Supporting Information

Ozonolysis of Unsaturated

Organotrifluoroborates

Gary A. Molander* and David J. Cooper

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of

Pennsylvania,

Philadelphia, Pennsylvania 19104-6323

Contents:

Experimental Procedure and Compound Characterization	S2
NMR spectra	S13

General Methods and Materials. ¹H, ¹³C, and ¹⁹F NMR spectra were measured on spectrometers at 500.13, 125.75, and 470.55 Hz, respectively. ¹¹B spectra at 64.2 Hz were obtained on a spectrometer equipped with the appropriate decoupling accessories. The melting points were uncorrected. CI mass spectra were obtained at 70 ev with direct inlet injection.

Potassium 3-Methylbut-3-enyl Trifluoroborate (1). To a solution of trimethyl borate (26.3 g, 256 mmol) in THF (185 mL) was added dropwise 3-methylbut-3-enylmagnesium bromide (1.0 M THF solution, 200 mL, 200 mmol) at -78 °C. The resulting suspension was stirred for 20 min at -78 °C and then allowed to warm to rt for 1 h. The mixture was then cooled to 0 °C and KHF₂ (86.0 g, 906 mmol) was added followed by the addition of H₂O (150 mL) over 30 min. After stirring at rt for 20 min, the solution was concentrated and the crude material was dissolved in acetone, filtered and concentrated. The resulting white solid was purified by dissolving in hot acetone and precipitating with Et₂O to afford the alkenyl trifluoroborate **1** as a white solid (18.57 g, 118.2 mmol, 59%). mp >250 °C; IR (KBr) = 1652 cm⁻¹; ¹H NMR (500 MHz, acetone- d^6): δ 0.25 – 0.34 (m, 2H), 1.66 (s, 3H), 1.94 (t, *J* = 8.6 Hz, 2H), 4.49 (s, 1H), 4.59 (s, 1H); ¹³C NMR (125.8 MHz, acetone- d^6): δ 22.3, 33.9, 106.7, 151.1; ¹⁹F NMR (471 MHz, acetone- d^6): δ –142.1; ¹¹B NMR (64.2 MHz, acetone- d^6): δ 5.38; HRMS (ESI): calcd for C₃H₉BF₃ (M') 137.0749, found 137.0751.

Potassium 3-Oxobutyl Trifluoroborate (2) via method A. To a solution of potassium trifluoroborate **1** (0.101 g, 0.643 mmol) in an acetone/ H_2O mixture (30% H_2O in acetone,

7 mL) at -70 °C was applied a flow of ozone for 14 min. The solution was then degassed with N₂ for 15 min followed by the addition of H₂O (1 mL). This was allowed to warm to rt while stirring. Following solvent removal the resulting white solid was purified by dissolving in hot acetone and precipitating with Et₂O, affording the trifluoroborate **2** as a white solid (0.072 g, 0.453 mmol, 70%). mp >250 °C; IR (KBr) = 1714 cm⁻¹; ¹H NMR (500 MHz, acetone-*d*⁶): δ 0.41 (m, 2H), 2.02 (s, 3H), 2.29 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (125.8 MHz, acetone-*d*⁶): δ 28.3, 40.7, 212.9; ¹⁹F NMR (471 MHz, acetone-*d*⁶): δ -142.3; ¹¹B NMR (64.2 MHz, acetone-*d*⁶): δ 5.65.

Tetrabutylammonium 4-Vinylphenyltrifluoroborate (3). To a slurry of potassium 4vinylphenyl trifluoroborate¹ **5** (54 mg, 0.33 mmol) in H₂O (1 mL) and CH₂Cl₂ (2 mL) was added a solution of (*n*-Bu)₄NOH (0.2 mL, 0.49 mmol, 1.6M solution) with stirring. The biphasic solution was stirred for 0.5 h. The layers were separated. The aqueous layer was extracted with CH₂Cl₂ after which the combined organic layers where washed with H₂O, dried (MgSO₄) and concentrated under high vacuum to afford the alkenyl product **3** (98 mg, 0.27 mmol, 81%). IR (neat) = 1627, 1602 cm⁻¹; ¹H NMR (500 MHz, acetone-*d*⁶): δ 0.85 (t, *J* = 7.1 Hz, 12H), 1.15 – 1.23 (m, 8H), 1.23 – 1.33 (m, 8H), 2.77 (t, *J* = 7.3 Hz, 8H), 5.05 (d, *J* = 11.4 Hz, 1H), 5.59 (d, *J* = 18.0 Hz, 1H), 6.59 (dd, *J* = 18.8, 10.8Hz, 1H), 7.17 (d, *J* = 7.3 Hz, 2H), 7.45 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (125.8 MHz, acetone-*d*⁶): δ 13.6, 19.4, 23.6, 57.9, 111.3, 124.7, 132.1, 134.8, 137.8; ¹⁹F NMR (471 MHz, acetone*d*⁶): δ –142.15; ¹¹B NMR (64.2 MHz, acetone-*d*⁶): δ 2.45; HRMS (ESI): calcd for C₈H₇BF₃ (M⁻) 171.0593, found 171.0595. Tetrabutylammonium 4-Formylphenyl Trifluoroborate (4) via procedure B^a. To a solution of tetrabutylammonium 4-vinylphenyl trifluoroborate **3** (85 mg, 0.2 mmol) and 4-methylmorpholine *N*-oxide (100 mg, 1.0 mmol) in CH₂Cl₂ (3 mL) was applied a flow of ozone at –78 °C until the solution appeared light blue in color. The solution was degassed and then washed with H₂O (3 X 5 mL) and brine to give the product **4** (63 mg, 0.15 mmol, 76%) following solvent removal. IR (neat) = 1693 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.93 (t, *J* = 7.3, 12H), 1.30 – 1.36 (m, 8H), 1.43 –1.53 (m, 8H), 3.05 (t, *J* = 7.9 Hz, 8H), 7.71 (d, *J* = 7.8 Hz, 2H), 7.76 (d, *J* = 7.8 Hz, 2H), 9.93 (s, 1H); ¹³C NMR (125.8 MHz, CDCl₃): δ 14.0, 20.0, 24.14, 58.9, 128.9, 132.7, 133.9, 193.9; ¹⁹F NMR (471 MHz, CDCl₃): δ –142.8; ¹¹B NMR (64.2 MHz, CDCl₃): δ 3.34; HRMS (ESI): calcd for C₇H₃BF₃O (M^T) 173.0385, found 173.0381.

Tetrabutylammonium 4-Formylphenyl Trifluoroborate (4) via procedure B^b. To a solution of potassium 4-vinylphenyl trifluoroborate **5** (209 mg, 1.0 mmol) in 50% DMF/Et₃N (4 mL) was added sufficient Sudan III to create a light pink colored solution. A flow of ozone was applied at 0 °C during which a white vapor was evolved. The ozone flow was continued until both the pink color of the solution faded and the white vapor cleared, after which the solution was degassed with nitrogen. CH_2Cl_2 (10 mL) was added to the solution leading to the precipitation of white crystals which were washed with ether to give the aldehyde. Further purification was achieved by creating a slurry of the aldehyde in H₂O (1 mL) and CH_2Cl_2 (2 mL) to which was added a solution of (*n*-Bu)₄NOH (0.63 mL, 1.0 mmol, 1.6M solution) with stirring. The biphasic solution was stirred for 0.5 h. The layers were separated. The aqueous layer was extracted with CH_2Cl_2

after which the combined organic layers where washed with H_2O , dried (MgSO₄) and concentrated under high vacuum to afford the aldehyde **4** (168 mg, 0.79 mmol, 79%).

Tetrabutylammonium 4-Formylphenyl Trifluoroborate (4) via procedure B^c. To a solution of potassium 4-vinylphenyl trifluoroborate **5** (49 mg, 0.25 mmol) in 40% DMF/DCM (1.25 mL) was added sufficient Sudan III to create a light pink colored solution. A flow of ozone was applied at -78 °C until the pink color faded, after which the solution was degassed with nitrogen. To this solution was added (*n*-Bu)₄NOH (0.16 ml, 0.25 mmol, 1.6M solution) with stirring, which was continued for 1 hour. The solution was extracted with CH₂Cl₂ (3 X 5 mL), after which the organic layers were washed with H₂O (3 X 5 mL) and with brine to give **4** (69 mg, 0.17 mmol, 72%) following solvent removal.

Tetrabutylammonium Dec-9-enyl Trifluoroborate (6). Potassium dec-9-enyl trifluoroborate¹ (0.161 g, 0.654 mmol) was slurried in CH₂Cl₂ (10 mL) after which tetrabutylammonium hydroxide (0.453 g, 0.437 mmol, 40% solution by weight) was added while stirring. Stirring was continued until the white solid was completely taken into solution. The reaction mixture was extracted with CH₂Cl₂ (3 X 20 mL) and washed with H₂O (3 X 20 mL) to give tetrabutylammonium trifluoroborate **6** as a colorless oil (0.236 g, 0.52 mmol, 81%) following solvent removal. IR (neat) = 1638 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.18 – 0.27 (m, 2H), 1.00 (t, *J* = 7.3, 12H), 1.20 – 1.38 (m, 12H), 1.40 – 1.46 (m, 8H), 1.59 – 1.65 (m, 8H), 2.01 (q, *J* = 7.0 Hz, 2H), 3.23 (t, *J* = 8.33 Hz, 8H), 4.90 (d, *J* = 10.0 Hz, 1H) 4.97 (d, *J* = 16.2 Hz, 1H), 5.78 (dddd, *J* = 6.7, 6.7, 10.2,

16.9 Hz, 1H); ¹³C NMR (125.8 MHz, CDCl₃⁶): δ 14.0, 20.0, 24.3, 26.4, 29.5, 29.8, 30.1, 30.4, 34.27, 34. 33, 59.0, 114.3, 139.8; ¹⁹F NMR (471 MHz, CDCl₃): δ –140.3; ¹¹B NMR (64.2 MHz, CDCl₃): δ 5.5; Anal. Calcd for C₂₆H₅₅BF₃N: C, 69.47; H, 12.33. Found: C, 66.72; H, 12.12.

Tetrabutylammonium 8-Formyloctyl Trifluoroborate (7) via procedure B⁴. To a solution of tetrabutylammonium trifluoroborate **6** (68 mg, 0.15 mmol), pyridine (38 mg, 0.45 mmol) and pyridine *N*-oxide (33 mg, 0.3 mmol) in CH₂Cl₂ (5 mL) was applied a flow of ozone at -78 °C until the solution turned light blue in color. This was degassed with nitrogen followed by the addition of 1.0 M CuSO₄ (3 mL) at 0 °C. The organic layer was extracted and washed with a pH 7 buffer, after which the solvent was removed to give aldehyde **7** as product (51 mg, 0.11 mmol, 75%). IR (neat) = 1721 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.17 – 0.23 (m, 2H), 0.99 (t, *J* = 7.3, 12H), 1.20 – 1.38 (m, 12H), 1.40 – 1.46 (m, 8H), 1.57 – 1.62 (m, 8H), 2.38 (t, *J* = 7.36 Hz, 2H), 3.23 (t, *J* = 8.7 Hz, 8H), 9.74 (s, 1H); ¹³C NMR (125.8 MHz, CDCl₃): δ 14.0, 20.0, 22.5, 24.3, 26.3, 29.7, 29.9, 30.2, 34.1, 44.4, 59.0, 203.7; ¹⁹F NMR (471 MHz, CDCl₃): δ –140.2; ¹¹B NMR (64.2 MHz, CDCl₃): δ 5.35; HRMS (ESI): calcd for C₉H₁₇BF₃O (M) 209.1324, found 209.1333.

Tetrabutylammonium 8-Formyloctyl Trifluoroborate (7) via procedure D. To a

solution of tetrabutylammonium trifluoroborate **6** (0.285 g, 0.632 mmol) in CH_2Cl_2 (2.85 mL) at -78 °C was applied a flow of ozone until the solution became blue in color. The reaction mixture was immediately degassed with N₂ for 15 min after which Zn (0.204 g,

3.15 mmol) in acetic acid (0. 0.265g, 4.42 mmol) was added dropwise with stirring. The solution was allowed to warm to rt and stirring was continued for 2 h (the reaction progress was followed by ¹H NMR). The reaction mixture was passed through a pad of Celite to remove the Zn after which NaHCO₃ was added dropwise over 15 min. The reaction mixture was extracted with CH_2Cl_2 (3 X 5 mL) and then the combined organic extracts were washed with H_2O (3 X 5 mL), dried (MgSO₄), and filtered. Solvent was removed to give the trifluoroborate **7** as a colorless oil (0.269 g, 0.601 mmol, 95%).

Tetrabutylammonium (Cyclohex-3-enyl)methyltrifluoroborate (**8**). To a slurry of potassium (cyclohex-3-enyl)methyltrifluoroborate¹ (23 mg, 0.11 mmol) in H₂O (2 mL) and CH₂Cl₂ (2 mL) was added a solution of (n-Bu)₄NOH (0.07 mL, 0.11 mmol, 1.6M solution) with stirring. The biphasic solution was stirred until the potassium organotrifluoroborate was taken up into solution. The layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 X 5 mL) after which the combined organic layers where washed with H₂O (3 X 5 mL), dried (MgSO₄) and concentrated under high vacuum to afford the alkenyl product **8** (42 mg, 0.1 mmol, 93%). IR (neat) = 1644 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.16 – 0.26 (m, 2H), 0.96 (t, *J* = 7.6, 12H), 1.10 – 1.21 (m, 1H), 1.36 – 1.43 (m, 8H), 1.55 – 1.62 (m, 10H), 1.83 (d, *J* = 12.1 Hz, 1H), 1.96 (s, 2H), 2.18 (d, *J* = 12.1 Hz, 1H), 3.19 (t, *J* = 8.1 Hz, 8H), 5.57 (m, 2H); ¹³C NMR (125.8 MHz, CDCl₃⁶): δ 13.6, 19.7, 23.9, 26.2, 31.1, 32.5, 35.3, 58.6, 126.6, 128.4; ¹⁹F NMR (471 MHz, CDCl₃): δ –137.2; ¹¹B NMR (64.2 MHz, CH₂Cl₂): δ 3.06; HRMS (ESI): caled for C₇H₁₁BF₃ (M⁻) 163.0906, found 163.0908.

Tetrabutylammonium 4-formyl-2-(formylmethy)butyltrifluoroborate (9) via

procedure B^e. To a solution of Tetrabutylammonium (cyclohex-3-

enyl)methyltrifluoroborate **8** (52 mg, 0.13 mmol) and pyridine (5 mg, 0.07 mmol) in CDCl₃ (5 mL) was applied a flow of ozone at -78 °C until the solution turned light blue in color. This was degassed with nitrogen after which the solution was washed with 1.0 M CuSO₄ (2 X 5 mL) and with a pH 7 buffer (3 X 5 mL). The solvent was removed to give dialdehyde **9** as the product (44 mg, 0.1 mmol, 79%). IR (neat) = 1717 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.21 – 0.31 (m, 1H), 0.35 – 0.45 (m, 1H), 0.98 (t, *J* = 7.6, 12H), 1.37 – 1.44 (m, 8H), 1.57 – 1.68 (m, 10H), 2.14 (ddd, *J* = 13.6, 6.8, 6.8 Hz, 1H), 2.41 (ddd, *J* = 15.6, 6.1, 2.2 Hz, 2H), 2.43 (t, *J* = 6.6 Hz, 2H), 3.21 (t, *J* = 8.1 Hz, 8H), 9.72 (s, 1H), 9.76 (s, 1H); ¹³C NMR (125.8 MHz, CDCl₃⁶): δ 13.6, 19.7, 23.9, 29.7, 30.6, 41.7, 50.8, 58.7, 204.1, 206.2; ¹⁹F NMR (471 MHz, CDCl₃): δ –137.3; ¹¹B NMR (64.2 MHz, CDCl₃): δ 4.38; HRMS (ESI): calcd for C₇H₁₁BF₃O₂ (M⁻) 195.0804, found 195.0808.

Tetrabutylammonium 4-Butenyltrifluoroborate (10). To a slurry of Potassium 4butenyltrifluoroborate¹ (33 mg, 0.20 mmol) in H₂O (2 mL) and CH₂Cl₂ (2 mL) was added a solution of $(n-Bu)_4$ NOH (0.12 mL, 0.2 mmol, 1.6M solution) with stirring. The biphasic solution was stirred until the potassium organotrifluoroborate was taken up into solution. The layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 X 5 mL) after which the combined organic layers where washed with H₂O (3 X 5 mL), dried (MgSO₄) and concentrated under high vacuum to afford the alkenyl product **10** (72 mg, 0.20 mmol, 100%). IR (neat) = 1636 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.29 - 0.34 (m,

S8

2H), 0.97 (t, J = 7.3, 12H), 1.42 (m, 8H), 1.61 (m, 8H), 2.1 (q, J = 7.0 Hz, 2H), 3.22 (t, J = 8.33 Hz, 8H), 4.72 (d, J = 10.0, 1H), 4.90 (d, J = 17.0, 1H), 5.96 – 6.01 (m, 1H); ¹³C NMR (125.8 MHz, CDCl₃): δ 13.6, 19.7, 24.0, 30.5, 58.7, 110.3, 145.3; ¹⁹F NMR (471 MHz, CDCl₃): δ –140.8; ¹¹B NMR (64.2 MHz, CDCl₃): δ 4.85; HRMS (ESI): calcd for C₄H₇BF₃ (M⁻) 123.0595, found 123.0599.

Tetrabutylammonium 3-Formylpropyltrifluoroborate (11) via procedure B^b. To a solution of potassium 4-butenyltrifluoroborate¹ (76 mg, 0.47 mmol) in 50% DMF/Et₃N (1 mL) was added sufficient Sudan III to create a light pink colored solution. A flow of ozone was applied at 0 °C during which a white vapor was evolved. The ozone flow was continued until both the pink color of the solution had faded and the white vapor cleared after which the solution was degassed with nitrogen. To this solution was added (*n*-Bu)₄NOH (0.32 ml, 0.5 mmol, 1.6M solution) with stirring, which was continued for 1 hour. The solution was extracted with CH₂Cl₂ (3 X 5 mL), after which the organic layers were washed with H₂O (3 X 5 mL) and with brine to give **11** (62 mg, 0.38 mmol, 80%) following removal of solvent. IR (neat) = 1716 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.42 (m, 2H), 0.94 (t, *J* = 7.3, 12H), 1.38 (m, 8H), 1.58 (m, 8H), 2.2 (q, *J* = 7.0 Hz, 2H), 3.18 (t, *J* = 8.33 Hz, 8H), 9.68 (s, 1H); ¹³C NMR (125.8 MHz, CDCl₃): δ 13.6, 19.6, 23.9, 40.9, 58.6, 208.8; ¹⁹F NMR (471 MHz, CDCl₃): δ -141.6; ¹¹B NMR (64.2 MHz, CDCl₃): δ 3.27; HRMS (ESI): calcd for C₃H₄BF₄O (M⁺) 125.0385, found 125.0391.

Tetrabutylammonium 2-Formethyltrifluoroborate (11) via procedure B^d. To a solution of tetrabutylammonium 4-butenyltrifluoroborate **10** (52 mg, 0.14 mmol),

pyridine (38 mg, 0.45 mmol) and pyridine *N*-oxide (33 mg, 0.3 mmol) in CH_2Cl_2 (5 mL) was applied a flow of ozone at -78 °C until the solution turned light blue in color. This was degassed with nitrogen followed by the addition of 1.0 M $CuSO_4$ (3 mL) at 0 °C. The organic layer was extracted and washed with a pH 7 buffer, after which the solvent was removed to give aldehyde **11** as product (42 mg, 0.11 mmol, 82%).

Tetrabutylammonium 2-Formethyltrifluoroborate (11) via procedure C. To a

solution of tetrabutylammonium 4-butenyltrifluoroborate **10** (75 mg, 0.2 mmol) in CH_2Cl_2 (2 mL) was applied a flow of ozone at -78 °C until the solution turned blue in color. The solution was degassed followed by the addition of pyridine (158 mg, 0.4 mmol) with stirring which was continued 24 hours. To this was added 1.0 M CuSO₄(3 mL) at 0 °C. The organic layer was extracted and washed with a pH 7 buffer, after which the solvent was removed to give aldehyde **11** as product (38 mg, 0.14 mmol, 71%)

Tetrabutylammonium 3-Methylbut-3-enyl Trifluoroborate (12). Potassium

trifluoroborate **1** (0.157 g, 1.00 mmol) was slurried in CH₂Cl₂ (10 mL) after which tetrabutylyammonium hydroxide (0.265 g, 1.02 mmol, 40% solution by weight) was added while stirring, which was continued until **1** was completely taken into solution. This solution was extracted with CH₂Cl₂ (3 X 20 mL) and washed with H₂O (3 X 20 mL) to provide tetrabutylammonium trifluoroborate **12** as a colorless liquid (0.268 g, 0.703 mmol, 70%) following solvent removal. IR (neat) = 1644 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.27 – 0.36 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 12H), 1.36 – 1.42 (m, 8H), 1.55 – 1.61 (m, 8H), 1.67 (s, 3H), 1.99 (t, *J* = 9.4 Hz, 2H), 3.19 (t, *J* = 9.6 Hz, 8H), 4.50 (s, 1H), 4.61 (s, 1H); ¹³C NMR (125.8 MHz, CDCl₃): δ 14.0, 20.0, 23.0, 24.2, 34.7, 58.9, 106.6, 152.3; ¹⁹F NMR (471 MHz, CDCl₃): δ –140.4; ¹¹B NMR (64.2 MHz, CDCl₃): δ 3.54; Anal. Calcd for C₂₁H₄₅BF₃N: C, 66.48; H, 11.96. Found: C, 66.51; H, 12.07.

Tetrabutylammonium 3-Oxobutyl Trifluoroborate (13) via procedure B^a. To a solution of tetrabutylammonium 3-methylbut-3-enyl trifluoroborate **12** (66 mg, 0.17 mmol) and 4-methylmorpholine *N*-oxide (117 mg, 0.85 mmol) in CH₂Cl₂ (2 mL) was applied a flow of ozone at –78 °C until the solution appeared light blue in color. The solution was degassed and then washed with H₂O and brine to give the product **13** (59 mg, 0.15 mmol, 89%) following solvent removal. IR (neat) = 1721 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.17 – 0.23 (m, 2H), 1.0 (t, *J* = 7.3, 12H), 1.37 – 1.49 (m, 8H), 1.60 – 1.69 (m, 8H), 2.07 (s, 3H), 2.38 (t, *J* = 8.9 Hz, 2H), 3.22 (t, *J* = 8.7 Hz, 8H); ¹³C NMR (125.8 MHz, CDCl₃): δ 14.0, 20.0, 23.7, 24.2, 29.2, 41.8, 59.0, 210.0; ¹⁹F NMR (471 MHz, CDCl₃): δ –140.8; ¹¹B NMR (64.2 MHz, CDCl₃): δ 5.38; Anal. Calcd for C₂₀H₄₃BF₃NO: C, 62.99; H, 11.36. Found: C, 63.40; H, 10.99.

Tetrabutylammonium 3-Oxobutyl Trifluoroborate (13) via procedure D. To a solution of tetrabutylammonium trifluoroborate **12** (0.089 g, 0.235 mmol) in $CH_2Cl_2(10 \text{ mL})$ at -78 °C was applied a flow of ozone until the solution became blue in color. The reaction mixture was immediately degassed with N₂ for 15 min after which Zn (0.060 g, 0.923 mmol) in acetic acid (0.100 g, 1.67 mmol) was added dropwise with stirring. The solution was allowed to warm to rt, and stirring was continued for 2 h (the reaction progress was followed by ¹H NMR). The reaction mixture was filtered to remove the Zn

after which 1.0 M NaHCO₃ was added over 15 min. The reaction mixture was extracted with CH_2Cl_2 (3 X 5 mL) and then the combined organic extracts were washed H_2O (3 X 5 mL), dried (MgSO₄), and filtered. Solvent was removed to give the trifluoroborate **13** as a colorless oil (0.085 g, 0.223 mmol, 95%).

(E)-Tetrabutylammonium 4-(3-Methoxy-3-oxoprop-1-enyl)phenyltrifluoroborate

(14). To a round bottomed flask containing tetrabutylammonium 4-formylphenyl trifluoroborate 4 (412 mg, 1.0 mmol) and methyl (triphenylphosphoranylidene) acetate (434 mg, 1.3 mmol) was added $H_2O(5 \text{ mL})$ with stirring. The temperature of the solution was raised to 90 °C for 2 h after which the heat was removed and the solution was allowed to reach room temperature. The reaction mixture was extracted with CH_2Cl_2 (3 X 10 mL) and the combined organic phases were then washed with NaOH (2M, 2 X 5 mL), H₂O (2 X 10 mL), and dried over MgSO₄. This was filtered and concentrated to give a white solid that was dissolved in CH₂Cl₂ (2 mL) and reprecipitated using diethyl ether. The white crystals were washed with diethyl ether to give the product 14 (282 mg, 0.6 mmol, 61%). IR (neat) = 1633, 1706 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.87 (t, J = 7.3 Hz, 12H), 1.16 - 1.26 (m, 8H), 1.32 - 1.35 (m, 8H), 2.88 (t, J = 8.7 Hz, 8H), 6.33 (d, J =16.0 Hz, 1H), 7.31 (d, J = 8 Hz, 2H), 7.54 (d, J = 8 Hz, 2H), 7.61 (d, J = 17.0 Hz, 1H); ¹³C NMR (125.8 MHz, CDCl₃): δ 13.6, 19.5, 23.7, 51.5, 58.2, 115.3, 126.7, 131.6, 132.4, 146.4, 167.9; ¹⁹F NMR (471 MHz, CDCl₃): δ –142.5; ¹¹B NMR (64.2 MHz, CDCl₃): δ 2.31.

Reference:

1) Molander, G. A., Figueroa, R. Org Lett, 2006, 8, 75.

Potassium 3-Methylbut-3-enyl Trifluoroborate (1)

126 MHz ¹C NMR of Compound (1) in Acetone- d_6

128 MHz ¹B NMR of Compound (1) in Acetone- d_6

Potassium 3-Oxobutyl Trifluoroborate (2)

126 MHz ¹C NMR of Compound (2) in Acetone- d_6

128 MHz ¹B NMR of Compound (2) in Acetone- d_6

-50

Tetrabutylammonium 4-Vinylphenyltrifluoroborate (3)

126 MHz $^1\!C$ NMR of Compound (3) in CDCl₃

128 MHz ¹B NMR of Compound (3) in CDCl₃

126 MHz ¹C NMR of Compound (4) in CDCl₃

128 MHz ¹B NMR of Compound (4) in CDCl₃

Tetrabutylammonium Dec-9-enyl Trifluoroborate (6)

126 MHz ¹C NMR of Compound (6) in CDCl₃

128 MHz ¹B NMR of Compound (6) in CDCl₃

Tetrabutylammonium 8-Formyloctyl Trifluoroborate (7)

126 MHz ¹C NMR of Compound (7) in CDCl₃

128 MHz ¹B NMR of Compound (7) in CDCl₃

Tetrabutylammonium (Cyclohex-3-enyl)methyltrifluoroborate (8)

126 MHz ¹C NMR of Compound (8) in CDCl₃

128 MHz ¹B NMR of Compound (8) in CDCl₃

126 MHz ¹C NMR of Compound (9) in CDCl₃

128 MHz ¹B NMR of Compound (9) in CDCl₃

126 MHz ¹C NMR of Compound (10) in CDCl₃

Tetrabutylammonium 2-formethyl Trifluoroborate (11)

126 MHz ¹C NMR of Compound (11) in CDCl₃

128 MHz ¹B NMR of Compound (11) in CDCl₃

Tetrabutylammonium 3-Methylbut-3-enyl Trifluoroborate (12)

126 MHz 1 C NMR of Compound (12) in CDCl₃

128 MHz ¹B NMR of Compound (12) in CDCl₃

126 MHz ¹C NMR of Compound (13) in CDCl₃

471 MHz ¹F NMR of Compound (13) in CDCl₃

128 MHz ¹B NMR of Compound (13) in CDCl₃

(*E*)-Tetrabutylammonium 4-(3-Methoxy-3-oxoprop-1-enyl)phenyltrifluoroborate (14)

126 MHz 1 C NMR of Compound (14) in CDCl₃

128 MHz ¹B NMR of Compound (14) in CDCl₃