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Supplementary Figure S1 (Best viewed electronically): The methods and the util-
ity of our event-tree analysis within model networks of conductance-based I&F neu-
rons, driven by independent Poisson input. For reference, we briefly describe the standard
conductance-based integrate-and-fire (I&F) point neuron (Koch, 1999). Given a network of
N I&F neurons with label i, each with voltage Vi, conductances G

input
i , Gex

i , G
in
i , and type

τi = {ex, in}, its dynamics is governed by
d

dt
Vi(t) = −GL(Vi(t)− �L)−Ginput

i (t) (Vi(t)− �ex)−Gex
i (t) (Vi(t)− �ex)−Gin

i (t)
¡
Vi(t)− �in

¢
Gex
i (t) =

X
j

X
k

Sexτi,τj∆i,je
− t−Tj,k

σex θ(t− Tj,k),

Gin
i (t) =

X
j

X
k

Sinτi,τj∆i,je
− t−Tj,k

σin θ(t− Tj,k),

Ginput
i (t) = f

X
k

Fτie
−
t−TFi,k
σex θ(t− TF

i,k),

where θ (t) is the Heaviside function. The voltage Vi(t) evolves continuously until it reaches
a threshold Vi(t) = �T . At this point in time the ith neuron produces a spike (the kth spike of
neuron i is recorded as Ti,k), and the voltage Vi is reset to �R, and held there for an absolute
refractory period of τref ms. Here, GL is the leak conductance and �L is leakage potential.
The various synaptic conductances GQ (Q = ex, in) are characterized by their different decay
time scales σQ and reversal potentials �Q. Each spike from the jth neuron gives rise to an
instantaneous increase in the Q-type conductance of neuron i of magnitude SQ

τi,τj
∆i,j. The

coupling matrix ∆i,j (with entries either 0 or 1) indicates the network connectivity. The
coupling strengths SQ

τi,τj
(indicating the amount of Q-type conductance added to τi-type

neurons by τj-type firing events) only depend on the types of neurons i and j, and not
directly on their index. The system is also driven by feedforward input. The kth input
spike from the feedforward input to the ith neuron is denoted by TF

i,k, and instantaneously
increases that neuron’s Ginput conductance by magnitude fFτi. For the simulations presented
in Fig. 2 in the main text, we use the following parameters (with conductance in units of
[ms]−1): GL = 0.00667ms−1, �R = �L = −60.95mV, �T = −48mV, �ex = 0mV, �in = −70mV,
τref = 2ms, σex = 2ms, σin = 10ms with input strength factors Fex = 1, Fin = 0.4. For the
three regimes described in Fig. 2, the inputs to each neuron in the system are independent
Poisson processes with rate ν ∼ 0.5kHz and strength f ∼ 0.005.
(i) For the phase-oscillator regime in Fig. 2A, the coupling strengths are given by

Sexex,ex = 0.350, S
ex
in,ex = 0.165, S

in
ex,in = 0.361, S

in
in,in = 0.0424 ,

and the network connectivity illustrated in Panel A. Panel A indicates the coupling matrix
∆i,j, with grey squares indicating entries of 1, and blank squares indicating entries of 0. The
neurons labeled by blue numerals denote inhibitory neurons, and the red denote excitatory
neurons.
(ii) For the bursty-oscillator regime in Fig. 2B, the coupling strengths are given by

Sexex,ex = 0.350, S
ex
in,ex = 0.165, S

in
ex,in = 0.148, S

in
in,in = 0.0424.
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The network connectivity is the same as in Panel A.
(iii) For the sustained-firing regime in Fig. 2C, the coupling strengths are given by

Sexex,ex = 0.118, S
ex
in,ex = 0.165, S

in
ex,in = 0.0856, S

in
in,in = 0.0751,

and the network connectivity is illustrated in Panel B.
We emphasize that there is a broad range of parameter values of coupling strengths

and connectivity matrices that produce similar dynamics with the same qualitative coding
properties. Specifically, the general phenomena of (a) robust event-tree discriminability and
(b) the ability of event-tree analysis to distinguish between multiple stimuli (which may
differ along distinct stimulus dimensions) persist for a large class of parameter values, and
for a wide variety of dynamical regimes similar to the bursty-oscillator and sustained-firing
regime.
Event trees are extended space-time entities. In Panel C, we display a representation of

the 3-event-tree collected over Tobs =∞ (with α = 2ms) of the sustained-firing regime (Fig.
2C ) under stimulus I1 (with input rate ν1 = 0.5kHz and strength f1 = 0.005). The colors, in
general, correspond to occurrence rate, plotted logarithmically from 1 occurrence per second
to 256 occurrences per second. Event-chains with an occurrence rate less than 1 occurrence
per second have intentionally not been plotted. The representation of an event tree begins
by fixing the number N of neurons (or the number N of coarse-grained sets of neurons),
the maximum length mmax of the event chains in the tree, the time Tobs of observation, and
the coarse-grained time interval α. The tree is then represented by a collection of rings
(circles). On each ring, the discrete set of angles θj = 2π (j − 0.5) /N, j = 1, · · ·N labels the
N neurons (or coarse-grained sets of neurons).
The collection of rings which represents the 3-event tree in panel C is organized as follows.

In panel C, the three black circles indicate the organization of event-chains by the depth of
events in the chain. The central black circle contains 1-event-chains, the interior annulus
contains 2-event-chains, and the outer annulus contains 3-event-chains. The location of each
m-event-chain is specified by m angles, which correspond to the indices of the m neuronal
events defining that event-chain. For example, consider the 3-event-chain σ8 → σ6 → σ2

indicated by the three grey pie-slices. The smallest darkest pie slice contains a single circle.
This single circle lies within a hierarchical structure – a ring of rings of rings. The location
of this single circle can be defined in terms of the following three angles: the angle of the
major ring in which it lies (the largest light grey pie slice corresponds to the orientation
angle 2π (j − 0.5) /8 with j = 8, since the first event is σ8), followed by the angle of the
medium ring in which it lies (the medium grey pie slice corresponds to the orientation angle
2π (j − 0.5) /8 with j = 6, since the second event is σ6), followed again by the angle of
the smallest ring in which it lies (the smallest darkest grey pie slice corresponds to the
orientation angle 2π (j − 0.5) /8 with j = 2, as the third event is σ2). Thus, the color of
this single circle corresponds to the occurrence rate of the 3-event-chain σ8 → σ6 → σ2.
All of the 3-event-chains are organized this way within the outer annulus. All the 2-event-
chains can be organized in a similar hierarchical structure – namely, a ring of rings. This
smaller ring of rings has been scaled, and placed in the middle annulus. Finally, the single
ring corresponding to the set of 1-event-chains is also appropriately scaled and placed in the
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center of the diagram. Note that the color coding of the 1-event chain merely labels the
firing rates of each of the N neurons on the ring.
More generally, in this hierarchial organization, the m-event-chain σj1 → · · · → σjm is

plotted at complex vector location Σm
k=1a

k−1e2πi(jk−0.5)/8 with respect to the center of the
diagram, where the scale factor a ∼ 3 is chosen to place the chain in the appropriate annulus
for clarity of visualization.
In summary, Panel C depicts a 3-event-tree collected over a very long observation window

(Tobs = ∞). Similar diagrams can be used to depict event-trees of different lengths m and
shorter observation windows Tobs. This event-tree representation provides a succinct means
of organizing the data associated with an entire collection of event-chains up to a specified
length, and can also serve to pinpoint relevant features within a network’s dynamics. For
another example, see Supplementary Fig. S3. For short observation windows, different pre-
sentations of the same stimulus will produce different mmax-event-trees. As event-trees may
differ only slightly for different but similar stimuli, the probability distribution of event chains
over many independent trials can be used to disentangle the dynamical differences caused
by distinct stimuli from the fluctuations caused by short Tobs observation windows. These
distributions can be a sensitive function of the stimulus and thus can provide a statistically
accurate measurement that can distinguish between distinct stimuli.
Note that although the event σ7 → σ7 does not occur very often (the location is blank),

the event σ7 → σ7 → σj (for j 6= 7) occurs more often. This peculiar phenomenon stems from
our definition of event-chains associated with the particular choice of α = 2ms for temporal
coarse-graining. For example, in this case of α = 2ms, the set of events {σ7t=0.1, σ7t=2.6, σ1t=2.7}
would contain both the 2-event-chain σ7 → σ1 and the 3-event-chain σ7 → σ7 → σ1, but
not the 2-event-chain σ7 → σ7. There are many alternative definitions of event-chains which
produce event-trees capable of robust discriminability, but we will not fully discuss those
here. As an example, given a set of time scales α1, . . . αm−1, we can easily define an m-event-

chain, denoted by
n
σj1

α1→ σj2
α2→ · · · αm−1→ σjm

o
, as the event σjmt , preceded by the events

σ
jm−1
Im−1

, . . . , σj1I1 (with Ik = [t− Σl=m−1
l=k αl, t − Σl=m−1

l=k+1 αl)). Such an event-chain can capture
correlations within and across multiple synchronous activities within a system. For clarity,
we have chosen uniform αk = α, but this is in no way essential to our general results. Our
definition of event-chains is structured to allow for efficient data collection techniques which
(a) treat every spike computationally equally, and (b) produce event-trees which are invariant
to time-translation of the system dynamics. This can be contrasted with a definition of event-
chains which employs a global time discretization, and therefore produces event-trees which
depend on the particular choice of time bins. Our techniques will be discussed in future
work.
In Panel D, we display a representation of the 4-event-tree collected over Tobs =∞ (with

α = 2ms) of the sustained-firing regime under stimulus I1 (where I1 = (ν1 = 0.5, f1 = 0.005)
and I2 = (ν2 = 0.525, f2 = 0.005) are the same as those in Fig. 2). The diagram of panel C
is nested in the center of this diagram.
Panels C and D display measurements of the Tobs = ∞ event-tree of the system under

stimulus I1. However, in general (see text), each different trial presentation of a particular
stimulus over a shorter Tobs, say Tobs = 512ms, will produce a different mmax-event-tree. The
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distribution of mmax-event-trees over Tobs = 512ms, measured by collecting multiple trials,
can be a sensitive function of the stimulus. Thus, in order to estimate the functional power
of this network, we may attempt to estimate the difference between the Tobs-distribution of
the mmax-event-trees produced by this system under stimulus I1 and the Tobs-distribution
produced under I2, with Tobs = 512ms, and mmax = 4. If the difference between these two
Tobs-distributions is significant, then the event-tree-projected network dynamics observed
within a typical single trial of Tobs = 512ms can be used to discriminate between the stimuli
I1 and I2.
In practice, one usually cannot measure the full multi-dimensional Tobs-distribution of

the 4-event-tree for a system, as such a joint probability distribution of occurrence counts of
multiple different event-chains is defined on a space of dimension N +N2 +N3 +N4 ∼ N5.
For stationary inputs, as in our example here, such joint distributions are only measurable
for Tobs either extremely small (i.e., only a few short event-chains occur once within each
trial, and most event-chains do not occur at all, thus the Tobs-distribution reduces to the joint
distribution of singleton events) or extremely large (i.e., the Tobs distribution is well repre-
sented by the Tobs =∞ event-tree, which captures the mean occurrence count, or observation
rate of each event-chain). To circumvent this curse of dimension, instead of constructing the
Tobs-distribution of the 4-event-tree for this system, we measure the Tobs-distribution of each
4-event-chain within the 4-event-tree separately. In other words, we first record many inde-
pendent samples of this network’s mmax-event-tree (over multiple independent Tobs = 512ms
observations) under both stimulus I1 and I2. With this collection of data, we obtain the em-
pirical observation distributions of each m-event-chain’s occurrence count (for m ≤ mmax).
Thus, for each event-chain {σj1 → σj2 → · · ·→ σjm}, we obtain the collection of probabil-
ities P ({σj1 → σj2 → · · ·→ σjm} occurs k times within a given Tobs = 512ms | stimulus Il)
for each integer k ≥ 0 and each stimulus l = 1, 2.
Some event-chains are not indicators of the stimulus (i.e., the Tobs = 512ms distribution

of occurrence count is very similar for I1 and I2). However, there are other event-chains
that can be used to discriminate between the stimuli. For example, the Tobs = 512ms
distribution of occurrence counts of the 4-event-chain σ4 → σ1 → σ2 → σ8 is quite different
under stimulus I1 than under stimulus I2. The corresponding observation distributions are
plotted in Panel E, with the blue and red histograms, P1, and P2, corresponding to I1 and I2
respectively (the overlapping region is purple). Note that the mean occurrence count for this
4-event-chain actually decreases when the rate of the input increases. The occurrence count
of this event-chain alone can be used to discriminate the inputs I1 and I2. For example, we
may take many sample Tobs = 512ms observations of the network’s dynamics under different
randomly chosen stimuli (either I1 or I2, with equal probability). For each of these samples,
we examine the occurrence count ρ of the {σ4 → σ1 → σ2 → σ8} event-chain, and determine
a possible candidate stimulus. We choose I1 if P1 (ρ) > P2 (ρ), otherwise we choose I2 (e.g.,
in this case in Panel E, we guess I2 if σ4 → σ1 → σ2 → σ8 occurs 9 or fewer times, otherwise
we guess I1). Applying this procedure to many different independent sample trials results in
a hit rate A = 1

2

R∞
0
max (P1, P2) dn, and false alarm rate B = 1− A, and the “information

ratio” Iσj1→···→σjm
I1,I2

≡ A/B. For the case in Panel E, we have A = 63%, B = 37%, and
Iσ4→σ1→σ2→σ8

I1,I2
= A/B = 1.7
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The procedure described above classifies the stimulus underlying a single sample Tobs-
observation by considering only the occurrence count of a single event-chain (i.e., a single
element of the event-tree) associated with that Tobs-observation. We can easily extend this
procedure to incorporate every event-chain within the observed event-tree. For example,
given a sample Tobs = 512ms observation, and its associated event-tree, we can indepen-
dently use the occurrence count of each event-chain within that event-tree to identify a
possible candidate stimulus (which will be different, in general, for each event-chain). Thus,
in this procedure, each event-chain ‘votes’ for either stimulus I1 or I2 (i.e., a vote of ±1,
respectively). We then sum up the votes across the entire event-tree to determine a single
candidate stimulus underlying the sample Tobs-observation. It is natural to weight each vote
with the factor log

³
Iσj1→···→σjm
I1,I2

´
, which is a function of the information ratio of the con-

tributing event-chain. This weighting implies that N votes of all 1’s with error rate B have
the same weight as a single vote with a far smaller error rate BN

(1−B)N+BN
. We define the

‘discriminability’ of the mmax-event-tree (for this 2-way discriminability task) to be the per-
centage of sample observations which were correctly classified under our voting procedure.
To perform 3-way discriminability tasks, we go through an analogous procedure, performing
all three pairwise discriminability tasks for each sample observation, and ultimately select-
ing the candidate stimulus corresponding to the majority (with triple dead heats or other
exceptional cases automatically counted as incorrect). Note that the discriminability is a
function of α, Tobs and mmax. For most of the systems we have observed, the discriminability
increases as mmax and Tobs increase.
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Supplementary Figure S2: Functional power vs. reliability of neurons. Here we
illustrate that the functional power of a network is not simply an increasing function of the
synaptic reliability of neurons within that network. For clarity, we focus on a specific I&F
neuronal network with N = 4 neurons. We model synaptic failure by randomly determining
if each neuron in the network is affected by any presynaptic firing event (If the probability
of spike transmission is (1− pfail), we scale the synaptic strength by 1/ (1− pfail), in order
to keep the mean network properties the same). (A): The network is composed of 2 exci-
tatory neurons (red), and 2 inhibitory neurons (blue), with connectivity indicated by the
arrows. We examine this network’s dynamics under drive with each neuron receiving inde-
pendent Poisson input. If there is no synaptic failure in the network (i.e., the inter-neuronal
connections are 100% reliable, and the synaptic failure probability pfail = 0%), then the
strong recurrent connectivity within the network forces the system into one of two states:
Either neurons 1 and 3 repeatedly fire (suppressing neurons 2 and 4), or neurons 2 and 4
repeatedly fire (suppressing neurons 1 and 3). However, if the synapses within the network
have a probability of failure, then it is possible for the system to escape from either of these
locked states, and all four neurons may fire. (B): Upper Panel: A typical 1024ms raster
plot indicating locked activity when pfail = 0%. Lower Panel: A typical 1024ms raster plot
illustrating the type of unlocked activity observed when pfail = 60%. (C): Representations
of the 3-event-trees associated with these two dynamics, with the upper and lower panels
corresponding to the pfail = 0% and pfail = 60% dynamics, respectively (These event trees
were collected over Tobs =∞, with α = 32ms). The colorscale stands for the occurrence rate
of any particular event-chain, ranging logarithmically from 0.5Hz to 25Hz. The observation
rate of the event σj1 → · · ·→ σjm is plotted at complex vector location Σm

k=13
k−1e2πi(jk−0.5)/4

with respect to the center of each panel. Events with an observation rate of less than 0.01Hz
are not plotted, with their locations intentionally left blank. The concentric circles indicate
the separation between 1-event-chains (central circle), 2-event-chains (interior annulus) and
3-event-chains (exterior annulus). Clearly, the event-tree structure is far richer in the case
of failure, than in the case without failure. (D): As a test of the network’s functional power,
we drive the pfail = 60% system with two similar inputs I1 and I2, (where I1 and I2 are
the same as those in Fig. 2) and record the Tobs = 512ms 3-event-trees. The red (blue)
histogram illustrates the distribution of Tobs = 512ms occurrence counts, as observed under
stimulus I1 (I2), for a typical 2-event-chain. These histograms indicate that the occurrence
count of individual event-chains can be used to distinguish between these two stimuli, even
within Tobs = 512ms (discrimination based solely on the single event-chain corresponding
to the histograms shown is accurate 58% of the time). Moreover, the entire 3-event-tree
(i.e, the collection of event-chains, along with their occurrence counts) can be used to dis-
criminate these two stimuli (over Tobs = 512ms) with ∼ 70% accuracy. (E): We estimate
the functional power of this network as a function of pfail. We drive the system with three
similar inputs, I1, I2, I3, (where I1, I2 and I3 are the same as those in Fig. 2) and again
record the Tobs = 512ms 3-event-trees. We use the 3-event-trees to perform a 3-way dis-
crimination task (33% would be chance level). The discriminability is plotted for a set of
different pfail (the dots indicate data points, the dashed line is to guide the eye only), which
clearly demonstrates that the event-trees associated with the network’s dynamics are richer,
and more capable of fine discrimination, when pfail ∼ 60%, than when pfail = 0%. Fig. 4 in
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the main text is reproduced as Panel E here for completeness.
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Supplementary Figure S3 (Best viewed electronically): Illustration of the utility of
the graphical representation of event-trees. We consider a specific sparsely coupled
I&F neuronal network with N = 12 neurons operating in a sustained firing regime. We drive
the network with two similar inputs, I1 and I2. Shown in the first row of the figure are (A)
the 2-event-tree collected over Tobs À 1 for stimulus I1, and (B) the 3-event-tree collected
over Tobs À 1 for stimulus I1. The occurrence counts are normalized by Tobs and plotted
as occurrence rates with colors corresponding to the colorbar on the right side of the figure
(occurrence rates below 0.25 Hz are not plotted). The set of occurence rates are organized
as explained in Figure S1. Panels (C) and (D) display analagous event-trees collected for
stimulus I2. It can readily be seen by comparing the inner rings of panels A and C that
the observed firing rates under I1 are nearly indistinguishable from the firing rates observed
under I2. There are, however, apparent differences between the occurrence rates of 2-chains
and 3-chains under I1 and under I2, which can be seen by comparing the outer rings of panels
A and C (for 2-chains), or the outer rings of panels B and D (for 3-chains).
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