Dioxygen-Initiated Oxidation of Heteroatomic Substrates Incorporated into Ancillary Pyridine Ligands of Carboxylate-Rich Diiron(II) Complexes

Emily C. Carson and Stephen J. Lippard*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

lippard@mit.edu

RECEIVED DATE August 00, 2005

	$3 \cdot C_2 H_4 C l_2$	$4 \cdot 1.5 C_2 H_4 C l_2 / C_5 H_{12}$	5·C ₆ H ₅ Cl
Empirical Formula	Fe ₂ C ₉₅ H ₆₂ NO ₈ F ₈ PCl ₂	Fe ₂ C ₉₈ H ₉₃ NO ₈ SCl ₃	$Fe_2C_{108}H_{92}N_2O_{10}S_2Cl_2$
Formula Weight	1711.03	1662.84	1824.56
Space Group	PĪ	$P2_1/c$	ΡĪ
a, Å	13.6676(14)	13.0032(6)	12.3481(13)
b, Å	14.0155(14)	26.3878(12)	13.2842(13)
c, Å	21.278(2)	24.6935(12)	14.8486(16)
α, deg	80.799(2)		107.009(2)
β, deg	89.079(2)	95.8440(10)	103.260(2)
γ, deg	86.533(2)		95.274(3)
$V, Å^{\bar{3}}$	4016.0(7)	8428.9(7)	2233.7(4)
Z	2	4	1
$\rho_{calc}, g/cm^3$	1.415	1.310	1.356
T, ⁰C	-100	-100	-100
μ (Mo K α), mm ⁻¹	0.526	0.523	0.495
θ limits, deg	1.47 - 26.73	1.66 - 27.10	1.63 - 26.02
total no. of data	33796	72962	18030
no. of unique data	16744	18576	8699
no. of params	1099	1279	572
Goodness-of-fit on F^2	1.030	1.196	0.769
R1 ^a	0.0709	0.0786	0.0744
wR^{2b}	0.1767	0.1679	0.0999
$\frac{\text{max, min peaks, e/Å}^3}{\frac{3}{2}}$	1.124, -1.036	1.031, -0.610	0.463, -0.323

 Table S1. Summary of X-ray Crystallographic Data.

 ${}^{a}R1 = \Sigma ||F_{o}| - F_{c}|| / \Sigma |F_{o}|. {}^{b}wR^{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]\}^{1/2}.$

	6	$7 \cdot 4 CH_2 Cl_2$	$8 \cdot 3 CH_2 Cl_2$
Empirical Formula	$FeC_{52}H_{44}N_2O_4S_2$	$Fe_6C_{122}H_{110}N_2O_{18}P_2Cl_{12}$	Fe ₂ C ₉₆ H ₆₈ NO ₁₂ F ₈ PCl ₆
Formula Weight	880.86	2714.56	1934.88
Space Group	$P2_1/c$	ΡĪ	PĪ
a, Å	18.821(19)	14.508(2)	12.9063(17)
b, Å	12.262(12)	15.852(2)	14.1811(18)
c, Å	21.18(2)	15.904(3)	24.990(3)
α, deg		78.407(3)	78.235(3)
β, deg	115.123(16)	77.951(3)	86.110(2)
γ, deg		63.832(3)	86.837(3)
$V, Å^3$	4425(8)	4042(9)	4463.4(10)
Z	4	1	2
$\rho_{calc}, g/cm^3$	1.322	1.415	1.440
T, °C	-100	-100	-100
μ (Mo K α), mm ⁻¹	0.483	1.004	0.602
θ limits, deg	1.95 - 27.16	1.64 - 25.00	1.67 - 27.10
total no. of data	37528	23654	39033
no. of unique data	9779	11127	19334
no. of params	550	730	1151
Goodness-of-fit on F^2	1.131	0.997	0.997
R1 ^a	0.0566	0.1032	0.0855
wR^{2b}	0.1240	0.1826	0.1521
max, min peaks, e/Å ³	0.505, -0.278	1.028, -0.551	0.779, -0.721
$a_{\mathbf{D}1} = \mathbf{\nabla} \mathbf{E} + \mathbf{E} / \mathbf{\nabla} \mathbf{E} + \mathbf{b}_{-}$	$-D^2 = (\Sigma \Gamma_{} (\Gamma_2^2 - \Gamma_2^2)^2) / \Sigma^2$	$\Gamma_{}(\Gamma_{2}^{2})^{2} \Gamma_{1}^{2}$	

Table S1. Continued.

 ${}^{a}R1 = \Sigma ||F_{o}| - F_{c}|| / \Sigma |F_{o}|. {}^{b}wR^{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]\}^{1/2}.$

	Bond Length (Å)		Bond Angle (deg)
Fe1 Fe2	4.586(2)	O1-Fe1-N1	79.1(3)
Fe1-N1	2.156(6)	O2-Fe1-N1	96.7(2)
Fe1-O1	2.234(5)	O3-Fe1-N1	92.4(2)
Fe1-O2	1.961(5)	O4-Fe1-N1	83.62(18)
Fe1-O3	2.071(5)	O5-Fe1-N1	149.98(19)
Fe1-O4	2.160(5)	O1-Fe1-O2	82.09(19)
Fe1-O5	2.267(5)	O1-Fe1-O3	171.5(2)
		O1-Fe1-O4	83.7(2)
		O1-Fe1-O5	97.75(17)
		O2-Fe1-O3	98.6(2)
		O2-Fe1-O4	163.3(2)
		O2-Fe1-O5	112.7(2)
		O3-Fe1-O4	96.08(18)
		O3-Fe1-O5	89.31(17)
		O4-Fe1-O5	59.28(17)

Table S2. Selected Interbond Lengths and Angles for $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2 - (2-MeS(O)py)_2]$ (5)^{*a*}

_

^{*a*}Numbers in parentheses are estimated standard deviations of the last significant figure. Atoms are labeled as indicated Figures 1 and S3.

	Bond Length (Å)		Bond Angle (deg)
Fe1–O1	2.052(2)	O1-Fe1-S1	102.69(8)
Fe1-O3	2.029(3)	O1-Fe1-S2	110.22(6)
Fe1-S1	2.398(2)	O3-Fe1-S1	112.35(5)
Fe1-S2	2.398(3)	O3-Fe1-S2	98.59(6)
N1-C1	1.348(3)	O1-Fe1-O3	133.35(9)
C1-C2	1.407(4)	S1-Fe1-S2	92.04(2)
C2–C3	1.367(4)	Fe1-S1-C6	108.93(9)
C3-C4	1.393(4)	Fe1-S2-C6	106.95(9)
C4–C5	1.355(4)		
C5-N1	1.353(4)		
S1-C1	1.716(3)		
N2-C6	1.346(3)		
C6-C7	1.412(4)		
С7-С8	1.363(4)		
С8-С9	1.394(4)		
C9-C10	1.364(4)		
C10-N2	1.346(3)		
S2-C6	1.717(3)		
N1 O4	2.747(3)		
N2 O2	2.706(3)		

Table S3. Selected Interbond Distances and Angles for $[Fe(O_2CAr^{Tol})_2(2-HSpy)_2]$ (6)^{*a*}

^aNumbers in parentheses are estimated standard deviations of the last significant figure. Atoms are labeled as indicated Figures 1 and S4.

Fe1-O1	2.010(7)	Fe2-O3	1.993(6)	Fe3-O2	1.890(7)
Fe1-O2	2.036(6)	Fe2-O3A	1.990(6)	Fe3–O3	2.260(6)
Fe1-O3	1.911(6)	Fe2-O6	2.036(6)	Fe3–O7A	1.922(6)
Fe1-O4	2.049(6)	Fe2–O7	2.022(6)	Fe3-09	1.898(6)
Fe1-O5	2.044(6)	Fe2-O8	2.007(6)	Fe3-Cl2	2.215(3)
Fe1-Cl1	2.290(3)	Fe2-O9	2.007(6)	Fe3 […] Fe2	3.143(2)
Fe1-Fe3	3.157(2)	Fe2 […] Fe2A	3.029(3)	Fe3A […] Fe2	3.158(2)
O1-Fe1-Cl1	95.8(2)	O3-Fe2-O3A	81.0(3)	Cl2-Fe3-O2	104.9(2)
O2-Fe1-Cl1	176.8(2)	O3-Fe2-O6	98.5(3)	Cl2-Fe3-O3	177.57(19)
O3-Fe1-Cl1	97.0(2)	O3-Fe2-O7	101.6(3)	Cl2-Fe3-O7A	101.9(2)
O4-Fe1-Cl1	91.7(2)	O3-Fe2-O8	164.8(3)	Cl2-Fe3-O9	105.9(2)
O5-Fe1-Cl1	89.4(2)	O3-Fe2-O9	80.5(3)	O2-Fe3-O3	74.9(2)
O1-Fe1-O2	87.1(3)	O6-Fe2-O3A	164.3(3)	O2-Fe3-O7A	117.2(3)
O1-Fe1-O3	167.1(3)	O6-Fe2-O7	84.2(3)	O2-Fe3-O9	115.5(3)
O1-Fe1-O4	84.9(3)	O6-Fe2-O8	87.6(3)	O3-Fe3-O7A	76.2(2)
O1-Fe1-O5	84.3(3)	O6-Fe2-O9	93.9(3)	O3-Fe3-O9	76.3(2)
O2-Fe1-O3	80.0(3)	O7-Fe2-O3A	80.6(3)	O9-Fe3-O7A	109.7(3)
O2-Fe1-O4	89.8(3)	O7-Fe2-O8	92.7(3)		
O2-Fe1-O5	89.7(3)	O7-Fe2-O9	177.3(3)		
O3-Fe1-O4	95.2(3)	O8-Fe2-O3A	96.893)		
O3-Fe1-O5	95.2(3)	O8-Fe2-O9	85.3(3)		
O4-Fe1-O5	169.3(3)	O9-Fe2-O3A	101.5(3)		

Table S4. Selected Interatomic Distances (Å) and Angles (deg) for $[Fe_6(\mu_4-O)_2(\mu-OH)_6-(\mu-O_2CAr^{Tol})_4Cl_4(2-Ph_2P(O)py)_2]$ (7)^{*a*}

^{*a*}Numbers in parentheses are estimated standard deviations of the last significant figure. Atoms are labeled as indicated Figures 2 and S5.

Bond	Bond Length (Å)	Bond Valence	Bond Valence Sum	
$[Fe_{6}(\mu_{4}-O)_{2}(\mu-OH)_{6}(\mu-O_{2}CAr^{Tol})_{4}Cl_{4}(2-Ph_{2}P(O)py)_{2}] (7)$				
Fe1-O1	2.010(7)	0.507		
Fe1-O2	2.036(6)	0.473		
Fe1-O3	1.911(6)	0.663	2 206	
Fe1-O4	2.049(6)	0.457	3.300	
Fe1-O5	2.044(6)	0.463		
Fe1-Cl1	2.290(3)	0.743		
Fe2–O3	1.993(6)	0.531		
Fe2–O3A	1.990(6)	0.536		
Fe2-O6	2.036(6)	0.473	2.054	
Fe2–O7	2.022(6)	0.491	3.034	
Fe2-O8	2.007(6)	0.512		
Fe2-O9	2.007(6)	0.512		
Fe3–O2	1.890(7)	0.702		
Fe3–O3	2.260(6)	0.258		
Fe3–O7A	1.922(6)	0.644	3.20	
Fe3-O9	1.898(6)	0.687		
Fe3-Cl2	2.215(3)	0.910		
$[Fe_2(\mu-OH)_2(\mu-O_2CAr^{4-FPh})(O_2CAr^{4-FPh})_3(OH_2)(2-Ph_2P(O)py)]$ (8)				
Fe1–N1	2.210(4)	0.383		
Fe1-O1	2.023(3)	0.490		
Fe1-O2	1.954(4)	0.590	2 1 2 1	
Fe1-O3	1.981(4)	0.549	5.151	
Fe1–O5	2.003(3)	0.517		
Fe1–O7	1.947(3)	0.602		
Fe2–O2	1.981(4)	0.549		
Fe2–O3	1.977(4)	0.555		
Fe2–O4	2.097(4)	0.401	2 1 1 9	
Fe2-O6	2.017(3)	0.498	3.118	
Fe2-O9	1.974(3)	0.559		
Fe2-O11	1.976(3)	0.556		

 Table S5. Bond Valence Sum Analysis of Iron-Ligand Bonds in 7 and 8

Captions for Supporting Figures

Figure S1. Top: ORTEP diagram of $[Fe_2(\mu-O_2CAr^{4-FPh})_3(O_2CAr^{4-FPh})(2-Ph_2Ppy)]$ (**3**) illustrating 50% probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in which the aromatic rings of the O_2CAr^{4-FPh} ligands are omitted for clarity.

Figure S2. Top: ORTEP diagram of $[Fe_2(\mu-O_2CAr^{Tol})_3(O_2CAr^{Tol})(2-MeSpy)]$ (4) showing 50% probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in which the aromatic rings of O_2CAr^{Tol} are omitted for clarity.

Figure S3. Top: ORTEP diagram of $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2(2-MeS(O)py)_2]$ (5) showing 50 % probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in which the aromatic rings of O_2CAr^{Tol} are omitted for clarity.

Figure S4. Top: ORTEP diagram of $[Fe(O_2CAr^{Tol})_2(2-HSpy)_2]$ (6) showing 50 % probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in which the aromatic rings of O_2CAr^{Tol} are omitted for clarity.

Figure S5. Top: ORTEP diagram of $[Fe_6(\mu_4-O)_2(\mu-OH)_6(\mu-O_2CAr^{Tol})_4Cl_4(2-Ph_2P(O)py)_2]$ (7) illustrating 50% probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in which the aromatic rings of the O_2CAr^{Tol} ligands are omitted for clarity.

Figure S6. Top: ORTEP diagram of $[Fe_2(\mu-OH)_2(\mu-O_2CAr^{4-FPh})(O_2CAr^{4-FPh})_3(OH_2)-(2-Ph_2P(O)py)]$ (8) illustrating 50% probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in which the aromatic rings of the O_2CAr^{4-FPh} ligands are omitted for clarity.

Figure S7. FT-IR spectra of KBr pellets of $[Fe_2(\mu-O_2CAr^{4-FPh})_3(O_2CAr^{4-FPh})(2-Ph_2Ppy)]$ (3) (top) and $[Fe_2(\mu-OH)_2(\mu-O_2CAr^{4-FPh})(O_2CAr^{4-FPh})_3(OH_2)(2-Ph_2P(O)py)]$ (8) (bottom).

Figure S8. FT-IR spectra of KBr pellets of $[Fe_2(\mu-O_2CAr^{Tol})_3(O_2CAr^{Tol})(2-MeSpy)$ (4) (top) and $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2(2-MeS(O)py)_2]$ (5) (bottom). The arrow designates $v_{S_{-}O}$.

Figure S9. FT-IR spectrum of a KBr pellet of $[Fe(O_2CAr^{Tol})_2(2-HSpy)_2]$ (6).

Figure S10. Mössbauer spectrum (experimental data (|), calculated fit (–)) recorded at 4.2 K for a solid sample of $[Fe_2(\mu-O_2CAr^{4-FPh})_3(O_2CAr^{4-FPh})(2-Ph_2Ppy)]$ (**3**)).

Ø 03

04

Figure S1. Carson and Lippard

Figure S2. Carson and Lippard

Figure S3. Carson and Lippard

Figure S4. Carson and Lippard

Figure S5. Carson and Lippard

Figure S6. Carson and Lippard

Figure S7. Carson and Lippard

Figure S8. Carson and Lippard

Figure S9. Carson and Lippard

Figure S10. Carson and Lippard