol in each sample), consistent with the sequencing data in Figure 8 from a different preparative labeling.

Supplemental Figure S2: Fractionation of EndoLys-C digests of [³H]TDBzl-Etomidatelabeled δ subunit by Tricine-SDS PAGE (A) and purification by reversed-phase HPLC of the fragments beginning at δ Met-257 (δ M2) and δ Phe-206 (δ M1).. δ subunits isolated from the same labeling described in Supplemental Figure S1 were digested with EndoLys-C, and the digests were fractionated by Tricine SDS-PAGE. A, The distribution of ³H eluted from 5 mm bands of each lane of the gel (1% counted, \bullet , –tetracaine, 52,500 cpm digested, 32,000 cpm recovered; \bigcirc , +tetracaine, 36,700 cpm digested, 21,600 cpm recovered). The mobilities of the molecular mass markers are denoted above the graph. B, Reversed-phase HPLC fractionation of the material eluted from gel bands 12 and 13 (~12-14 kDa) (\bullet , –tetracaine, 7,730 cpm injected, 87 % recovered; \bigcirc , +tetracaine, 3,100 injected, 91 % recovered). The HPLC gradient in percent solvent B (organic phase) is plotted as a dashed line (---). Sequence analysis of the pools of fractions 26-28 (70% organic, ~60 % of recovered ³H), which contained a fragment beginning at the N-terminus of δ M2, are shown in Figure 5C. Sequence analysis of the pools of fractions 22 and 23 identified a fragment beginning at δ Phe-206 (7 pmol) that extended through δ M1.

Supplemental Figure S3. [³H]TDBzl-Etomidate labeling within the δ M2 in the presence of PCP or proadifen. ³H ($\bigcirc, \blacktriangle, \triangle, \bigtriangledown, \bigcirc$) and PTH-amino acids (\square) released during sequencing of δ subunit fragments beginning at the N-terminus of δ M2. The primary amino acid sequence is shown above the top panel. A, From the photolabeling experiment of Figures 6A and B, the fragments beginning at δ Met-257 were purified by Tricine-gel SDS-PAGE and reversed phase HPLC from EndoLys-C digests of δ subunits from nAChRs photolabeled +Carb $(\bigcirc, \Box, I_0 = 10 \text{ pmol}), +\text{Carb+PCP} (\blacktriangle, I_0 = 20 \text{ pmol}), \text{ and } +\text{PCP} (\triangle, I_0 = 12 \text{ pmol}).$ For nAChRs labeled +Carb, the ³H releases in cycles 9, 13, 16, 17 and 20 indicated labeling (in cpm/pmol) of δLeu-265 (5), δVal-269 (3), δLeu-272 (2), δLeu-273 (6), and δGln-276 (2), which for the sample +Carb +PCP was reduced by 80% and 70% at δLeu-265 (0.8 cpm/pmol), and δVal-269 (0.9 cpm/pmol), and by ~50% at δLeu-273 (3.1 cpm/pmol) and δGln-276 (1 cpm/pmol). For nAChRs labeled +PCP, δ Leu-265 (0.6 cpm/pmol) and δ Val-269 (1.3 cpm/pmol) were labeled at similar efficiencies as for those labeled +Carb+PCP. **B**, From the photolabeling of Fig. 5 D, the fragments beginning at δ Met-257 were isolated from the nAChRs photolabeled in the absence of any ligand (\bullet), + proadifien (∇) or +Carb (\bigcirc). The I_0 for the primary sequences of each sample was between 8-9 pmol. For nAChRs labeled in the absence of other drugs, the primary release of ³H was at cycle 13, corresponding to labeling of δ Val-269 at 13 cpm/pmol, and that labeling was reduced by > 95% in the presence of proadifen. In contrast, in the presence of proadifen, the major peak of ³H release was in cycle 9, corresponding to labeling of δ Leu265 (10 cpm/pmol) at ~10-fold higher efficiency than in the control (1 cpm/pmol). The preferential photolabeling of $\delta M2-9$ +proadifen was distinct from that seen +Carb (O), with labeling of $\delta M2-9$, -13, -16, -17, and -20.

Supplemental Figure S4. [³H]TDBzl-Etomidate photolabeling within α M4. ³H (\blacktriangle) and PTH-amino acids (\Box) released during sequencing of fragments isolated from trypsin digests of α V8-10, isolated by reversed phase HPLC from nAChRs photolabeled +Carb +PCP as described in Figure 6A. The only sequence detected began at α Tyr-401 ($I_0 = 15$ pmol), and the peaks of ³H release in cycles 12 and 13 indicate labeling within α M4 of α Cys-412 and α Met-415 at 7 and 5 cpm/pmol.

Supplemental Figure S5. Stereo representations of the TDBzl-Etomidate binding pocket at the γ - α interface in the nAChR transmembrane domain (see next page for Figure Legend).

B

Supplemental Figure S5: Stereo representations of TDBzl-Etomidate binding pocket at the γ - α interface in the nAChR transmembrane domain. Expanded views are presented of portions of the *T. californica* nAChR homology model (Figure 8, α (gold), γ (green)).

A, A view of the transmembrane helical bundles (shown as cylinders) of the α and γ subunits with the volumes defined by 10 docked TDBzl-Etomidates in the pocket between the γ and α subunits shown as a Connolly surface representation (white). Also included in stick format are the photolabeled residues and a TDBzl-Etomidate molecule docked in its lowest energy orientation (Experimental Procedures).

B & C, Stereo images of the α (**B**) and γ (**C**) transmembrane helical bundles, viewed as Connolly surface representations from the γ - α interface. The images illustrate each subunit's contribution to the TDBzl-Etomidate binding pocket, which is identified by a TDBzl-Etomidate docked in its lowest energy orientation. The surface exposures of α Ser-252 (pink, in **B**) and γ Met-299 (purple, in **C**) are also shown. Otherwise, color-coding represents atom type: H, white; C, gray; O, red; N, blue; and S, yellow. For orientation, the visible helices are denoted, as is the relative location of the ion channel in each figure. Supplemental Figure S6. Stereo representations of TDBzl-Etomidate binding sites in the nAChR transmembrane domain. Expanded views are presented of portions of the *T*. *californica* nAChR homology model (Figure 8, α (gold), β (blue), γ (green); δ (magenta)).

A, A view from the γ subunit towards the α_{δ} subunit TMD, with the amino acids of α M1 and α M2 shown in stick format that can contribute to the binding pocket at the γ-α interface (shown in white). **B**, A view from the α_{δ} subunit towards the γ subunit TMD, with the amino acids of γM2 and γM3 shown in stick format that can contribute to the binding pocket at the γ- α_{δ} interface (shown in white). Also shown in cyan are the residues of the α and δ subunits in the lumen of the ion channel that were labeled by TDBzl-Etomidate. The volumes of the ensemble of 10 TDBzl-Etomidates docked within the channel lumen (yellow, volume 900 Å³) or the γ- α interface (white, volume 580 Å³) are shown in Connolly surface representations. Residues labeled by [¹²⁵I]TID from the protein-lipid interface (γPhe-292, γLeu-296, and γAsn-300) are shown in orange (Blanton and Cohen, Biochemistry 33: 2859 (1994)). Within γM3, γMet-291 and γMet-295, which were not labeled by [¹²⁵I]TID from the protein-lipid interface.