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We describe our hypothesis space of structural forms in
more detail, and formally specify the distributions P (S|F )
and P (D|S). We then describe our implementation of our
model, and introduce the data sets that led to the results in
Figs. 3 and 4. We expand on the developmental shift de-
scribed in the main text (Fig. 5), and finish by comparing our
approach to previous models of structure learning.

All data sets along with code for running our model can
be downloaded from http://charleskemp.com

A Hypothesis Space of Structural Forms

The first six forms in Fig. 2A are primitive forms, each of
which can be generated using a node-replacement graph gram-
mar with a single production. To grow a graph, we start with a
seed graph and repeatedly split nodes according to the gram-
mar. For all primitive forms except the ring, the seed is a
graph with one node and no edges. For the ring, the seed is a
single-node graph with a self link.

The remaining forms in Fig. 2A—the grid and the
cylinder—can be expressed as products of primitive forms.
A grid is the Cartesian graph product of two chains, and a
cylinder is the product of a ring and a chain.1 We grow grids
by representing the two dimensions separately, and using the
chain grammar to grow one of the dimensions. Cylinders can
be generated similarly.

When working with feature or similarity data, our hypoth-
esis space of structural forms includes undirected versions of
the eight forms in Fig. 2A. For example, the undirected ver-
sion of an order is a fully connected graph. When working
with relational data, for convenience we restrict the analysis
to graphs where each node represents a non-empty cluster of
entities. Trees, grids and cylinders allow nodes to be empty,
and we remove these from our collection of structural forms,
leaving five forms in total. Given a relation it is important to
discover whether the relation tends to hold between elements
in the same cluster, and whether the relation is directed or
not. The forms in Fig. 2A use nodes without self-links, and
therefore assume that the relation does not hold within clus-
ters. We create a set of 10 forms by supplementing each form
with an alternative that uses nodes with self-links, but is oth-
erwise identical. Each of these 10 forms uses directed edges,
and for each we include an additional form with undirected
edges. In total, then, our hypothesis space of relational forms
includes 20 candidates.2 The four chain-structured forms in
this hypothesis space are shown in Fig. S1.

A Meta-Grammar for Generating Structural Forms

Although we focus on the eight forms in Fig. 2, it is natural
to consider other possibilities. We have suggested that graph
grammars provide a unifying language for expressing many
different structural forms, and ultimately it may be possible
to develop a ‘Universal Structure Grammar’ that generates all
and only the cognitively natural forms.

As an initial step towards this goal, note that all of the
grammars in Fig. 2 can be generated from the template in Fig.
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Fig. S1. The four chain-structured forms used for relational data.
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Fig. S2. Generating graph grammars from a meta-grammar. (A) The six gram-

mars in Fig. 2A correspond to subsets of the template shown here. (B,C,D) Subsets

of the production in A that grow chains, orders, and trees.

S2A. The right-hand side of this template includes 12 arrows,
and we can create a range of new productions by removing
some of these arrows. Figs. S2 B-D show how three of the
grammars in Fig. 2 correspond to subsets of the template.
Combining the template in Fig. S2A with a procedure for
removing arrows creates a meta-grammar [1] that generates
grammars for many structural forms. Some of these forms,

1A two dimensional Euclidean space can be generated as the regular Cartesian product of two
chains, where each chain is viewed as a continuous object rather than a graph. Our generative
model for feature data extends naturally to continuous spaces, but we restrict ourselves here to
graph structures.
2Only 17 of these forms are actually distinct. A partition (with or without self-links) remains the
same when converted to an undirected graph. An undirected order with self links is a fully connected
graph, and is very similar to a partition graph without self links (a graph with no edges). In both
cases, all clusters stand in the same relationship to each other.
3 There are methods for learning partitions [2] and trees [3] when the set of entities is countably
infinite, and future work should consider whether these methods can be used to develop a framework
for learning many kinds of forms.
4In the case of trees, internal nodes are required to be empty, but we do not allow empty leaf nodes.
5If S is a tree, since entities may only appear at its leaves, we adopt the convention that |S| is
equal to the number of leaf nodes in S.
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Table. S1. Number of k-cluster structures for several dif-
ferent forms

Form F C(F, k)
Partition 1
Directed Chain k!
Undirected Chain k!

2

Order k!
Connected 1
Directed Ring (k − 1)!

Undirected Ring (k−1)!
2

Directed Hierarchy kk−1

Undirected Hierarchy kk−2

Tree (2k − 5)!!

although certainly not all, are likely to be useful for structure
discovery. In principle, a learning system could begin with
just this meta-grammar and go on to discover any form that
is consistent with the meta-grammar.

All of the grammars generated by the meta-grammar in
Fig. S2 include just one production, but additional forms can
be generated if we allow grammars with multiple productions,
and productions where the edges on the right hand side are
chosen probabilistically. Our work so far has focused on sim-
ple grammars that generate some of the most frequently used
forms, but further exploration of the space of grammars is an
important direction for future work.

Generating Structures from Structural Forms

Suppose that we are working with n entities.3 A structure
S is a graph where the nodes correspond to clusters of entities.
S is compatible with F if S can be generated by the genera-
tive process defined for F , and if S contains no empty nodes
when projected along any of its component dimensions (Fig.
S3).4 There is a finite collection of structures that are com-
patible with a given form F , and P (S|F ) is non-zero only for
graphs in this collection. To encourage the model to choose
the simplest adequate representation for a domain, we weight
each structure according to the number of nodes it contains:

P (S|F ) ∝



0 if S is incompatible with F

θ|S| otherwise,
[S1]

where 0 < θ ≤ 1, and |S| is the number of nodes in S.5 For
all analyses reported in this paper we set θ = e−3, which
means that each additional node reduces the log probability
of a structure by 3. In most cases, similar results are found
by setting θ = 1, which produces a uniform distribution over
structures of a given form. Analyses of synthetic data, how-
ever, suggest that a complexity penalty is useful when fitting
grids and cylinders. Without this penalty, the model may in-
troduce additional nodes that improve the fit slightly but that
do not capture important structural distinctions (Fig. S4).

The normalizing constant for the distribution in Equa-
tion S1 is the sum

X

S

P (S|F ) =
X

S is compatible with F

θ
|S|

.

To compute this quantity, we must consider all possible ways
of putting n entities onto a graph of form F . Let S(n, k) be
the Stirling number of the second kind: the number of ways
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Fig. S3. Cluster graphs and entity graphs. (A) A cluster graph that is incompat-

ible with the grid form, since the middle node will be empty if the graph is projected

onto the vertical axis. (B) A cluster graph that is compatible with the grid form.

(C ) An entity graph corresponding to the cluster graph in (B).
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Fig. S4. Capturing a preference for simple structures. (A) Setting θ < 1 en-

courages the model to find structures with few nodes. The model therefore prefers

grids and cylinders where most of the nodes are occupied. (B) Setting θ = 1 pro-

duces a uniform distribution over all graphs compatible with a given form. The model

may now introduce additional nodes that improve the fit slightly by capturing metric

properties (perhaps entities 9 and 8 are less similar than entities 6 and 5), but that

do not capture important structural differences.

to partition n elements into k nonempty sets. Let C(F, k)
be the number of F -structures with k occupied cluster nodes.
Expressions for C(F, k) for all forms except the grid and the
cylinder are shown in Table S1. The number of n-entity struc-
tures with form F is

n
X

k=1

S(n, k)C(F, k).

For all forms F except the grid and the cylinder, the normal-
izing constant for Equation S1 is

X

S is compatible with F

θ
|S| =

n
X

k=1

S(n, k)C(F, k)θk
.

This equation groups the F -compatible structures into
classes that share the same partition of the entities. To com-
pute the normalizing constant for product structures like the
grid and the cylinder, it is more convenient to group the F -
compatible structures into classes that share the same basic
topology. Let G(n, i, j) be the number of ways to put n enti-
ties on an undirected i by j grid so that no dimension of the
grid remains unoccupied. The normalizing constant for grids
is now

X

i≤j≤n

G(n, i, j)θij
.

6See [5, 6, 7] for related work on Gaussian graphical models.
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Similarly, if Y (n, i, j) is the number of ways to put n entities
on an undirected i by j cylinder so that no dimension remains
unoccupied, the normalizing constant for cylinders is

X

i≤n,j≤n

Y (n, i, j)θij
.

G(·, ·, ·) can be computed using the function L(·, ·), where
L(n, i) is the number of ways to put n entities on an undi-
rected i node chain so that no node remains empty:

L(n, i) =



1 if i = 1
i!
2
S(n, i) if i > 1

where S(n, i) is the Stirling number of the second kind.
We now have

G(n, i, j) =

(

L(n, i)L(n, j) if i 6= j
L(n,i)2+L(n,i)

2
if i = j.

In the case where i = j, we have accounted for the fact that
the grid can be rotated without changing the configuration.

The counts for undirected cylinders can be computed sim-
ilarly. Define

R(n, i) =
L(n, i)

i

where R(n, i) is the number of ways to put n entities on an i

node ring so that no node remains empty. Then

Y (n, i, j) = L(n, i)R(n, j).

Generating Data from Structures

Suppose that S is a directed graph with nodes that correspond
to clusters of entities.
Feature Data
Let D be an entity-feature matrix where the (i, j) entry in-
dicates the value of entity i on feature j. We represent the
structure of the set of entities using undirected entity graphs.
Cluster graphs are converted to entity graphs by adding a
node for each entity, connecting each entity to the cluster
node that contains it, and replacing each directed edge with
an undirected link (Fig. S3). We set P (D|S) = P (D|Sent)
where Sent is the entity graph corresponding to cluster graph
S.

Given an entity graph Sent, we expect nearby entities in
the graph to have similar features, and formalize this intuition
by assuming that the features are independently generated
from a Gaussian distribution over the graph [4].6 Suppose
that Sent is a graph with n + l nodes, where the first n nodes
correspond to entities and the remaining l nodes are latent.
Let f be a feature vector which assigns a continuous value
fi ∈ R to each node i in the graph.

Let W be a n+l by n+l weight matrix, where wij = 1
eij

if

nodes i and j are joined by an edge of length eij and wij = 0
otherwise. We now define the graph Laplacian ∆ = E − W

where E is a diagonal matrix with entries ei =
P

j
wij . A

generative model for f that favors features which are smooth
over the graph Sent is given by

P (f |W ) ∝ exp

 

−
1

4

X

i,j

wij(fi − fj)
2

!

= exp

„

−
1

2
f

T∆f

«

.

[S2]

Equation S2 indicates that our prior p(f |W ) penalizes a fea-
ture vector f whenever fi 6= fj and i and j are adjacent in
the graph, and that the penalty increases as the edge between
i and j becomes shorter (i.e. wij increases).

Zhu et al. [4] point out that Equation S2 can be viewed as
a Gaussian prior over f with zero mean and covariance matrix
∆−1. The prior, however, is improper. Note that any feature
vector f has the same probability when shifted by a constant,
which effectively means that the variance of each fi is infinite.
We obtain a proper prior by assuming that the feature value
fi at any entity node has an a priori variance of σ2:

f |W∼ N (0, ∆̃−1) [S3]

where ∆̃ = ∆+V , and V is a diagonal matrix with 1
σ2 appear-

ing in the first n positions along the diagonal and 0 elsewhere.7

Equation S3 specifies how to generate a single feature only.
Typically the data D will include multiple features, and we
assume that the features are conditionally independent given
Sent.

8 To complete the generative model we place priors on
the branch lengths eij and the variance σ2. Both are drawn
from exponential distributions with hyperparameter β:

σ |β ∼ Exponential(β)

eij |Sent, β ∼ Exponential(β) if sij = 1.

For all analyses we set β = 0.4.
Even though we have introduced edge weights wij , we are

interested primarily in the best graph topology for the data
D. The likelihood P (D|Sent) can be computed by integrating
out σ and the edge weights:

P (D|Sent) =

Z

P (D|Sent, W, σ
2)P (W |Sent)P (σ2)dWdσ

2
.

We approximate this integral using the Laplace approxima-
tion. Since the weights wij and the variance σ are both re-
quired to be positive, we transform them to a log scale before
computing the Laplace approximation. To find modal values
of the transformed variables, we ran a gradient-based search
using the ‘Large Scale’ option available as part of MATLAB’s
unconstrained minimization routine.

Our generative model for features assumes that the data
are continuous, but Figs. 3A and 3B were learned from binary
features. When working with binary data, we treat feature
values 0 and 1 as real numbers, and scale the data matrix D

as described below so that the mean entry in the matrix is 0.
Generative models analogous to Equation S2 can be defined
for binary features [8], but structure learning becomes more
difficult: in particular, computing P (D|S) is challenging when
S is multiply connected. Our decision to work with Gaussian
models is motivated by computational issues of this sort, but

7 Zhu et al. [4] use a matrix V that has 1

σ2
everywhere along the diagonal. We prefer our

approach because it allows empty nodes to be added to a weighted graph W without changing the
likelihood P (D|W ). Suppose that we convert graph W to W ′ by adding an empty node k to the
edge between i and j so that dij = d′

ik + d′

kj . Under our model, P (D|W ) = P (D|W ′),

but this result does not hold for the approach of [4].
8We treat all features equally, but it is possible to introduce weights λj for each feature. Equa-

tion S3 then becomes P (fj) ∝ exp

„

− λj

2
fT∆f

«

, where fj is the jth feature. Once we

place a prior on the feature weights (for example, a prior that encourages most weights to be small),
we can simultaneously discover the structure S and the weights for each feature. The weights will
measure the extent to which a feature is smooth over S—the features that match the structure
best will end up with the highest weights.
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extensions of our approach can explore more principled treat-
ments of discrete features.

Throughout this section, we have not been careful to dis-
tinguish between probability density functions and probability
distributions. Since we defined a generative model for contin-
uous vectors f , P (f |W ) should strictly be written as a proba-
bility density function p(f |W ). In practice, however, f is only
observable to some level of accuracy, and we can quantize each
feature vector:

P (f |W ) =

Z

|f−u|<ǫ

p(u|W )du [S4]

where ǫ is a small constant. Equation S4 can be approximated
as

P (f |W ) ≈ p(f |W )

Z

|f−u|<ǫ

du ∝ p(f |W ) [S5]

where the constant of proportionality does not depend on the
structure or the form under consideration, and can be dropped
from our calculations.

Similarity Data
Under our generative model for features, the data matrix D

influences the distribution P (D|Sent) only through the num-
ber of features m and the covariance matrix 1

m
DDT:

log(P (D|W, σ)) = −
mn

2
log(2π)−

m

2
log |∆̃−1|−

1

2
tr(∆̃DD

T)

As long as m and the covariance matrix are provided, our
approach to structure discovery can be used even if none of
the features in D is actually observed. If we assume that a
given (symmetric) similarity matrix is a covariance matrix,
we can therefore learn structural forms from similarity data.
In many cases the similarity matrix will already be positive
definite, but if not we make it so by replacing all negative
eigenvalues with zeroes.

Although we have loosely described 1
m

DDT as a covari-
ance matrix, it can be characterized more precisely. If the
features in D are generated from a Gaussian distribution with
zero mean and unknown covariance Σ, then 1

m
DDT is the

maximum likelihood estimator of Σ. This matrix differs from
the “empirical covariance” found in some textbooks, which
is the maximum likelihood estimator if the features in D are
generated from a Gaussian distribution with unknown mean
and unknown covariance. The two estimators coincide if each
row of D has a mean of zero. When working with feature
data, we normalize D so that the mean value across the en-
tire matrix is zero. In this case, the matrix 1

m
DDT and the

empirical covariance are likely to be similar but not identical,
and deciding to work with one rather than the other should
make little difference.

Relational Data
Suppose now that the data specify relationships between en-
tities rather than features of the entities. We define two
generative models, one for frequency data and the other for
binary relations. Each model takes a single two-place re-
lation as input—for instance, dominates(·, ·) or communi-

cates with(·, ·). Future work can consider cases where multiple
relations must be simultaneously analyzed.

Suppose first that D is a square frequency matrix with
a count dij for each pair of entities (i, j). If the entities are
people, for example, dij may indicate the number of times

that person i spoke to person j. We define a generative model
where P (D|S) is high if the large entries correspond to edges
in the cluster graph S.

Formally, let |a| be the number of entities in cluster a.
Let C be a matrix of between-cluster counts, where Cab is
the total number of counts observed between entities in clus-
ter a and entities in cluster b. Our model assumes that
P (D|S) = P (D|C)P (C|S), and that C is generated from a
Dirichlet-multinomial model:

θ |S, β0, β1 ∼ Dirichlet(α)

C | θ, nobs ∼ Multinomial(θ)

where αab = β0|a||b| if Sab = 0, αab = β1|a||b| if Sab = 1, and
nobs is the total number of observations. The pair (β0, β1)
is drawn from a discrete space: β0 + β1 is drawn uniformly
from { 1

16
, 1

8
, 1

4
, 1

2
, 1, 2, 4, 8, 16, 32} and β0

β0+β1
is drawn uni-

formly from {0.05, 0.15, . . . , 0.45}. A count matrix C is as-
signed high probability under this model if the large entries
in C tend to correspond to edges in the cluster graph S.

As we did for the feature model, we integrate out the pa-
rameters:

P (C|S) =

Z

P (C|S, β0, β1)P (β0, β1)dβ0dβ1

=
1

50

X

(β0,β1)

P (C|S, β0, β1)

where

P (C|S, β0, β1) =

Z

P (C|θ)p(θ|S, β0, β1)dθ

can be computed analytically, since the Dirichlet prior on θ is
conjugate to the multinomial P (C|θ).

Given C, we assume that the Cab counts are distributed
at random between all pairs (i, j) where i belongs to cluster
a and j belongs to cluster b:

P (D|C) =
Y

a,b

„

1

|a||b|

«Cab

.

Binary Relations
A similar approach can be used to analyze binary relations.
Suppose that D is a square binary matrix where dij is 1 if the
relation holds between i and j and 0 otherwise. In a social
setting, for instance, dij may indicate whether i gives orders
to j. We define a generative model where P (D|S) is high if
the non-zero entries in D tend to correspond to edges in the
cluster graph S.

Given a cluster graph S, let zi denote the cluster assign-
ment for entity i. Suppose that there is a parameter θab for
each pair of clusters, and that dij is generated by tossing a
coin with bias θzizj

. We place a prior distribution on the pa-
rameters θab that depends on the edges in the cluster graph,
and that encourages dij to be true when there is an edge be-
tween cluster zi and cluster zj . The model can be written
as:

θab |S, α0, β0, α1, β1 ∼



Beta(α0, β0), if Sab = 0
Beta(α1, β1), if Sab = 1

dij | θ ∼ Bernoulli(θzizj
)

The hyperparameters α0, β0, α1 and β1 are drawn from
a four-dimensional grid where α0 + β0 and α1 + β1 belong to
{ 1

16
, 1

8
, 1

4
, 1

2
, 1, 2, 4, 8, 16, 32} and α0

α0+β0
and α1

α1+β1
belong to
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Fig. S5. Structure discovery results for synthetic data. Five sets of features were generated over the graphs in the left column, and five forms were fit to each dataset. The

structures found are drawn so that entity positions correspond to positions in the picture of the true structure. Each entity has been connected to the cluster node to which it

belongs: for instance, all graphs in the top row have six clusters. The final column shows log posteriors log(P (S, F |D)) for the best structures found, and the best scoring

structure is marked with an asterisk. The difference between the scores for the top two structures ranges from 0.63 (indicating that the chain is about twice as likely as the

grid on the chain-structured data) to 2245 (indicating that the grid is many orders of magnitude more likely than the ring on the grid-structured data). A constant has been

added to the log probabilities along each y axis so that the worst performing structure receives a score close to zero.

{0.05, 0.15, . . . , 0.95}. We sample uniformly from all points on
this grid where α0

α0+β0
≤ α1

α1+β1
, which captures the assump-

tion that relation D is most likely to be true of pairs (i, j)
that correspond to edges in graph S.

As for the frequency model, we integrate out the parame-
ters:

P (D|S) =
X

(α0,β0,α1,β1)

P (D|S, α0, β0, α1, β1)P (α0, β0, α1, β1)

=
X

(α0,β0,α1,β1)

P (D0|α0, β0)P (D1|α1, β1)P (α0, β0, α1, β1)

where D1 represents the entries in D that correspond to edges
in the graph S, and D0 represents the remaining entries in D.
As before, the terms P (D0|α0, β0) and P (D1|α1, β1) are com-
puted by integrating out θ:

P (D1|α1, β1) =

Z

P (D1|θ1)p(θ1|α1, β1)dθ1

where θ1 is a vector containing parameters θab for all pairs
(a, b) such that there is an edge between cluster a and cluster
b. P (D0|α0, β0) is computed similarly.

Model Implementation

The hierarchical generative model in Fig. 1 can be used for
many purposes. If the form of a data set is already known, we
can search for the structure S that maximizes P (S|F ). If the
form of the data is not known, at least two strategies might be
tried. For some applications it may be desirable to integrate
over the space of structures S and compare forms according
to their posterior probabilities P (F |D). Here, however, we

search for the structure S and form F that jointly maximize
P (S, F |D) (Equation 1). Two considerations motivate this
approach. First, we are interested in discovering the structure
S that best accounts for the data. Maintaining a posterior
distribution over structures may lead to optimal predictions
about unobserved features, but human learners often appear
to choose just one representation for a problem. Second, even
if we wanted to integrate over the space of structures, comput-
ing the integral P (F |D) =

R

P (F, S|D)P (S|D)dS is a difficult
challenge.

Our method for identifying the S and F that maximize
P (S, F |D) involves a separate search for each form. Given
data D, for each form F we search for the best structure S

that is consistent with that form. Since the prior on the space
of forms is uniform, the winning structure is the best candi-
date encountered in any of these searches.

The algorithm used for each of these searches is related
to top-down methods for constructing trees and sets of clus-
ters [9, 10], and to the general idea of coarse-to-fine process-
ing [11]. We begin with all the entities in a single cluster,
then use graph grammars like those in Fig. 2 to split the en-
tities into multiple clusters. Whenever a cluster node is split,
the entities previously assigned to this cluster must be dis-
tributed between the two new cluster nodes. We choose two
of these entities at random, assign one to each of the new
clusters, then go through the remaining entities in a random
order, making a greedy assignment for each one. Since this
procedure for splitting a cluster node is not deterministic, the
search algorithm as a whole is not deterministic. At each it-
eration, we attempt to split each cluster node several times,
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and of all splits considered we accept the candidate that im-
proves the score most. The search is not strictly greedy, since
we also use heuristics that attempt to improve the score. One
of these heuristics moves entities between cluster nodes, and
a second attempts to exchange cluster nodes.

Experiments with synthetic data (Fig. S5) suggest that
our search algorithm often recovers the true structure, or a
structure very close to the true structure, but we cannot be
sure that we have found the best structures for the data sets
shown in Figs. 3 and 4. It is possible that improved search
algorithms will identify better representations of these data
sets.

Features and Similarity
When working with feature data or similarity data, we usu-
ally initialize the search process by tying all branch lengths
together. Once the score no longer improves, we untie the
branch lengths and attempt to improve the score further.

For feature and similarity data, the structures encountered
early on in the greedy search can be seen as low-resolution ver-
sions of the structure that will eventually be identified as the
best. This perspective suggests why a greedy search should of-
ten perform well. If we take some true structure and construct
a series of representations at increasingly low resolutions, the
series should provide a path by which a greedy search can
progress from the lowest-resolution version (a structure with
all the entities in one cluster) to the true structure.

Relations
A greedy search which moves from low-resolution structures to
high-resolution structures should work well when fitting some
structural forms (including partitions and dominance hierar-
chies) to relational data. For other forms, however, a greedy
search may fail badly. Consider the case where the true struc-
ture is a ring, and each entity sends a link to exactly one other
entity. There is no low-resolution version of this structure that
seems acceptable: we can group the entities into clusters and
organize those clusters into a ring, but the entities in each
cluster will tend not to send links to the entities in the next
cluster along.

When analyzing relational data, we used two initializa-
tion strategies. The first is the same strategy used for feature
data: we begin with a graph where all the entities are as-
signed to a single cluster. The second strategy uses the best
clusters found for one of the simplest structural forms: par-
titions with no self-links (when fitting this form, we initialize
the search using the first strategy). These clusters are then
used to build initial configurations for each of the remaining
structural forms. For example, when searching for rings, we
start with a chain that connects the two clusters with the
strongest link between them. We continue adding clusters to
the ends of this chain until we have a chain including all the
clusters, then join the ends of this chain to create the ring that
will initialize the greedy search for the best ring structure.

Feature Data

Scores for each form on each data set are shown in Figs. S5,
S6 and S7. Since our search algorithm is not deterministic,
these figures were generated by repeating each search 10 times
and reporting the best structure found.

Given a matrix D with m features, we apply a linear trans-
formation so that the mean value in D is zero, and the maxi-
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Fig. S6. Scores for eight structural forms on feature and similarity data. (A) Each

score represents log(P (S, F |D)) where S is the best structure found for form F .

The scores have been translated that the lowest score in each case is close to zero.

(B) Relative scores for the top four forms for each data set. The differences between

these scores are the same as the differences in A.

mum entry in 1
m

DDT is one. The first property is useful since
our model assumes that the features have zero mean. The sec-
ond property means that it should be sensible to use the same
value of the hyperparameter β for both feature and similarity
data (we set β = 0.4).

If there are missing entries in D, our procedure for trans-
forming the data must be adjusted. In this case, we group the
features so that any two features in a given group are observed
for precisely the same set of entities. Suppose that the largest
group has j features. Consider the reduced matrix D̂ that
is created by including only these j features, and the entities
for which these features are observed. We scale the data so
that the mean value in D is zero, and the maximum entry in
1
j
D̂D̂T is 1.

9In general, we cannot simply ignore the missing data when learning structural forms. If two judges
never sat on the same court, there are no features observed for both of them, which encourages
the model to assign them to the same node in the structure if their ideological positions are even
roughly similar. (Given fully observed data, two entities will usually be assigned to the same node
only if they are highly similar.) Groupings of this sort can affect the relative scores of different
structural forms. We excluded the first Rehnquist court since Kennedy and Powell (who sat only
on that court, and whom Kennedy replaced in 1988) tended to be assigned to the same node, and
this grouping appears to be heavily influenced by the fact that these judges never served together.
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Synthetic Data
Each synthetic data set contains 40 entities and 2000 features.
The features in each data set were generated from the distri-
bution in Equation S3, where ∆̃ is defined over one of the
graphs in the leftmost column of Fig. S5.

Animals
We asked a single participant to make binary judgments in-
dicating whether 106 features applied to 60 animal species.
The data include perceptual features (is black), anatomical
features (has feet), ecological features (lives in the ocean) and
behavioral features (makes loud noises). For the analysis de-
scribed in the paper we chose 33 species (the species in Fig.
5) that are representative of the full set.

Judges
The Supreme Court data are based on all cases heard be-
tween October 1987 and June 2005. This period covers all of
the Rehnquist natural courts except the first. Since at most
9 judges voted on any of the cases, the data include many
missing entries. We assume that the unobserved entries are
missing completely at random, and integrate over all possible
values for these entries.9 The unit of analysis is the case cita-
tion (ANALU=0), and we included cases where DEC TYPE
equals 1 or 5 [12]. Voting behaviors were converted to binary
values: regular concurrence (3) and special concurrence (4)
were converted to majority votes (1), and non-participation
(5) was treated as missing data. Any case with a voting be-
havior other than 1 through 5 was removed from the analysis.
The final data set includes 13 judges and 1596 cases.

Similarity Data

When analyzing similarity data, we need to specify an effec-
tive number of features m on which the similarity judgments
are based. If m is low, then small differences between sim-
ilarity ratings are likely to be ignored, but if m is high our
model will try to account for more of the structure in the
data. For all analyses we set m = 1000. If a similarity matrix
D is not positive semi-definite, we set all negative values in its
eigenspectrum to zero, but otherwise apply no pre-processing.

Colors
The Ekman color data were taken from Shepard [13]. Con-
figurations similar to Fig. 3C have been found using multidi-
mensional scaling to locate the colors in two dimensions [13],
but a ring provides more appropriate constraints on induc-
tive inference. The ring implies that other pure-wavelength
hues will be located somewhere along the ring, but if a two-
dimensional configuration were chosen, other hues would be
(incorrectly) expected to fall in any region of the space.

Faces
We created 16 stimuli using the FaceGen program [14]. The
program includes dimensions for race and gender, and we used
four possible values along each dimension. The dissimilarity
between faces was defined as the Euclidean distance between
their pixel vector representations.

Cities
Dissimilarity was defined as distance along the surface of the
earth. Assuming that the earth is spherical, these distances
can be calculated using the latitude and longitude of each city.
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Fig. S7. Scores for eighteen structural forms on relational data. U indicates an

undirected form, and S indicates a form with self links (see Fig. S1). The scores have

been translated that the lowest score in each case is close to zero.

Relational Data

We used the frequency model to analyze the first two data
sets in Fig. 4 and the binary model for the remaining two.
We ran our search algorithm 20 times for each (form, data set
pair): half of these runs used the first initialization strategy
described above, and the remainder used the second strategy.

Mangabeys
The data represent interactions where one animal in a troop
of mangabeys submitted to another. Range and Noë [15] con-
sider two types of submissive behavior: in the first, ‘the actor
jumps or walks away from an approaching individual,’ and in
the second, ‘the actor leans aside or shifts body position in
response to another individual that approaches or walks by.’
We recoded their data so that a count in the (i, j) cell of the
matrix indicates that i caused j to submit.

Bush Cabinet
We ran Google searches on January 26, 2006 to create a ma-
trix D where Dij is the number of hits for the phrase ‘i told
j,’ and i and j vary over 13 members of the Bush administra-
tion. Although there are some hits for phrases like ‘Bush told
Bush,’ we set the counts along the diagonal to zero.

Prisoners
The 67 prison inmates were asked ‘What fellows in the tier
are you closest friends with?’ [16] Each inmate mentioned
as many friends as he wished. Clique structures similar to
Fig. 3C have been discovered by previous clustering algo-
rithms [16], but most of these algorithms assume in advance
that the best kind of representation is a set of cliques.
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Armshell Trade
Trade relations between 20 New Guinea communities were
taken from Hage and Harary [17]. There is a link between i

and j if community i sends mwali (armshells) to community
j.

Modeling Cognitive Development

As children learn more about a domain, their mental represen-
tations undergo qualitative transitions that have been likened
to paradigm shifts in science [18, 19]. Our model shares this
ability to move between qualitatively different representations
of a domain. Given a small amount of data, our model may
choose a form that is simple, but that does not capture the
true structure of the domain. As more data arrive, the model
should reach a point where the true structural form is pre-
ferred.

To demonstrate a qualitative shift in biological knowledge,
we presented our model with increasing numbers of features
of the animals in Fig. 3A. We could have run this simulation
by randomly sampling smaller data sets from the full feature
matrix, but the results might have been influenced by idiosyn-
cratic properties of the small data sets sampled. To avoid this
problem, we directly specified the covariance of each data set,
and worked with the similarity version of our model. We an-
alyzed data sets where the effective number of features was
5, 20, or 110, and the similarity matrix in each case was the
covariance matrix for the full set of animal features. Even
though the similarity matrices are identical, increasing the ef-
fective number of features should allow the model to discover
more complex representations. When only 5 features are pro-
vided, the model should attempt only to fit the broad trends
in the data, but given 110 features, the model should attempt
to explain some of the more subtle variation in the data.

Fig. 5 shows the representations chosen by our model for
each data set. At first, the simplest form is preferred, and the
model chooses a set of clusters. Given 20 features, the tree
form is preferred, but the chosen tree is simpler than the tree
in Fig. 3A. The final tree is identical to the tree in Fig. 3A:
note that a similarity data set with 110 features is effectively
identical to the data set that led to Fig. 3A.

The developmental shift in Fig. 5 appears similar to a
trajectory that children follow as they learn the meanings
of words. Early in development, children appear to respect
the assumption of mutual exclusivity: they organize objects
into a set of non-overlapping clusters, with one category label
allowed per cluster [20]. Eventually, however, children real-
ize that objects can be organized into taxonomic hierarchies.
Fig. 5 suggests that this insight may be driven in part by the
amount of data available to a word learner.

The ability to learn from raw data may support some of
the earliest and most fundamental shifts in children’s thinking.
Bottom-up learning, however, can only explain some aspects
of cognitive development, and explicit instruction may con-
tribute to the majority of developmental shifts once children
have become proficient language users. Although we have fo-
cused on learning representations from raw data, hierarchical
approaches like ours can naturally handle linguistic input at
multiple levels of abstraction, including all three levels in Fig.
1A. Linguistic input can provide new features (e.g. ‘whales
breathe air’), and can also provide direct information about

a structure S (e.g. ‘whales belong with the mammals rather
than the fish’) or a form F (e.g. ‘the theory of evolution im-
plies that animals should be organized into a tree’). Modeling
learning when input is simultaneously provided at several lev-
els of abstraction is an important goal for future work.

Related Work

In statistical terms, our method for discovering structural
forms can be viewed as an instance of model selection [21].
From a Bayesian perspective, model selection can be achieved
by describing a hypothesis space of models (for us, each
model is a pair (S, F )) and using Bayesian inference to choose
between them. Other approaches are sometimes proposed:
Pruzansky et al. [22] decide whether a similarity matrix is bet-
ter described by a tree or a two dimensional space by finding
the best instance of each form and choosing the structure that
accounts for the most variance. Several authors [23, 24] have
proposed methods for distinguishing between cluster struc-
tures and dimensional structures.

A key feature of our Bayesian approach is that it auto-
matically penalizes unnecessarily complex models. Some such
penalty is essential when considering structural forms of dif-
ferent complexities, since complex forms (e.g. fully connected
graphs) can easily mimic simpler forms. Each chain, for exam-
ple, is a special case of a grid, and it follows that the best grid
Sg will account for any data set D at least as well as the best
chain Sc: P (D|Sg) ≥ P (D|Sc). The approach of Pruzansky
et al. [22] will therefore never choose the simpler form, even
when the data D were actually generated over a chain.10

Bayesian model selection has previously been used to learn
models that are only as complex as warranted by the data, but
often the structural form of the model is assumed to be known
in advance. For instance, Bayesian methods can identify the
number of clusters in a mixture model [25], or the number of
dimensions in a spatial model [26]. Bayesian methods have
also occasionally been used to control complexity in hybrid
models with two different kinds of representations, such as
discrete features and spatial dimensions [27]. Compared to
previous learning algorithms that rely on statistical model se-
lection, two aspects of our approach are particularly distinc-
tive. First, we formulate the problem of structure discovery
as an inference in a hierarchical model where the structural
form of the domain and a specific graph structure are both
represented as latent variables. Second, we specify and search
a diverse set of structural forms using grammars for growing
graph-structured probabilistic models.

Feature Data
Our model for feature data grows out of previous work on
learning the structure of graphical models [5, 6, 7]. Previous
models usually belong to one of two families. The first family
includes models that impose no strong constraints on the form
of the graph structures that are learned. Bayesian approaches
within this family generally use a prior that includes all pos-
sible graph structures, and the prior over this space is usually
relatively simple—for example, Dobra et al. (2004) use a prior
that favors graphs with small numbers of edges. Models in the
second family assume strong constraints on the form of the

10Pruzansky et al. [22] recognize the importance of model complexity, and justify their approach
by arguing that the complexity of trees is approximately equal to the complexity of two dimensional
spaces.
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graph to be discovered, but these constraints are fixed from
the start, not learned from data. Approaches in this second
family include algorithms for phylogenetic reconstruction [28]
that attempt to discover tree-structured graphical models.

Our approach falls in the little-explored territory between
these two families of models. Instead of working with generic
priors over the set of all possible graph structures, our ap-
proach concentrates the prior probability mass on graphs that
correspond to one of a small number of structural forms.11

The ultimate argument for such a prior is that it provides in-
ductive constraints [29] that are well-matched to the problems
we wish to solve. The need for inductive constraints is most
pressing when dealing with sparse data, and sparse data are
the rule rather than the exception in both cognitive develop-
ment and scientific discovery.

Inferences about novel entities account for some of the
most common cases where the available data are sparse. Con-
sider, for example, two children who both have tree-structured
representations of a set of familiar species. Suppose that the
first child realizes that living kinds are tree-structured, but
that the second child does not—in other words, suppose that
the second child entertained all possible graph structures, and
just happened to settle on one that was tree structured. Imag-
ine, now, that both children encounter a new animal. The first
child can slot the animal into her tree relatively easily—she
knows, for example, that the new species will attach to the
taxonomy at exactly one point. The second child faces a much
more difficult problem. Since she need not preserve the tree
structure of her current representation, there may be many
edges that join the new species to her current representation,
and deciding which of these edges exist may require a large
amount of data.

Relational Data
Our relational model also builds on previous methods for dis-
covering structure in relational data [30, 31, 32, 33]. Consider,

for instance, the many previous models for relational cluster-
ing, or identifying clusters of entities that relate to each other
in predictable ways. As for the feature-based case, previous
approaches to relational clustering usually belong to one of
two families. The first family includes models that impose no
strong constraint on the form of the structures to be discov-
ered. Stochastic blockmodels [34, 35] are one example: they
do not incorporate the notion of structural form, and cannot
explicitly realize when a set of clusters takes a simple form like
a ring, or a set of cliques. The second family includes models
that assume that the structural form is known in advance. For
example, there are several algorithms for discovering commu-
nity structures in networks [33, 36]. These approaches usually
assume that the data are organized into a set of cliques, and
that individuals from any given clique tend only to be related
to others from the same clique.

Our model again occupies the little-explored territory be-
tween these two families of approaches. Structural forms are
useful because they provide strong inductive constraints, and
the ability to discover these constraints allows a learner to effi-
ciently handle novel inductive contexts. To see the importance
of structural form in the relational setting, consider a rela-
tional analogue of the novel species scenario described earlier.
Suppose that two baboons have similar representations of the
interactions between animals in their troop—representations
that take the form of an order. One baboon realizes the struc-
tural form of the representation, and the other has indepen-
dently memorized the edges in the representation. Suppose
now that a new baboon appears, and dominates the baboon
that used to occupy the first place in the order. The ba-
boon who knows the structural form of the group can predict
that the new baboon will dominate all the other animals, but
the baboon who has memorized edges can come to no strong
conclusion—for her, any set of directed edges may join the
new baboon to the remaining animals in the troop.
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