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Mechanisms of cell death in acute
myocardial infarction: pathophysiological
implications for treatment

C. de Zwaan', M.J.A.P. Daemen2, W.Th. Hermens2

The purpose of this review is to draw attention to
the growing list ofpathophysiological phenomena
occurring in blood, the vessel wall and cardiac
tissue during myocardial infarction. A further aim
is to point to the complexity of factors, con-
tributing to cardiac dysfunction and the impli-
cations for therapy, aimed at liniting myocardial
cell death. Not all pathophysiological mechanisms
have been elucidated yet, indicating the necessity
for fiuther research in this area. In addition we
describe interventions which have shown promise
in animal studies, those which may show promise
in humans, and those which are accepted as
therapies ofchoice. (Neth HeartJ 2001;9:30-44.)
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ince the early 1970s it has become clear that in
patients with acute myocardial infarction, the

severity of haemodynamic abnormalities,' the inci-
dence of shock,2 the frequency of ventricular ar-
rhythmias3 and the prognosis, both in hospital4 and
after discharge5' 6 is related to infarct size. Therefore,
treatment of acute myocardial infarction is directed
towards limitation of infarct size and prevention of
complications. Today this goal is best achieved by
early reperfusion of the ischaemic myocardium.

Physicians caring for patients with an acute
myocardial infarction, receiving reperfusion therapy
(thrombolytics, percutaneous transluminal coronary
angioplasty or cardiac surgery), should be aware of

factors that contribute both to myocardial ischaemia
and reperfusion damage. Thanks to experimental
studies that have been performed in animal models
and in ex-vivo preparations, the amount of new
knowledge on basic mechanisms in this field is almost
exploding.

This article reviews the current knowledge on
anatomy, physiology and pathophysiology, at the
cellular level, contributing to myocardial ischaemia and
reperfusion injury. Furthermore, the investigative work
done in animals and the implications for treatment,
which may possibly reduce myocardial damage and
infarct size in humans, will be discussed.

Anatomical and pathophysiological
considerations
A comprehensive knowledge ofmyocardial anatomy
at the cellular level is an indispensable foundation for
the clinician. In addition, ultrastructural studies ofthe
myocardium have greatly contributed to our under-
standing ofcardiac function.

The cardiac musde is made up ofindividual fibres,
which are the 'building blocks' ofthe cardiac muscular
system. The fibres are composed offibrils and the fibrils
are divisible into filaments. These filaments contain
contractile proteins (myosin and actin).

The fibres are arranged in parallel as a series ofcells
termed myocytes, so that force of contraction of the
units is additive.A fibre is surrounded by a membrane,
the sarcolemna, which becomes fused to the mem-
brane ofa neighbouring fibre. These 'tight junctions'
(intercalated disks) provide low electrical resistance
between the fibres, enabling rapid spread ofelectrical
activity from one cell to the next. Invaginations ofthe
sarcolemna form transverse tubules (T tubules), which
enable extracellular fluid to penetrate deep within the
cytoplasm ofthe myocardial cell.
A muscle fibril is surrounded by a structure made

up of a unit membrane, which appears as a vesicle,
and a tubule. This structure forms an irregular
curtain, the sarcoplasmic reticulum, which is closely
adjacent to the T tubules. This is considered the most
likely site from which calcium ions are liberated to
initiate contraction of the myocardial cell.
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Figure 1. Proposedpathogenesis ofpostischaemic myocardial cell injury. Thisproposal integrates and reconciles different mechanisms into
an unifyingpathogenetic hypothesis. The ultimate consequence ofthis complex series ofperturbations is initially a reversible depression of
cellfunction and ultimately myocardial cell death. lLegends: ATP indicates adenosine triphosphate; Ca++: calcium (overload).

The nucleus of the myocardial cell is centrally
positioned, often with a perinuclear lighter zone. The
mitochondria are located in between the myofibrils
and represent the main energy source for myofibrillar
contraction.

An area oftotal ischaemia has no flow and diffusion is
very slow from the centre ofthe area ofischaemia. All
products of ischaemic metabolism are trapped in the
region. With small amounts ofcollateral flow, exchange
is very slow but faster than when there is no flow.

Acute myocardial ischaemia may lead to different

degrees of myocardial cell injury. If there is a single
sudden episode ofischaemia associated with a persistent
complete thrombotic occlusion without collaterals, the
degree and extent of myocardial cell injury can differ
from situations in which the infarct-related artery does
not remain occluded and collaterals are present. The
extent of myocardial cell injury may vary from small
regional injury to a non-transmural (subendocardially
located) lesion or to transmural damage ofmyocardial
structure.

In addition, intermittent coronary occlusion, or

total occlusion in the face ofwell-developed collateral
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Figure 2. Diagram depicting enzymatic reactions involved in
myocardial energy metabolism. During ischaemia breakdown of
high-energypbosphates becomespredominant. In severe ischemia the
utilisation ofATP results in a proximately 50% early increase in
ADP. However, this increase is transient because of the adenylate
kinase reaction. After 10 minutes ofsevere ischaemia, declining
ATP content isparalleled by decliningADP. Moreover, theAMP
produced by adenylate kinase is catabolisedfurther, primarily to
adenosine via the enzyme 5' nucleotidase (located both within the
cytosol and in the sarcolemna). Adenosine does escape firom the
myocyte and isfurther catabolised to inosine-hypoxanthine by the
enzymes adenosine deaminase and nucleoside phosphorylase
(localised to endothelial cells orpericytes). Legends:ADP indicates
adenosine diphosphate; AMP: adenosine monophosphate; ATP:
adenosine triphosphate; CK: creatine kinase.

circulation, may lead to several modes ofinhibition of
function at the cellular level. Stunning is a form of
prolonged contractile dysfunction that occurs after
relief of a discrete episode or episodes of ischaemia;
hibernation is a form of prolonged contractile dys-
function associated with ongoing low blood flow; pre-
conditioning is a cardioprotective mechanism in which
the heart is exposed to a short period of sublethal
ischaemia that attenuates cellular damage from a
subsequent prolonged lethal episode of ischaemia.
These modes ofinhibition ofmyocardial function have

significant clinical implications suggesting that myo-
cardial salvage is possible at the cellular level. Why they
are so relevant will be illustrated in the section on
therapeutic implications.

Patients promptly treated after the onset of
symptoms, by restoration of patency of the infarct-
related artery, will have the greatest benefit of reper-
fusion treatment. This time-dependent treatment saves
myocardial tissue and therefore results in a better
prognosis. However, the benefit ofreperfusion treat-
ment three to four hours after onset of symptoms is
more or less equal to the positive effect of an inter-
vention later after acute myocardial ischaemia, sug-
gesting time-independent effects and the role of
different mechanisms of cell death.

Several mechanisms ofmyocardial tissue injury, oc-
curring during and after diminution of myocardial
perfusion, have been elucidated and wil be discussed.

Mechanisms involved in/or responsible for injury
(figure I)

1. Oxygen deprivation and depletion of high-
energy phosphates
To sustain the continuous contractile function, the
myocardium is absolutely dependent on aerobic
metabolism for the production of energy in the
form of adenosine triphosphate (ATP), because
myocytes contain very limited reserve stores of
high-energy phosphates. During normoxia,ATP is
produced in the mitochondria by oxidative phos-
phorylation. Under physiological conditions there
is hardly any break down of the high-energy
phosphates to purines, as the purine-producing
enzymes are scarcely active. However, during
oxygen and substrate deprivation, breakdown of
high-energy phosphates becomes predominant
(figure 2), a disorder that is accompanied by cellular
and subcellular alterations in the cardiac myocytes.

Furthermore, in response to oxygen
deprivation, adenosine can be released from the
myocytes. It may enter the extracellular space where
it has multiple effects. Its protective role is
manifested by vasodilatation and by effects to
decrease myocardial oxygen demand (i.e. negative
ionotropism, chrono-tropism and dromotropism).
During these periods adenosine on hand enhances
energy production via increased glycolytic flux.
During reperfusion it can act as a substrate for
purine salvage (by phosphorylation to AMP) to
preserve the adenine nucleotide pool.7

2. Osmotic cellstress
The myocardium can utilise a variety ofmetabolic
substrates, including fatty acids, glucose, ketone
bodies and amino acids. The myocytes pre-
ferentially oxidise fatty acids; furthermore, glucose
is converted to glycogen. During severe ischaemia
and following the accumulation ofATP catabolites,
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the availability of glucose transporters increases8
and anaerobic glycolysis is activated through
enhanced activity of the glycolytic enzymes (e.g.
phosphofructokinase and glyceraldehyde-3-P-
dehydrogenase).9 As an endpoint ofthe glycolytic
pathway, pyruvate will be transformed into lactate.
Thus, ischaemia induces a change from myocardial
lactate extraction to lactate production. The lactate
production leads to osmotic cell stress and water
accumulation in the cells causing sarcolemmal
disruption.

The myocardial interstitium plays an important
role in the regulation of cardiac function. Post-
ischaemic water accumulation in the myocardium
results in structural alterations reducing myocardial
function and activating the renin-angiotensin-
aldosterone system, which lead to myocardial
fibrosis. I0

3. Lysosomes
In the cytoplasm of the cell, there are large,
somewhat irregular structures surrounded by a unit
membrane. These organelles are called lysosomes
and contain enzymes, which could cause destruc-
tion ofmost cellular components ifthese enzymes
were not separated from the rest of the cell by a
unit membrane. During long-lasting ischaemia, the
lysosomes are activated and may hydrolyse the cell
membrane and cell content by way ofexposure to
these destructive enzymes." As a result, the devel-
opment ofa severe membrane permeability defect
allows the unregulated influx of divalent and
trivalent cations, including calcium. Just as with
lactate production, the influx of cations leads to
osmotic cell stress and water accumulation in the
cells causing sarcolemmal disruption.

4. Intracellular calcium
The functions ofexcitable cells that are fundamental
to the cardiovascular system are governed in part
by the behaviour of the semipermeable hydro-
phobic membranes that envelop them. These
membranes control the movement of some ions
into and out ofthe cells against their concentration
gradients by ion pumps, by ion exchangers, and by
ion-carrying channels that can open in response to
a transmembrane potential difference.

Calcium flux is controlled by all three mech-
anisms. The calcium-selective voltage-sensitive
channels provide the route for little calcium entry
that is ultimately responsible for excitation-con-
traction coupling. They can be subdivided into four
main varieties, designated L, T, N and P types. The
calcium that enters myocardial cells acts as the major
trigger for release ofmore calcium from the main
internal reservoir in the sarcoplasmic reticulum.

During ischaemia, anaerobic metabolism leads
to intracellular acidification and to activation ofpH
regulation ion transport systems as the Na+/H+

exchangers. This causes an increased influx ofNa+
ions that cannot be sufficiently extruded by the
energy-depleted cells (via Na+/K+ ATPase). The
resulting intracellular Na+ overload leads to an
increase ofintracellular Ca-, because Na+ and Ca++
are reversed by Na+/Ca++ exchange.

The channels permitting the release ofcalcium
from the sarcoplasmatic reticulum are also
influenced by ischaemia. This may increase the
probability of their remaining open, initially (in
reversibly injured myocytes) resulting in very
limited calcium overload with contraction band
injury and triggering activation ofphospholipases
and proteases, and possibly impairment ofoxidative
phosphorylation.12 In irreversibly injured myocytes,
these processes will eventually lead to damage to the
membrane phospholipids and ion channels, and
lowering of the ATP production, and will ulti-
mately accelerate cell necrosis.

5. Complement system
Acute myocardial ischaemia also induces activation
of the complement system, a cascading series of
plasma enzymes and proteins. Complement in-
duction is caused by various pro-inflammatory
cytokines, which are released from the inflamed
tissue and stimulate the liver to synthesise a
number of acute-phase proteins. C-reactive pro-
tein (CRP), regarded as a prototype ofacute-phase
proteins in humans, has the ability to activate
complement.'3 '- Through the 'classic' and 'alter-
native' pathways, cytolytic membrane complexes
are produced.'6 Complement complexes are de-
posited in myocardial fibres, located within the
zones ofinfarction, and form a scroll in the cellular
membrane that comprises transmembrane pores. 13

Furthermore, several experiments provide com-
pelling evidence for another pathological role of
complement activation, namely in the chemo-taxis
of neutrophils3'17 associated with reperfusion
injury'8 and in the enhancement of the 'late' no-
reflow phenomenon.'9 (see under Plugging)

6. Apoptosis
Recently, considerable attention has been directed
to another form of cell death, referred to as apo-
ptosis. Cleavage ofDNA at linking regions between
nucleosomes (to form series of double-stranded
DNA fragments), is indicative of cells undergoing
'programmed cell death'.20 Next to the changes in
the nucleus, the apoptotic process involves changes
in the composition ofthe cell membrane, changes
leading to nuclear condensation and cellular
shrinkage ('oncosis'). The apoptotic processes
trigger rapid phagocytosis of apoptotic bodies by
polymorphonuclear leukocytes and adjacent myo-
cardial cells.

In the acute stage, hypoxia may cause
expression of an inhibitory (bcl-2) protein of
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Table 1 Myocardial cell death: animal data.

Mechanism
1 02 and substrate deprivation

2. Osmotic stress
3. Lysosomal activation
4. Calcium overload

5. Complement activation
6. Apoptosis
7. PMN infiltration

Free radicals formation
Plugging

Potential treatment
3-Blocker: +79,80100103 GIK: +81,82, vasodilators: +85,86, Magnesium: +109, Adenosine: +7,
Monophosphoryl lipid A: +112, Succinate: +204
Mannitol: +/_ 11-3115
Curcumin: +11
Calcium channel blockers: +118, Na+/H+ exchange inhibitor: +120, Magnesium: +109,
Nitric oxide: +121, Carvedilol: +122, Captopril: +123
Cobra venom factor: +124, ClEINH: +18,125, Heparin: +126
Bcl-2 expression: 130, ACEI: +131, fBlocker: +131, Nitric oxide synthetase inhibitor: +133
Corticosteroid: + :87, Prostacyclin: +134, Adenosine: +7135, 'Depletives ' +46136,137,
'Anti-adhesives': +29,65131D54
Co-enyme: +163, Captopril: +/_165-167, Scavengers: +/_169181
Nifedipine-Nisoldipine: +185, Fluosol: +187, Adenosine: +188

10. Heat-shock protein production Amphetamine: +51189, Transcription induction: +190-192

Legends: ACEI indicates angiotensin converting enzyme inhibitor; ClEINH: Cl esterase inhibitor; GIK: Glucose-Insulin-Potassium; PMN: Polymorphonuclear leuko-
cytes; (+,-: #): with, without effect: references.

apoptosis in surviving myocytes; however, at the
more advanced stage, expression of a promotive
(Bax) protein may start the programmed cell
death.21'22 Although these processes ofprogrammed
cell death are not typically associated with in-
flammatory cell infiltration,23'24 cytokines, as tumour
necrosis factor, may play a role in the induction of
apoptotic death.2526 Furthermore, apoptosis has
recently been shown to depend on the activation
ofa class ofproteases ('caspases').27 Lastly, reactive
oxygen species may play a role as mediators of
apoptosis by causing mitochondrial alterations.28

7. Tnflammatory cells
As a reaction to ischaemic tissue injury, by
migration and infiltration of (activated) neutro-
phils, a secondary inflammatory component of
injury can be seen.29 In classic histopathological
descriptions, neutrophils are predominantly
present during the first 12 to 24 hours, whereas
monocytes and macrophages are found in the
cardiac tissues two or three days after the ischaemic
event.30'3' Although it is likely that infiltrating
neutrophils injure cardiac myocytes, monocytes
and macro-phages may have other roles including
clearance of debris and promotion of scar tissue
formation.323

8. Oxygen free radicals
Under normal conditions small quantities of
oxygen free radicals are produced, but they are

quenched by intracellular free radical scavenging
enzymes (superoxide dismutase, catalase, gluta-
thione peroxidase) or alpha-tocopherol.35 How-
ever, more reactive oxygen species and free radicals
are generated upon the onset of ischaemia
reperfusion.36'37 Since free radicals possess an un-

paired electron, they are very reactive and can

generate another radical. An example of such
behaviour is the hydrogen abstraction mechanism,
operated by the hydroxyl radical on the poly-
unsaturated fatty acids ofmembrane phospholipids.
The hydroxyl radical starts a chain of reactions,
which ultimately lead to lipid peroxidation of cell
membranes resulting in loss of fluidity and changes
in permeability.38'39

Furthermore, oxygen free radicals are known
to stimulate platelet aggregation after exposure to
anoxia-reoxygenation.40 On the other hand, free
radicals may also have a beneficial role. Reactive
oxygen metabolites are known to be important in
our natural defence against infection, and may well
initiate tissue repair by, for example, promoting
fibroblast proliferation.4

9. Plugging

Briefperiods ofischaemia are insufficient to produce
local activation of complement, formation of
chemotactic factors or activation and infiltration of
neutrophils."2 However, during prolonged ischaemia
the endothelial cell activity changes and pro-
inflammatory cytokines are released, stimulating
neutrophil accumulation.43 Reperfusion markedly
increases the number of available neutrophils
circulating through the injured area. These reactions
may lead to plugging by the leukocytes and, as a

result of the 'no-reflow phenomenon' and well
beyond coronary occlusion and reflow, to secondary
inflammatory injury ofpotentially viable tissue.45-47
This phenomenon can occur in ischaemic periods
lasting more than three hours and can become
obvious several hours after reperfusion, especially at
the inner portion ofthe left ventricular wall.48

10.Heat-shock protein
The cardiomyocyte can form stress proteins or heat-
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Table 2. Myocardial cell death: human data.

Mechanism Potential treatment
1. 02and substrate deprivation ,BWlocker: +8990,104-108,193-195, GIK: +91,200,201 vasodilators:+9497,196-198, IABP: +202,

2. Osmotic stress
3. Lysosomal activation
4. Calcium overload
5. Complement activation
6. Apoptosis
7. PMN infiltration
8. Free radicals formation
9. Plugging
10. Heat-shock protein productior

Magnesium: +110,111 Adenosine: +,S206, Monophosphoryl lipid A (s)
Mannitol: 116,117

Calcium channel blockers: _119, Na+/H+ exchange inhibitor: +,S207), Magnesium: +110,111
ClEINH (s)

Corticosteroid: -98, Adenosine: +,S206
Streptokinase: +155, Co-enzyme QlO: +161,164, Captopril: +If>, Allopurinol: +/_182-184
Nitroglycerin: +186, Adenosine: +:s,206

Legends: ACEI indicates angiotensin converting enzyme inhibitor; ClEINH: Cl esterase inhibitor; GIK: Glucose-Insulin-Potassium; IABP: Intra-aortic balloon pump;
PMN: Polymorphonuclear leukocytes; (+, -, s: #): with, without clinical effect, running study: references.

shock proteins. These proteins can reduce infarct
size: they have delayed beneficial effects on pre-
conditioning the heart, which enhances cellular
tolerance to ischaemia-reperfusion injury49 and can
reduce free radical-mediated reperfusion injury.50'51
The amount of (induced) proteins most likely
correlates with the extent ofmyocardial salvage.50'52

Reaction to injury
As described above, inflammatory cells play an import-
ant role 'as a reaction to injury'. Influx ofinflammatory
cells into the ischaemic myocardium is seen as a sec-
ondary phenomenon to injury ofmyocardium resulting
from the previous episode ofischaemia.53 54 The influx
of inflammatory cells occurs late after continuous
ischaemia and early after reperfusion.55

Chemical substances play a role in attracting
circulating neutrophils: chemotaxis.55 The initial step
consists ofadhesion ofneutrophils to the endothelial
cell. This phenomenon is called 'rolling-sticking'. The
neutrophil-endothelial cell interaction is caused by at
least two classes of adhesion molecules, which are
expressed on the surface ofneutrophils. These include
L-Selectin, which is constitutively functional on non-
activated neutrophils during 'rolling' and the 12-
integrins, which are upregulated during 'sticking' when
neutrophils are activated.29'56 The next step ofneutro-
phil-endothelial cell adhesion involves neutrophil
'trapping' in the microvasculature, specifically in
capillaries,57 which is induced by several adhesion
molecules on the vascular endothelial cells, like P-
Selectin and intercellular adhesion molecule or
ICAM.58'59 If occlusion of an artery is followed by
reperfusion, neutrophil activation, by generation of
platelet-activating factor (PAF),29'60'61 and intercellular
adhesion, by adhesion molecules on neutrophils
(ICAM),62 lead to neutrophil 'plugging'. This step is
followed by transendothelial migration ofthe neutro-
phils into the extravascular compartment, which is
induced by factors like platelet-activating factor,29'60'61'63

and associated with adhesion molecules on the neutro-
phil (ICAM),57 in the interstitial fluid (C5a)" and on
the surface ofthe myocyte (ICAM).62'65 The release of
monocyte cytokines can stimulate the neutrophil-
myocyte adherence.5966'67

Furthermore, during ischaemia, neutrophils can
release several products like autocoids, such as throm-
boxane A2 and leukotriene B4, which induce platelet
aggregation and vasoconstriction.63'68 69 During reper-
fusion, neutrophils are able to generate oxygen-derived
free radicals,29 suggesting that neutrophils may directly
injure parenchymal myocardial cells.

Lastly, neutrophils may secrete growth factors, such
as transforming growth factor. TGF-P stimulates
fibroblast growth and neovascularisation70 and inhibits
acute inflammatory responses following ischaemia
reperfusion.7 One might speculate that reperfusion of
the myocardium at a later time (the open vessel hypo-
thesis) would accelerate neutrophil cell influx and
thereby promote healing.

All the biological processes described above will
determine the extent ofinfarct size, and will influence
the course, consequences and ultimately the prognosis
ofthe patient. When these systems are activated under
extraordinary conditions, they can potentially become
deleterious.

Therapeutic implications
Certain factors can predict death in patients admitted
to hospital with acute myocardial infarction. These
include age (over 65 years of age), previous medical
history (like diabetes, or previous infarction), infarct
size, site ofinfarction (anterior vs. inferior), low initial
blood pressure (systolic pressure <100 mmHg),
presence of pulmonary congestion, time-dependent
restoration ofpatency ofthe infarct-related artery and
extent of additional ischaemia.7276 Other factors are
associated with a higher mortality in the subacute phase
in Q-wave and non-Q-wave infarction.77'78 The im-
portance of these factors is attested by positive
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correlations between the incidence ofthese factors and
the size ofmyocardial injury.

Myocardial cell death inhibition
The extent ofmyocardial necrosis, developing during
the course of a myocardial infarction, can be both
dependent and independent ofthe underlying coronary
pathology. This concept has been the focus ofextensive
investigation (tables 1 and 2). In the late 1960s, studies
in laboratory animals showed that the extent and
severity ofmyocardial ischaemic injury, consequent to
coronary occlusion, could be altered substantially by a
number of pharmacological interventions to preserve
energy stores: P-blockers,9'80 glucose-insulin-potassium
infusion 81,82 hyaluronidase,83'84 trimethaphan,88
nitrates.86 The pharmacological interventions could also
retard disintegration of necrotic myocytes and delay
the inflammatory process.87

In the 1970s 'the time for testing in humans to reduce
infarct size had come', according to Braunwald.88 In
patients there were no particular difficulties in applying
most of the 'early' interventions that had been
demonstrated to exert positive actions in animal
models: P-blockers,8990 glucose-insulin-potassium-
infusion,9' hyaluronidase,92'93 trimethaphan94 and
nitrates.9597 The demonstration ofa possible beneficial
effect was based on the use ofa variety oftechniques,
including electrocardiographic findings, biochemical
methods and radionuclide imaging. However,
experience with the anti-inflammatory strategy of
methylprednisolone, which appeared to influence
myocardial injury favourably in experimental models,
resulted in an increased incidence of ventricular
aneurysm and rup-ture when applied clinically.98

During the last decades oflast century, there came
a better understanding of the many mechanisms by
which tissue injury during myocardial ischaemia and
after reperfusion occur. Although we have to realise
that not all the described mechanisms will ultimately
determine the extent of infarct size, and although
concepts ofmechanisms ofmyocardial injury continue
to be complex and controversial,9 by intervening in
some of these mechanisms, deleterious effects could
be diminished while retaining the positive reparative
effects. Several studies identified from the literature
will be discussed.

1. Oxygen deprivation and depletion of high-
energy phosphates
Immediate administration of 5-blockers limited
infarct size in experimental models. Early adminis-
tration of these agents preserved mitochondrial
function during periods of hypoxic substrate-free
perfusion,"00 increased subendocardial blood flow
and improved segmental wall function in the
ischaemic region ofpartially occluded vessels.'01" 02
Early intravenous administration ofmetoprolol plus
rt-PA enhanced the effects of thrombolysis on

infarct size and left ventricular function in ex-
perimental myocardial infarction.'03 In humans the
demonstrated reduction in enzyme levels and the
electrocardiographic benefits strongly suggest a
true positive effect produced by early intravenous
,-blockade in patients with definite myocardial
infarction at entry.'104105 Reduction in cumulative
enzyme output appeared to be around 20%, at least
for patients who were treated within the first few
hours ofthe onset ofpain.04 However, the concept
that immediate administration of5-blockers alone,
or in combination with thrombolytic therapy, does
indeed limit infarct size in humans has not been
definitely proven. 106-108

Magnesium protected animals against ischaemic
injury by preservation of intracellular ATP and
creatine phosphate reserves.'l9 Patients with acute
myocardial infarction treated with magnesium
chloride or sulphate showed significantly less heart
failure than those who received placebo and had
equal peak creatine kinase." I01I

Adenosine limited the degree ofvascular injury
during ischaemia and reperfusion by en-hancement
of energy production via increased glycolytic flux
and by acting as a substrate for purine salvage in the
animal model.7 At the same time it inhibited both
oxygen radical release from activated neutrophils,
thereby preventing endothelial cell damage, and
platelet aggregation, (thereby pre-serving
microvascular perfusion).7

Monophosphoryl lipidA had cardioprotective
properties in various animal models, both during
ischaemia (associated with preservation ofATP) as
well as during reperfusion (with induction of
5-nucleotidase, which removes the phosphate
group fromAMP thus forming adenosine, and en-
hancement of calcium re-uptake by sarcoplasmic
reticulum).'"2 At present this drug is undergoing
clinical investigation.

2. Osmotic cell stress
Administration ofthe hyperosmotic agent mannitol
could diminish tissue oedema and attenuate the
rise in NMR relaxation parameters and ultra-
structural myocyte injury in ischaemia-reperfused
myocardium in an animal model."'3"'4 However,
in freshly isolated adult rat myocytes,"5 as in
patients,'7 beneficial effects ofmannitol could not
be demonstrated.

3. Lysosomes
Oral treatment with a natural product of plants,
called curcumin (the major yellow pigment in
turmeric and the Indian food curry), had a pro-
tective effect against the damage caused by myo-
cardial ischaemia in rats. Curcumin inhibited the
disintegration of cell membrane polyunsaturated
fatty acids by reducing the release of beta-glu-
curonidase from e.g. lysosomes."
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4. Intracellular calcium
Calcium antagonists have the potential to prevent
or mitigate some ofthe processes leading to calcium
overload. They are coronary vasodilators. As with
[8-blockers, their negative inotropic effects reduce
metabolic demand, they protect mitochondrial
function during ischaemia, but afterwards they
reduce calcium flux through calcium channels
thereby possibly aggravating stunning. Several types
of drugs have shown protective effects ex-
perimentally when the drug was used prophy-
lactically."18 However, in patients most results to
date have been disappointing."9

Activation ofNa+/H+ exchange in myocardial
ischaemia and/or reperfusion leads to calcium
overload and myocardial injury. Experimental
studies have shown that Na+/H+ exchange in-
hibitors can attenuate Ca++ influx into cardio-
myocytes.'20 Clinical trials are running but so far
have not produced evidence of the benefit of this
type of treatment (see section on future consider-
ations.)

Magnesium has also been described as a
physiological calcium antagonist, because it inhibits
mitochondrial calcium overload.'09 As described
above ,11°,111 treatment with magnesium in acute
myocardial infarction resulted in significantly less
patients with cardiac insufficiency than placebo,
suggesting a cardioprotective effect.

Nitric oxide, derived from organic nitrate esters,
stimulates soluble guanylate cyclase. The guanylate
cyclase produces cycic-GMP and acts via a cyclic-
GMP dependent protein kinase. Ultimately this
protein kinase lowers intracellular calcium,121 which
results in dilatation of vessels and inhibition of
platelet aggregation.

Carvedilol reduced infarct size by 90% in a pig
model. The cardioprotective effect may result both
from the combined effects of [-adrenoreceptor
blockade and vasodilatation and from inhibition of
intracellular calcium.122

Captopril partially normalised the defect in
excitation-contraction coupling in rats with post-
infarction heart failure, among other ways by partial
normalisation ofintracellular Ca2+ handling.'23

Thus, by various processes it seems to be
possible to lower intracellular calcium and thereby
improve prognosis.

5. Complement system
Studies in the late 1970s showed that inactivation
ofthe third component ofthe complement system
in vivo with cobra venom factors resulted in a
reduction ofthe inflammatory response subsequent
to ischaemic damage and caused a significant
reduction in myocardial damage.'24 Blocking ofthe
classic complement pathway by a Cl inhibitor in a
feline or pig model appeared to be an effective way
of preserving the ischaemic myocardium from

reperfusion injury. The cardioprotective effect is
caused by an inhibition of a polymorphonuclear
leukocyte-endothelium interaction.'8"125 At present
a C1 inhibitor is undergoing clinical investigation
in patients with myocardial infarction.

Heparin and N-acetyl heparin could sig-
nificantly reduce the extent of myocardial injury
associated with (90 minutes of) regional ischaemia
and (six hours of) reperfusion in the canine heart.
The mechanism ofcytoprotection is not related to
alterations in the coagulation cascade but may
involve inhibition of complement activation in
response to tissue injury.'26

The activated complement system also affects
the size ofmyocardial necrosis and cardiac function
in humans. Treatment with thrombolytic agents
produces abrupt activation of the complement
system, caused by increased levels ofanaphylatoxin
C4a, C3a and membrane attack complexes C 5b-
9 127,128 an effect probably mediated by plasmin, by
activated factor XII.128 ,29 As a result, the abrupt
complement activation is associated with plugging
ofcells in the microcirculation,'9 thus diminishing
the positive beneficial effect ofthrombolytic treat-
ment. By giving patients with acute myocardial
infarction thrombolytic agents together with in-
hibitors ofcomplement dependent activation, one
may be able to decrease both the ischaemic and the
reperfusion damage.

6. Apoptosis
Many studies have demonstrated how signal trans-
duction can influence the apoptotic pathways in
different types ofcells. Only a very limited number
of these studies have been performed in an animal
modelwith ischaemia-reperfusion injury to the heart.

Experiments on the expression ofthe cell death
inhibitory gene bcl-2 have started, trying to prevent
apoptotic changes and/or to delay programmed
cell death.'30 Up to now only the clinically used
converting enzyme inhibitors and n-blockers have
been shown to have inhibitory effects on the
production oftranscription factors and thereby on
genes involved in the apoptotic programme.131

An increased inducible nitric oxide synthetase
activity appeared to be related to the induction of
apoptosis in infiltrating macrophages and cardio-
myocytes.'32 Preferential inhibition of nitric oxide
synthetase (by S-methylisothiourea sulphate)
resulted in a significant improvement of left ven-
tricular performance and increased regional myo-
cardial blood flow in rabbits.'33

7. Inflammatory cells
It is not within the scope ofthis article to assess the
extensive literature on inflammatory cells and myo-
cardial infarct size. Many animal studies were
performed, where pharmacological interventions
altered the function or the influx ofinflammatory
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cells and thereby influenced the microvascular
injury during ischaemia and after reperfusion. These
findings illustrate that the neutrophil is a potent
pathological mediator of the endangered cardiac
tissue. Studies were performed with agents, such as
prostacyclin analogues134 and adenosine,'3' which
alter neutrophil functions. Different strategies were
designed to reduce neutrophil numbers, such as
neutrophil antibodies,'36 antimetabolites'37 and
neutrophil filters.46

Furthermore, the administration ofantibodies
or antagonists to and blockers ofseveral adhesion
molecules, such as selectin, CD 18 integrin, ICAM
and PECAM, could reduce neutrophil accu-
mulation'38-'44 and sometimes significantly limit
myocardial infarct size, by up to 50%. 65,142-151 When
the neutrophils were pretreated with platelet-acti-
vating factor receptor antagonist, plasma-mediated
neutrophil stimulation was prevented29 and myo-
cardial infarct size was reduced."52-"54

Streptokinase modulates human neutrophil
function and reduces superoxide production by
polymorphonuclear leukocytes.'55 However, so far
no other pharmacological interventions aimed at
reducing injury during ischaemia and reperfusion
are under clinical investigation.

8. Oxygen free radicals
The hypothesis that antioxidants may play a role
in ischaemic heart disease was tested in the early
1990s. For instance, patients with angina pectoris
or with a coronary event during follow-up, showed
a low plasma concentration of vitamins with
antioxidant properties (adjusted for plasma chol-
esterol, age, blood pressure, weight and smoking
status).156"157 Additionally, in contrast to early is-
chaemic preconditioning,"58 patients with an acute
myocardial infarction"59"160 or with stunned myo-
cardium161"162 have an increased oxidative stress,
measured by indices offree-radical activity.

Studies to test whether drugs can inhibit
oxidative stress and limit myocardial infarct size
have produced conflicting results. In experimental
models pretreatment with a lipid soluble membrane
antioxidant could oppose propagation ofthe chain
reaction to the neighbouring fatty acids.'63 Clinical
studies in patients during heart surgery, with stable
angina or after myocardial infarction, also showed
myocardial protective effects of this lipid-soluble
membrane antioxidant.161"164

In animal studies hydroperoxide, one of the
products of the chain reaction, could be reduced
by glutathione peroxidase or by glutathione 'sup-
pletion', frequently leading to myocardial pro-
tection in situations of ischaemia-reperfusion
damage and infarction.'65'-67 These results were
illustrated in 84 patients with an anterior wall
infarction who received 6.25 mg captopril orally
about 15 minutes before iv administration ofuro-

kinase. This sulphydryl-containing drug attenu-
ated the formation of oxygen-free radicals,
protecting the lysosomal membranes, and resulted
in significantly less reperfusion ventricular ar-
rhythmias, lower CK release and less late ar-
rhythmias.168

In different animal species free radical
scavengers, cell-activation inhibitors (and metal
chelators), preventing the formation of oxygen-
derived free radicals by inflammatory cells, were at
times successful in reducing ischaemia-related
injury'69-'7' but not in hmiting cell death. 173,176-181

Also in human beings there have been
conflicting results. Allopurinol, an inhibitor of
xanthine oxidase, had myocardial protective effects
against reperfusion injury in aorta coronary bypass
patients,'82"183 but increased the extent ofdisease in
patients with myocardial infarction.'84

9. Plugging
Neutrophils can be activated during myocardial
ischaemia causing capillary plugging by cell
aggregates and may thus exacerbate ischaemic myo-
cardial injury. According to animal studies, nife-
dipine and nisoldipine are able to reduce the num-
ber ofadherent leukocytes in post-capillary venules
and capillaries of the repeatedly ischaemic myo-
cardium.'8' Furthermore, in patients with ischaemic
heart disease, intravenous isosorbide dinitrate,
acting as nitric oxide donor, inhibited both plasma-
mediated stimulation of neutrophil superoxide
anion production and neutrophil aggregation.'86
For this reason intravenous isosorbide dinitrate may
reduce myocardial injury during ischaemia.

Another drug that could reduce neutrophil
plugging in a (closed-chest) canine model was the
perfluorochemical Fluosol. Administration of this
drug resulted in significantly reduced infarct size.'87
Lastly, intravenous adenosine given to a closed-
chest dog model reduced neutrophil and erythro-
cyte plugging ofcapillaries, which was accompanied
by a normal transmural blood flow during reper-
fusion and a significantly less extensive infarct size.'88

1O.Heat-shock protein
Amphetamine can elevate the body temperature as
a result of enhanced endogenous lipolysis and
thereby induce whole-body heat shock, associated
with the induction of transcription m-RNA for
heat-shock proteins. These heat-shock proteins
have shown to be able to precondition and protect
the heart in an animal model, by enhancing cellular
tolerance to ischaemia-reperfusion injury and
reduction of free radical-mediated reperfusion
injury. 51,189

Recent advances in molecular genetics have
allowed further elucidation ofthe protective role of
heat-shock proteins against myocardial infarction.
The recent generation of myogenic cell lines and
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transgenic mice that overexpress heat-shock pro-
teins demonstrated a decrease of infarct size and
an improvement of functional recovery.190-192

Future considerations
Some ofthe studies we have cited have demonstrated
results that are in conflict with other trials. Others are
limited because the results have not been considered
in a general way.

In the pre-thrombolytic era several interventions
appeared to limit infarct size in animals, but only a few
had been documented in humans. Among them are,
as quoted earlier, f-blockers,89'90"104"108 glucose-insulin-
potassium infusion,9' magnesium,11° lll hyaluronid-
ase,93 trimethaphan,94 and nitrates.95

Since the thrombolytic era in the late 1980s, the
above-cited drugs have mainly been tested in clinical
trials, documenting events like mortality. The efficacy
in reducing early mortality of myocardial infarction
was at times comparable to and independent ofthrom-
bolytic therapy (P-blocker'931195 and magnesium11'),
then again 'modified' by thrombolytic therapy
(nitratel96 198 and hyaluronidase'99).

In this century there will be an intensification of
efforts designed to identify the perfect treatment to
protect the ischaemic myocardium. The recent
remarkable results of the ECLA study affirm the great
potential ofglucose-insulin-potassium infusion to reduce
myocardial cell death and mortality in acute myocardial
infarction when it is added to acute reperfusion
therapy.200'201 Furthermore, it seems likely that patients
will be subdivided according to clinical, electro-
cardiographic and haemodynamic findings, and that the
interventionwill be tailored appropriately. For example,
in hypertensive patients, afterload reduction,by
trimethaphan, nitrate or ACE inhibition, may be
effective to limit infarct size. In patients without any
evidence of myocardial depression, ,-blockade,
magnesium, or hyaluronidase might be appropriate. In
hypotensive patients with pump failure, circulatory
support202 might be the treatment ofchoice to protect
the ischaemic myocardium and to limit myocardial
injury. Support ofa patient selection process is illustrated
by a well-conducted trial in unselected patients receiving
earlyACE inhibition, where deaths were more frequently
allocated to active therapy.203 In addition, patients who
were defined as being at low risk and who received
immediate ,-blocker therapy showed significantly less
deaths at six weeks than those treated later.'07

It is important to determine whether or not the
more recent positive observations with 'new' agents
in animals, such as nitric oxide synthetase inhibitors,
inhibitors ofcomponents ofthe complement system,
prostacyclins, anti-adhesives, scavengers and succi-
nate,204 are also relevant and promising to the patient
with an acute coronary occlusion and merit evaluation
in future clinical trials. To date, there have been no
particular difficulties in applying to patients the
pharmacological interventions that have been demon-

strated to exert beneficial actions in the animal, such
as monophosphoryl lipid A,"2 Na+/H+ exchange
inhibitor'20 or C1 esterase inhibitor.'8"125 Recentpubli-
cations illustrated that infusion ofadenosine was well
tolerated by patients and that this agent could render
the myocardium resistant to ischaemia during coronary
angioplasty20' and was effective as an adjunct to
thrombolytic therapy for acute myocardial infarction.206
However, the remarkable results ofsmall pilot studies,
for instance cardioprotective effects of a Na+/H+
exchange inhibitor in 50 patients with acute anterior
myocardial infarction undergoing direct PTCA,207 have
to be replicated in larger clinical trials before drugs are
added to the therapeutic armamentarium.

Research efforts have not yet provided a clear
understanding of all mechanisms of myocardial cell
dysfunction and cell death. It is still not certain what
mechanisms are central to the process ofmyocyte death
and which are minor contributory mechanisms, or only
epiphenomena. It seems sensible to concentrate future
effort on mechanisms and biology ofphenomena of
inhibition of cell function that have been found to be
related to myocardial ischaemia reperfusion, like
myocardial stunning, hibernation and precon-
ditioning.20" Studies are needed that look at myocardial
perfusion, function and viability at multiple time points
to answer these questions of whether and why
segments ofthe ventricle show inhibition offunction.
A better understanding ofthese ischaemic conditions
will lead to new therapies for a variety of ischaemic
syndromes and for acute myocardial infarction. For
example, ifthe final effector(s) ofendogenous cardio-
protection are identified, a more directed approach to
designing effective drug therapy to limit infarct size
might become possible.

Lastly, we have to understand why there might be
problems with animal models in predicting human
clinical response. It will be important to analyse why
several historically identified interventions worked in
animals, but failed in humans. In the hypoxic or
ischaemic myocardium, variations in tissue hetero-
geneity, otherwise phrased in tissue components, e.g.
myocytes, endothelial cells, fibroblasts and white cells,
are likely to play a prominent part in the differences in
efficacy of therapy between experimental and clinical
studies. Testing a new and innovative treatment
remains necessary to find out whether animal models
can predict human clinical response in acute myocardial
infarction.

Conclusion
The purpose ofthis reviewwas to draw attention to the
growing list of pathophysiological phenomena oc-
curring in blood, the vessel wall and cardiac tissue
during myocardial infarction. A further aim was to
point to the complexity of factors contributing to
cardiac dysfunction and the implications for therapy,
aimed at limiting myocardial cell death. Not all physio-
pathological mechanisms have been elucidated yet,
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indicating the necessity for further research in this area.
In addition, we have described interventions that

have shown promise in animal studies, those that may
show promise in humans, and those that are accepted
as therapies ofchoice. -
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