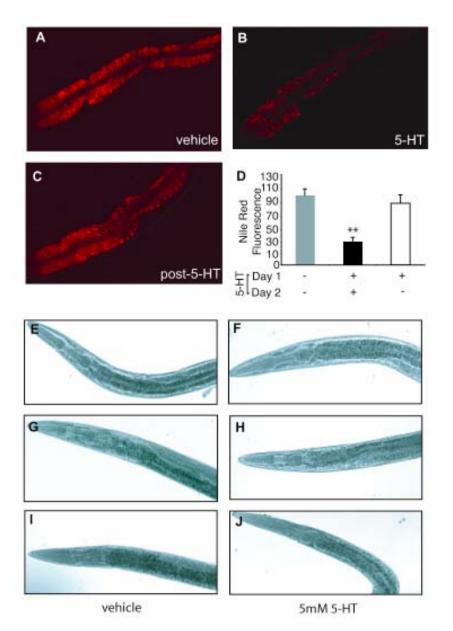
Cell Metabolism, Volume 7

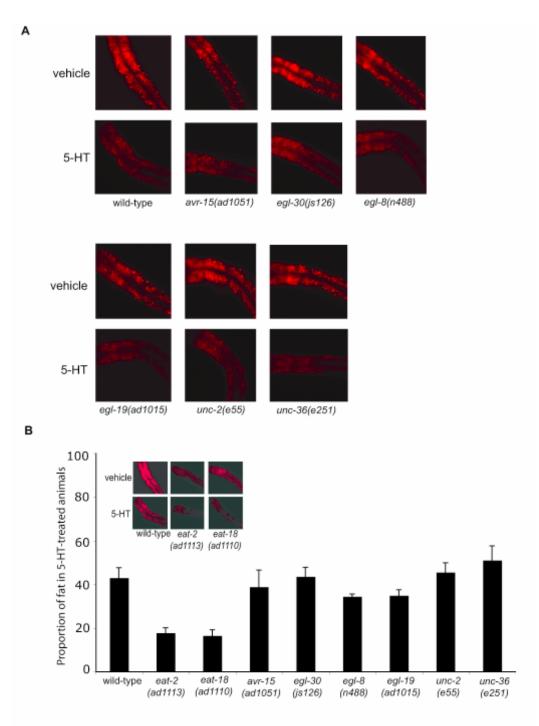

Supplemental Data

Article

Serotonin Regulates C. elegans Fat and Feeding

through Independent Molecular Mechanisms

Supriya Srinivasan, Leila Sadegh, Ida C. Elle, Anne G.L. Christensen, Nils J. Faergeman, and Kaveh Ashrafi


Figure S1. 5-HT Reduces Fat Content as Gauged by Nile Red and Sudan Black B Staining Methods

(A and B) Images of Nile Red-stained animals treated with (A) vehicle only, and (B) 5mM 5-HT.

(C) Reduced fat of 5-HT-treated animals was restored within ~ 24 hours once animals were removed from 5-HT-containing plates. In all images, the anterior end of the animals is oriented towards the left.

(D) Quantification of Nile Red fluorescence (n = 8-10 animals per condition, **p < 0.005 compared to vehicle-treated animals). The data are expressed as a percentage of vehicle-treated animals on OP50 bacteria.

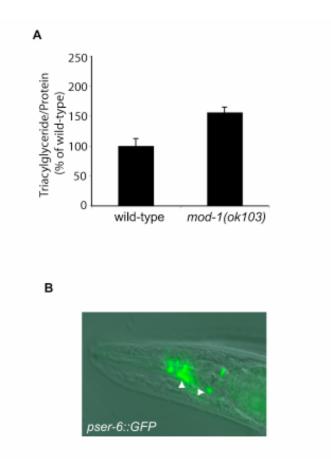

(E-J) Representative Sudan Black B images of animals treated with (E, G, and I) vehicle, and (F, H, and J) 5-HT, showing fat decreasing effects of 5-HT-treatment.

Figure S2. 5-HT-Induced Fat Reduction Is Independent of Genes Required for Serotonergic Modulation of Feeding, Egg-Laying, and Locomotion

(A) Representative images of Nile Red-stained animals treated with vehicle (top rows) or 5-HT (bottom rows). The anterior end of the animals is oriented towards the left.

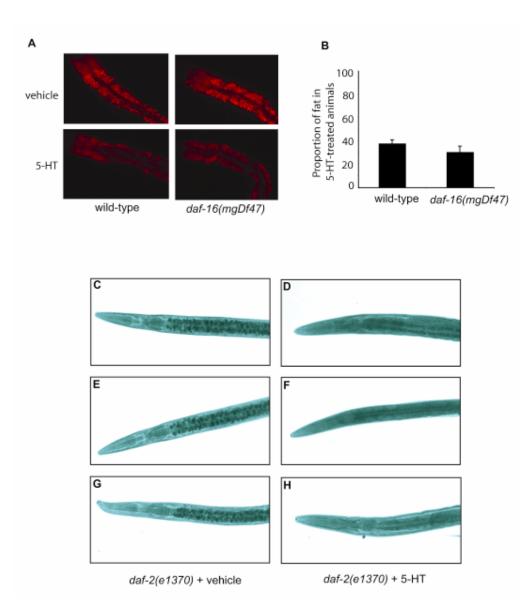

(B) The percent of fat remaining upon 5-HT treatment for each genotype (n = 6-8) relative to vehicle-treated animals. Images in inset are overexposed as *eat-2(ad1113)* and *eat-18(ad1110)* mutants displayed reduced fat levels relative to wild type animals even in the absence of 5-HT treatment.

Figure S3. Biochemical Verification of *mod-1(ok103)* Excess Fat and Expression Pattern of *ser-6*

(A) Values are expressed as a percentage of wild-type.

(B) A GFP reporter fused to the putative *Y54G2A.35/ser-6* promoter was expressed in several head neurons denoted by white arrowheads.

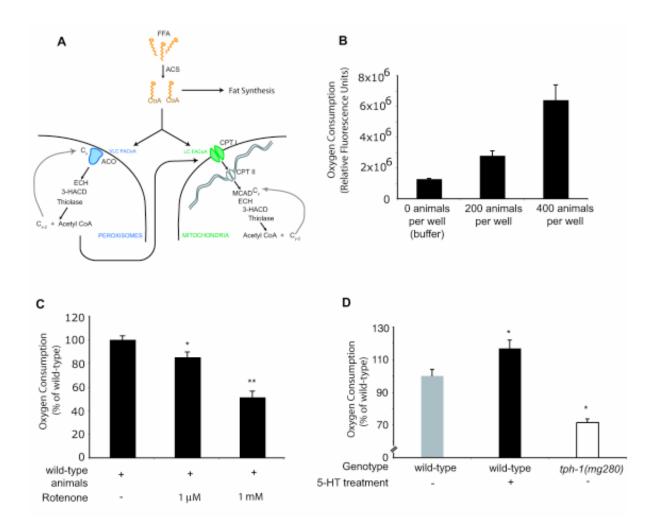
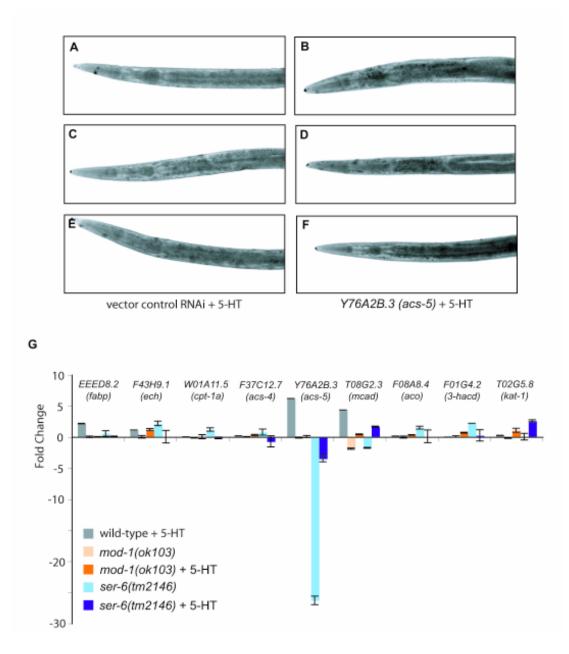


Figure S4. The Insulin Pathway Is Not Required for Serotonergic Fat Reduction

(A) daf-16(mgDf47) mutation did not alter susceptibility of animals to 5-HT mediated fat reduction.

(B) Quantitation of Nile Red images shown in (A) (n = 8 per genotype).

(C-H) Representative Sudan Black-stained daf-2(e1370) animals exposed to either vehicle (C, E, and G) or 5-HT (D, F, and H) showing that, despite excess fat levels, daf-2(e1370) animals were susceptible to the fat-reducing effects of exogenous 5-HT.


Figure S5. Pictorial Depiction of Peroxisomal and Mitochondrial β -Oxidation and Validation of the Oxygen Consumption Assay

(A) Model depicting peroxisomal and mitochondrial β -oxidation. Free fatty acids are activated to their respective CoA derivates by acyl-CoA synthases (ACS). Activated fatty acids are destined for either biosynthetic or degradative pathways. Peroxisomal β -oxidation of very long-chain fatty acids (VLCFA-CoA) is initiated by acyl-CoA oxidases (ACO) whereas long-chain fatty acids (LCFA-CoA) are targeted to the mitochondria, where carnitine-palmitoyl transferases I and II (CPT-1 and CPT-II) catalyze their transfer into the inner lumen of mitochondria. Subsequent breakdown of these mitochondria fatty acyl-CoAs is mediated by mitochondrial acyl-CoA dehydrogenase (MCAD). A trifunctional complex containing enoyl-CoA hydratase (ECH), 3'-OH-acyl-CoA dehydrogenase (3-HACD) and thiolase functions in both organelles resulting in the stepwise breakdown of fatty acyl-CoAs.

(B) Validation of the oxygen consumption assay. We empirically identified assay conditions that produced a linear correlation between oxygen consumption and number of animals tested. In all subsequent tests 200 worms/well were assayed.

(C) Rotenone, an inhibitor of oxidative phosphorylation and mitochondrial electron transport, caused a dose-dependent decrease in oxygen consumption under these assay conditions (*p < 0.05; **p < 0.005).

(D) Oxygen consumption rate of 5-HT-treated animals was enhanced while that of 5-HT deficient *tph-*1(mg280) animals was reduced (*p < 0.05).

Figure S6. Verification of 5-HT-Induced Fat Suppression of β -Oxidation Gene *Y76A2B.3* Using Sudan Black and Transcriptional Changes of β -Oxidation Genes in *mod-1(ok103)* and *ser-6(tm2146)* Mutants

(A-F) Verification of Nile Red results by Sudan Black for *Y76A2B.3(acs-5)*. Three representative images showing that, relative to animals on vector RNAi (A, C, and E), *Y76A2B.3(acs-5)* RNAi (B, D, and F) allowed animals to retain more fat upon 5-HT treatment.

(G) qRT-PCR of the nine serotonergic β -oxidation genes for indicated genotypes +/- 5HT treatment. All values are shown as fold changes relative to wild-type animals without 5-HT treatment.

Gene ID	Gene Name	Dominant Specificity
F59C12.2	ser-1	Serotonin
C02D4.2	ser-2	Octopamine
K02F2.6	ser-3	Tyramine
Y22D7AR.13	ser-4	Serotonin
F16D3.7	ser-5	ND
Y54G2A.35	ser-6	ND
C09B7.1	ser-7	Serotonin
K06C4.6	mod-1	Serotonin
F15A8.5	dop-1	Dopamine
K09G1.4	dop-2	Dopamine
T14E8.3	dop-3	ND
C52B11.3	dop-4	ND
F10E11.5	tyra-2	Tyramine
M03F4.3	tyra-3	ND
F14D12.6	-	ND
T02E9.3	-	ND
C24A8.1	-	ND

Table S1. Known and Putative Biogenic Amine Receptors in C. elegans

Dominant specificity listed is as determined by cell-based pharmacology studies (references in Chase and Koelle, 2007). ND, not determined.

Gene ID	Gene Name
	Gene Ivanie
Fatty Acid Acylation	
F28F8.2/acs-2	Acyl-CoA Synthetase
F41C3.3/acs-11	Acyl-CoA Synthetase
C46F4.2/acs-17	Acyl-CoA Synthetase
F37C12.7	Acyl-CoA Synthetase
F47G6.2	Acyl-CoA Synthetase
Y65B4BL.5	Acyl-CoA Synthetase
R07C3.4	Acyl-CoA Synthetase
R09E10.3	Acyl-CoA Synthetase
Y76A2B.3	Acyl-CoA Synthetase
R09E10.4	Acyl-CoA Synthetase
F46E10.1	Acyl-CoA Synthetase
Fatty Acid β-Oxidation	
R07H5.2/cpt-2	Carnitine Palmitoyl Transferase II
Y48G9A.10/cpt-3	Carnitine Palmitoyl Transferase I
F09F3.9/cpt-5	Carnitine Palmitoyl Transferase I
W01A11.5/cpt-6	Carnitine Palmitoyl Transferase I
F41E7.6	Carnitine Palmitoyl Transferase I
T20B3.1	Carnitine Palmitoyl Transferase I
C02B10.1/ivd-1	Acyl-CoA Dehydrogenase
F54D5.7	Acyl-CoA Dehydrogenase
K06A5.6	Acyl-CoA Dehydrogenase
E04F6.5	Acyl-CoA Dehydrogenase
K05F1.3	Acyl-CoA Dehydrogenase
F28A10.6	Acyl-CoA Dehydrogenase
T08G2.3	Acyl-CoA Dehydrogenase
T25G12.5	Acyl-CoA Dehydrogenase
C44B7.8/pmp-1	Peroxisomal Membrane Transporter
C44B7.9/pmp-2	Peroxisomal Membrane Transporter
C48B4.1	Acyl-CoA Oxidase
F25C8.1	Acyl-CoA Oxidase
F59F4.1	Acyl-CoA Oxidase
F08A8.1	Acyl-CoA Oxidase
F08A8.2	Acyl-CoA Oxidase
F08A8.3	Acyl-CoA Oxidase
F08A8.4	Acyl-CoA Oxidase
C29F3.1/ech-1	Enoyl-CoA Hydratase
F38H4.8/ech-2	Enoyl-CoA Hydratase
F43H9.1/ech-3	Enoyl-CoA Hydratase
R06F6.9/ech-4	Enoyl-CoA Hydratase
T05G5.6/ech-6	Enoyl-CoA Hydratase
Y105E8A.4/ech-7	Enoyl-CoA Hydratase
F01G10.2/ech-8	Enoyl-CoA Hydratase
F01G10.3/ech-9	Enoyl-CoA Hydratase
F01G4.2/ard-1	3-Hydroxy Acyl-CoA Dehydrogenase
R09B5.6/hacd-1	3-Hydroxy Acyl-CoA Dehydrogenase
B0272.3	3-Hydroxy Acyl-CoA Dehydrogenase
F54C8.1	3-Hydroxy Acyl-CoA Dehydrogenase
T02G5.8/kat-1	Acetoacetyl-CoA Thiolase
B0303.3	3-ketoacyl-CoA Thiolase
Y57A10C.6	3-ketoacyl-CoA Thiolase

Table S2. List of RNAi Clones Used for the 5-HT Metabolic Screen

Fatty Acid Desaturation	Fatty Acid Desaturation and Elongation				
Y67H2A.8/fat-1	w3 Desaturase				
W02A2.1/fat-2	D12 Desaturase				
W08D2.4/fat-3	D6 Desaturase				
T13F2.1/fat-4	D5 Desaturase				
W06D12.3/fat-5	D9 Desaturase				
VZK822L.1/fat-6	D9 Desaturase				
F10D2.9/fat-7	D9 Desaturase				
F56H11.4/elo-1	PUFA elongase				
F11E6.5/elo-2	Palmitic acid elongase				
D2024.3/elo-3	PUFA elongase				
C40H1.4/elo-4	PUFA elongase PUFA elongase				
F41H10.7/elo-5	PUFA elongase				
F41H10.8/elo-6	PUFA elongase				
F56H11.3/elo-7	PUFA elongase				
Y53F4B.2/elo-8	PUFA elongase				
F33D4.4	Desaturase				
Fatty Acid Binding Pr					
F40F4.3/lbp-1	Fatty Acid Binding Protein				
F40F4.2/lbp-2	Fatty Acid Binding Protein				
F40F4.4/lbp-3	Fatty Acid Binding Protein				
ZK742.5/lbp-4	Fatty Acid Binding Protein				
W02D3.7/lbp-5	Fatty Acid Binding Protein				
W02D3.5/lbp-6	Fatty Acid Binding Protein				
T22G5.2/lbp-7	Fatty Acid Binding Protein				
T22G5.6/lbp-8	Fatty Acid Binding Protein				
Y40B10A.1/lbp-9	Fatty Acid Binding Protein				
EEED8.2	Fatty Acid Binding Protein				
EEED8.3	Fatty Acid Binding Protein				
F28D1.9	Fatty Acid Transport Protein				
Phospholipid Metabol	v 1				
F13D12.9	Phospholipid Biosynthesis				
C03H5.4	Phospholipase A2				
C07E3.9	Phospholipase A2				
Fatty Acid Synthesis	- 100promptuo 112				
F32H2.5/fasn-1	Fatty Acid Synthase				
W09B6.1/pod-2	Acetyl-CoA Carboxylase				
Ketogenesis/Lipid Me					
T02G5.7	Acetoacetyl-CoA Thiolase				
T02G5.4	Acetoacetyl-CoA Thiolase				
F53A2.7	Acetoacetyl-CoA Thiolase				
T02G5.8/kat-1	Acetoacetyl-CoA Thiolase				
F25B4.6	HMG-CoA Synthase				
Y71G12B.10	HMG-CoA Lyase				
F10G8.9	Beta Keto-Acyl Synthetase				
C25A1.5	Fatty-Acid Hydroxylase				
C25A1.5 C46C11.1	Hormone Sensitive Lipase				
C50D2.7	Glucokinase				
0.5002.7	Oneokinase				

Strain	RNAi/Bacteria	Nile Red Fluorescence		Proportion of Fat
		Vehicle	5-HT	Retained upon 5-HT Treatment
Wild-type (N2)	OP50	100.0 <u>+</u> 5.3	50.7 <u>+</u> 3.7	50.7 <u>+</u> 3.7
mod-1(ok103)	OP50	121.2 <u>+</u> 4.6	81.3 <u>+</u> 1.9	67.1 <u>+</u> 1.6
ser-6(tm2146)	OP50	98.2 ± 4.8	76.4 ± 4.5	77.8 ± 4.6
ser-6(tm2146);mod-1(ok103)	OP50	124.8 <u>+</u> 4.8	110.9 <u>+</u> 5.9	88.9 <u>+</u> 4.7
Wild-type (N2)	vector control	100.0 <u>+</u> 8.7	35.9 <u>+</u> 5.3	35.9 <u>+</u> 5.3
Wild-type (N2)	Y76A2B.3(acs-5)	112.2 ± 6.1	70.3 ± 3.9	62.7 ± 3.5
Wild-type (N2)	F08A8.4(aco)	112.2 ± 6.7	72.1 ± 6.2	64.3 ± 5.5
mod-1(ok103)	vector control	120.0 <u>+</u> 6.3	63.8 <u>+</u> 3.4	53.2 <u>+</u> 2.8
mod-1(ok103)	Y76A2B.3(acs-5)	126.4 ± 6.3	96.1 ± 5.1	76.1 ± 2.1
mod-1(ok103)	F08A8.4(aco)	130.4 <u>+</u> 6.1	100.3 <u>+</u> 10.1	76.9 <u>+</u> 1.8
ser-6(tm2146)	vector control	98.8 <u>+</u> 7.7	71.2 <u>+</u> 5.9	62.7 ± 5.1
ser-6(tm2146)	Y76A2B.3(acs-5)	107.2 ± 5.0	80.2 ± 3.3	65.0 ± 2.3
ser-6(tm2146)	F08A8.4(aco)	109.9 <u>+</u> 5.0	80.8 ± 3.1	64.0 ± 2.4

Table S3. Nile Red Fluorescence Intensities for Various Epistatic Interactions

Vector control and all RNAi constructs were in HT115 bacterial strain, and the reported values are normalized to wild-type on HT115 instead of OP50. All values are means \pm SEM (n = 8).

 Table S4. List of Primers Used for qRT-PCR

Gene ID	Forward Primer	Reverse Primer
W01A11.5	TATGAACCAGCATCAGCTCG	GACGATCGACTCCTTGCCC
F08A8.4	ATATCTGGAGAAGATTCGACC	CAAGTACTTATCGACTGACGG
EEED8.2	TTCTCGAGTTGAGAGATCGG	ATTCTGGCTCTCCGATCCG
F37C12.7	AAACAACTCGAAGAACATGCC	TGCTTATACAGATCATCGAGG
Y76A2B.3	ATTCGAAGCTCCTGGATTGG	CATTATTCTCCATTCTCATCAC
F43H9.1	AGGAAAAGCTGTTGAGGAGG	CTTTATACTTTCAGCGAGCAC
T08G2.3	TCGACAACAAGGTGCGCTC	GAATTTGCGAGGTTCCCTCG
F01G4.2	CAGGACTTATGGATACTCCAC	GGCATGCGGAGTGCTCCG
T02G5.8	GTTAATGAAGCCTTCTCATGTG	CAGCAACTCCGATTTGGCC