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I. ADIABATIC APPROXIMATION, THE SLAVING PRINCIPLE AND

SELF-ORGANIZATION

This section presents the motivation for our continuous time recurrent neural network ap-

proach based on the general concepts of self-organization in complex systems [Haken, 2004].

We denote genes and proteins as the elementary functional elements of a cell. The activity

of a gene is controlled, among other mechanisms, by protein transcription factors binding to

the promoter sites. A readout of this gene activity are the concentrations of the transcribed

mRNA, r(t), and the subsequently translated protein p(t). The steady state concentrations

of proteins are determined by their turnover rate, i.e. the ratio of production versus their

decay rates. The latter is comprised of the protein decay itself and possibly by reactions into

other protein variants, e.g. due to phosphorylation. The biological time scales for mRNA and

protein concentration changes are in the order of ≈ 104s. Protein activation/deactivation,

however, happen on a time scale of O(102s). Those processes comprise for example post-

translational events such as phosphorylation or active translocation.

Adiabatic Approximation In general, the reaction of a system to a time-dependent per-

turbation depends on the time scale of the perturbation itself, i.e. it makes a difference

whether changes to a dynamic system are applied gradually or all of a sudden. A gradual

change in the external conditions characterizes an adiabatic process.

Consider the functional activation of a protein p to the state p∗. The activation de-

cays over time with constant γ∗
p . Based on a Law-of-mass-action this can be formulated

mathematically using ordinary differential equations

ṗ∗(t) = f [p(t)]− γ∗
pp

∗, (S.1)

where p∗ denotes the activated, e.g. phosphorylated, protein concentration and f [p(t)] is

the activation process of protein p. It is biologically reasonable to assume γ∗
p > 0 so that

the system is stable and damped for f = 0.

Formally integrating Eq. (S.1) one obtains the long-term solution

p∗(t) =

∫ t

0

exp[−γ∗
p(t− τ)]f [p(τ)]dτ. (S.2)

Making the function f [p(t)] explicit, e.g. by considering the decay of the basal protein
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concentration p0 with a decay constant γp

f [p(t)] = p0 exp(−γpt), (S.3)

one can readily integrate Eq. (S.2).

p∗(t) =
p0

γ∗
p − γp

(exp(−γpt)− exp(−γ∗
pt)). (S.4)

In general, changes in activated protein concentration follow its basal state concentration

closely over time. This requires that the system acts instantaneously, i.e. γ∗
p � γp. Conse-

quently, Eq. (S.4) can be approximated by

p∗(t) ≈ p0

γ∗
p

exp(−γpt) ≡
1

γ∗
p

f [p(t)]. (S.5)

In other words, for the above requirement of instantaneous reaction to be fulfilled, the time

constant t∗ = 1/γ∗
p of the protein activation must be much shorter than the time constant

t′ = 1/γp of the basal protein concentration change.

Note that the same result (Eq. S.5) can be found by setting ṗ∗ = 0 in Eq. (S.1)

0 = f [p(t)]− γ∗
pp

∗. (S.6)

Hence, one can approximate the long-term dynamics of the fast system (activated protein)

by solving p∗(t) in terms of the slow forcing (protein decay), ignoring the information within

the time scale of O(1/γ∗
p). This assumption is called ’adiabatic approximation’ and is of

fundamental importance for the self-organization of complex systems [Haken, 2004].

The above requirements are generally reflected in cell biology. The time-scales of protein

activation involved in signaling are usually in the order of minutes, e.g. for phosphorylation

and de-phosphorylation events, while protein translation and decay follow mRNA concen-

tration changes on time-scales of hours. Notable exceptions exist, when the protein decay

is actively regulated and actively interfering with the processes under consideration (see

below).

Assuming the above proportionality between protein and mRNA concentrations, one can

eliminate the protein dependence p in Eqs. (S.1)–(S.8) and rewrite them as a direct function
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of the mRNA concentration r by substituting

f [p(t)] = f [p(r(t))]. (S.7)

In other words, long-term cellular processes lasting hours to days can be described as a

function of gene expression.

The Slaving Principle As an illustrative example, we consider a simple gene-protein

interaction system. A gene, whose activity is reflected by the mRNA concentration r,

produces protein p, which can be activated to p∗, while p∗ can inhibit r. Together with the

respective decay rates, such a system could read

ṙ = −k∗
p(p

∗)2 − γrr (S.8)

ṗ = krr − γpp− kpp (S.9)

ṗ∗ = kpp− γ∗
pp

∗, (S.10)

where we used linear and quadratic interaction functions for the sake of simplicity. We

assume γ∗
p > 0, so that protein activation is stable and bound. Furthermore, we assume

γ∗
p � γp to allow for the adiabatic approximation of p∗(t) and we set γp ≈ γr, so that

the protein and mRNA concentrations evolve on the same time scale. Setting ṗ∗ = 0 in

Eq. (S.10) and expressing the steady state of p in terms the mRNA r(t) in Eq. (S.9) one

finds for the temporal behavior of the protein concentrations

p(t) ≈ kr

γp + kp

r(t) (S.11)

p∗(t) ≈ kp

γ∗
p

kr

γp + kp

r(t). (S.12)

p∗ thus follows the mRNA activity over time, hence it is said to be slaved by the slow

subsystem. Via the proportionality between r and p and the adiabatic approximation of p∗

the protein kinetics react to the gene kinetics of r(t), which determines whether an action

occurs or not. Substituting Eqs. (S.11), (S.12) into Eq. (S.8) one finds

ṙ = −γrr − k∗
p

(
kp

γ∗
p

kr

γp + kp

)2

r2 = −r(k′r + γr) (S.13)
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with k′ = k∗
p

(
kp

γ∗p

kr

γp+kp

)2

.

Depending on the sign of γr in Eq. (S.13), two different solutions can occur. If γr > 0,

the only possible solution for t →∞ is r = 0. Hence, gene expression decays over time and

likewise the protein concentrations decreases to zero (Fig. 1A). If γr < 0, the steady state

solution is r = k′/γr and consequently p, p∗ 6= 0 (Fig. 1B). Note, how the approximate long-

term solutions (red dotted lines) for the mRNA and the proteins (Eqs. S.11–S.13) approach

the true solution after a transient time t > 10. This is also true, if the gene encounters a

transient up-regulation, e.g. via a transcription factor (Fig. 1C). Both proteins still follow

the gene closely and the adiabatic approximation (red lines) retraces these dynamics well.

Since it is the mRNA r, which determines whether a non-zero steady state for the proteins

is reached or not, r is referred to as order parameter. Order parameters are those parameters

that slave subsystems. Hence, for long-term cellular processes lasting on the order of hours

or longer, gene expression kinetics should play a decisive role with respect to the phenotypic

outcome of a cellular decision.
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Supplementary Figure 1: Simulation of protein-gene interaction system from Eqs. (S.8)–(S.10). The slow

gene dynamics slave the fast protein dynamics. (A) γr = 0.5. The gene expression (—) decays and protein

concentrations p(t)(- - -) and p∗(t) (− · −) follow likewise to zero. (B) γg = −0.5: finite, non-zero gene

expression. Protein concentration follow to a non-zero steady state concentration. The red dotted lines show the

approximate solutions for the gene (Eq. S.13) and protein kinetics (Eqs. S.11,S.12. (C) γg = 0.5: addition of an

input term I = 1 for 10 < t < 100 in Eq. (S.8). Other parameters: [γp, γ
∗
p , kp, k

∗
p, kr)] = [0.5, 5, 2.50, 5, 1.5].

Start values: [r(0), p(0), p∗(0)] = [2, 1.5, 1].
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Self-Organization In general, a protein signaling network, consisting of the basal proteins

and their activated forms can be described by the following system of coupled ordinary

differential equations

Proteins:

ṗ1 = −γ1
pp1 + f 1

p (r1; p1, . . . , pn; p∗1, . . . , p
∗
n),

ṗ2 = −γ2
pp2 + f 2

p (r2; p1, . . . , pn; p∗1, . . . , p
∗
n),

... (S.14)

ṗn = −γn
p pn + fn

p (rn; p1, . . . , pn; p∗1, . . . , p
∗
n).

activated Proteins:

ṗ∗1 = −γ∗1
p p∗1 + f ∗1

p (p1, . . . , pn; p∗1, . . . , p
∗
n),

ṗ∗2 = −γ∗2
p p∗2 + f ∗2

p (p1, . . . , pn; p∗1, . . . , p
∗
n),

... (S.15)

ṗ∗n = −γ∗n
p p∗n + f ∗n

p (p1, . . . , pn; p∗1, . . . , p
∗
n),

where the variables pi and p∗i , 1 ≤ i ≤ n denote the basal and activated proteins,

respectively. All variables are coupled via the non-linear functions f i
p, which depend on all

other proteins p, p∗ and additionally on the mRNA concentrations ri for the basal proteins

pi. We require the protein concentrations to remain stable, i.e. γ∗i
p , γi

p > 0|∀i so that the

system has a stable state, which would correspond to the cell homeostasis. Next, we apply

the adiabatic approximation by setting ṗ∗i = 0, justified by the fact that protein activation is

a much faster process than the overall protein decay of p. By virtue of γ∗
p � γp it is assumed

that the |p∗|’s are much smaller than the |p|, i.e. that events such as (de-)phosphorylation

constitute a fast modulation of the basal protein concentration. However, this requirement

needs to be checked for any real biological system. Hence, setting p∗i = 0 for all f ∗i
p allows
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to solve for the p∗i ’s in terms of the basal protein concentrations pi in Eq. (S.15)

γ∗1
p p∗1 = f ∗1

p (p1, . . . , pn),

γ∗2
p p∗2 = f ∗2

p (p1, . . . , pn),

... (S.16)

γ∗n
p p∗1 = f ∗n

p (p1, . . . , pn).

Putting Eq. (S.16) into Eq. (S.14) leads to equations that depend on the basal protein

concentrations pi and the mRNA ri alone

ṗi = −γi
ppi + f i

p[ri; p1, . . . , pn; p∗1(p1, . . . , pn), . . . , p∗n(p1, . . . , pn)]. (S.17)

Provided that protein concentration follows mRNA regulation closely over time, i.e. pi(t) ∝

ri(t) (no considering the time delay between mRNA transcription and translation), we can

substitute all protein variables in Eq. (S.17) by the respective mRNA variables.

ṙi = −γi
rri +

1

ci

f i
r[p1(ri), . . . , pn(ri); p

∗
1(r1, . . . , rn), . . . , p∗n(r1, . . . , rn)] + Ii(t), (S.18)

where we used γp ≈ γr. The ci denote the respective constants of proportionality be-

tween the mRNA and protein concentrations based on the ratio of effective mRNA trans-

lation/transcription and protein decay. The dependence of f i
p on ri in Eqs. (S.17) has been

translated into a transcription activity of the respective gene, which is accounted for by the

input function term Ii(t)

This leads to an equation describing the long-term behavior of the cellular protein signal-

ing network, which is expressed solely in terms of the mRNA concentrations. The solutions

of Eq. (S.18) determine, depending on γi
r <> 0, whether the slaved protein dynamics show

a non-zero action or not. Hence, the mRNAs take up the role of ordering parameters in the

system.

In many practical examples only very few variables (or modes) become unstable. If all

other variables remain damped and adiabatically follow the unstable variables, then the

behavior of the whole system is determined by the few order parameters. This has two con-

sequences: first, complex systems may show a very regulated transition behavior between
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different states and furthermore, depending on the particular variables, which become un-

stable and cause a transition, different macroscopic output states can be achieved.

Returning to biology, this means that a cell can undergo reversible transitions to different

phenotypes, i.e. migration, proliferation, differentiation [Huang and Ingber, 2007], and these

transitions will be most likely regulated by a few genes, only.

The limitations of this analysis mainly depend on two points. Firstly, the time window

in which a cellular decision is produced has to be sufficiently broad (over a time span of

hours). For example, the heat-shock stress response escapes our analysis, since the phe-

notypic reaction is present after a few minutes already. Secondly, cellular reactions that

break the mRNA-protein correlation cannot be analyzed on the gene expression level. This

holds true for the ubiqitin-proteasome signalosome, which is able to massively rebalance the

protein concentrations, uncoupled from transcriptional regulation, or for post-translational

modifications of histones, which can be epigenetically inherited.

Connection with the CTRNN model In our paper we use the following recurrent neural

network to model gene regulation

ṙi =
1

τi

[
−ri +

N∑
j=1

Wijσ(rj(t−∆tj) + θj) + I 0
i exp(−λt)

]
(S.19)

Comparing Eq. (S.19) with Eq. (S.18), we find a similar structure by identifying τ−1
i with γi

r

and
∑

Wijσ(rj) with f i
p(. . . ). The external input function I 0

i exp(−λt) considered for each

gene corresponds to the function for the transcriptional gene activity Ii(t) in Eq. (S.18).

Hence, by unraveling the mRNA interaction network and using the proportionality between

the mRNA and the protein concentration, we arrive at a model structure that can be realized

by a CTRNN and which can serve as one explanation why it has been possible to both

measure and model on the gene regulatory level, yet verify model predictions on the protein

signaling level.

[Haken, 2004] Haken H (2004). Synergetics: Introduction and Advanced Topics. Springer, Berlin.

[Huang and Ingber, 2007] Huang S, Ingber D (2007). A Non-Genetic Basis for Cancer Progression

and Metastasis: Self-Organizing Attractors in Cell Regulatory Networks. Breast Disease 26:

27-54.
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II. MASIGPRO ANALYSIS

The list of probes across the DNA microarrays from all experiments has been filtered using

interquartile filtering [vonHeydebreck et al, 2004]. The aim of this nonspecific filtering is

to remove the genes that are unlikely to carry information about the phenotypes under

investigation. This filtering removes genes having small changes within the experimental

time points. The resulting list of around 6000 probes is used for the subsequent maSigPro

analysis.

maSigPro [Conesa et al, 2006] is an R package for the analysis of single and multi-series

time course microarray experiments. It follows a two-step regression strategy to find genes

with significant temporal expression changes and significant differences between experimen-

tal groups. The method defines a general regression model for the data, where the exper-

imental groups are identified by dummy variables. The procedure first adjusts this global

model by a least squares technique to identify differentially expressed genes and then selects

significant genes applying false discovery rate control procedures. Next, a stepwise regression

is applied as a variable selection strategy to study differences between experimental groups

and to find statistically significant temporal gene expression profiles. The coefficients ob-

tained in this second regression model can be used to cluster together significant genes with

similar expression patterns and to visualize the results. Here, a quadratic regression fit was

performed using significance level of 0.05, and the Benjamini-Hochberg correction method

for multiple testing problems. A stepwise regression fit for time series gene expression ex-

periments was performed using a T-fit with a two-ways-backward method. Finally, a list of

significantly regulated genes was obtained for a set of variables, whose significance values

have been computed with the T-fit function.

In the case of HGF-induced migration versus the 0h control experiment, maSigPro iden-

tified 536 significantly regulated genes from 607 probesets having a p-value p < 0.05. Com-

paring the 50 highest ranked genes according to the mean and peak fold expression Eq. (1)

and the maSigPro methods, one finds a good agreement with respect to identified genes and

their respective rank, in particular for those genes, which have been found to be decisive for
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the cell migration decision, such as akap12, ptgs2, plau or egr3 (Supplementary Fig. 2).

[vonHeydebreck et al, 2004] von Heydebreck A, Huber W, Gentleman R (2004) Differential ex-

pression with the bioconductor project. In: Bioconductor projects working papers.

[Conesa et al, 2006] Conesa A, Nueda MJ, Ferrer A, Talon M (2006) maSigPro: a method to iden-

tify significantly differential expression profiles in time-course microarray experiments. Bioin-

formatics 22: 1096-1102.

Supplementary Figure 2: Comparison of gene ranking methods: Gene rank difference of the 50 most significantly

regulated genes according to (A) maSigPro and (B) gene ranking according to mean and peak fold expression.

The hollow bars in (B) denote genes that are not identified by maSigPro as being significant.
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III. GENETIC ALGORITHMS

The task of model fitting is to determine the unknown parameters of the gene regulatory

network such that it behaves as reflected in the experimental gene expression kinetics. Due

to the internal structure of the recurrent neural network model many local optima exist,

wherein deterministic gradient-based search algorithms are likely to get stuck. Hence, model

training of neural methods usually use Back Propagation through Time [Werbos, 1990] or

evolutionary algorithms such as Particle Swarm Optimization [Kennedy et al, 2001] or Ge-

netic algorithms [Wahde and Hertz, 2001].

Here, we have chosen to use a genetic algorithm (GA) to determine the unknown param-

eters of the network. The GA works with a fixed-size population of possible solutions. Each

solution, called an individual, evolves step-wise from generation to generation using three

principal genetic operators: selection, crossover, and mutation. All individuals are evaluated

in each generation according to a fitness function (cf. Eq. 7 in Materials and Methods) and

then selected to produce two offspring, comprising the next generation. Having selected

two parents, their chromosomes, i.e. their set of parameters, is recombined in the offspring,

which can furthermore undergo mutation. The parent individuals are selected according to

their respective fitness with no restriction on the number of offspring an individual can pro-

duce. The purpose of the crossover and mutation is to combine useful parental information

to form new and hopefully better performing offspring. After many generations, only those

individuals having the highest fitness survive with the best individual providing a (near)

optimal solution to the problem, i.e. best fitting the experimental data.

In our study there are several advantages of the GA in comparison to other optimization

approaches. Given the scarcity of data points in relation to the number of model parameters,

the reverse engineering problem is highly over-parameterized resulting in a very large set

of candidate solutions with many local optima. Genetic algorithms work probabilistically

and consider several solutions at the same time, which allows them to explore large areas

of the parameter space rather efficiently [Willett, 1995]. Moreover, GAs work with the least

assumption on parameter values: only parameter ranges and the fitness function need to be

specified. This gives this optimization technique a high flexibility, if changing the number
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of network nodes or the network structure itself.

[Kennedy et al, 2001] Kennedy J, Eberhart R, Shi Y (2001). Swarm Intelligence, Morgan Kauf-

mann Publishers.

[Wahde and Hertz, 2001] Wahde M, Hertz J (2001) Modeling Genetic Regulatory Dynamics in

Neural Development. J. Comp. Biol. 8: 429-442.

[Werbos, 1990] Werbos PJ (1990) Backpropagation Through Time: What It Does And How to Do

It. Proceedings of IEEE 78: 1550-1560.

[Willett, 1995] Willett P (1995) Genetic algorithms in molecular recognition and design. Trends

Biotechnol. 13: 516-521.
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Supplementary Figure 3: (A) Schematic view of a fully connected three-gene network. Weights indicate strength

of directed interactions. (B) Information processing flow of a node (gene) in the CTRNN. The input to a gene

i consists of an external stimulus Ii as well as the summed interaction with all genes, including self- interaction.

The latter is composed of the delayed gene fold expression of each gene at time t−∆τj , which is modified by

the activation function σ and multiplied by the interaction weight Wij before finally being summed into gene i.
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Supplementary Figure 3 (continued)

1/τi, τi > 0 determines the time constant and correspondingly the stability of the fixed point of each gene. The

function gi(t) for each gene is learned such that the time course maximizes the fitness function (Eq. 7) with

respect to the experimental spline-interpolated fold expression data. (C-F) Model evaluation consists of three

different steps (cf. workflow in Fig. 1A). First, model fitness is assessed by the fit to the experimental data. Then,

the model robustness is evaluated by its divergence (D, F). (C) Sample trajectories from a nine-gene network of

different, independent model fits to the experimental data for genes egr3, ptgs2 and akap12. Each of the black

lines corresponds to one independent model fit. Spline interpolated experimental data is indicated by the yellow

lines. The error of the experimental data has been calculated as described in the Materials and Methods. (D)

Example of system robustness: simulated gene expression time series of all genes in a nine-gene network using

2 different parameter sets (red and black). Despite similar fitness to the experimental data (first 8 hours, grey

area), they show different dynamic behavior at later time points. (E) Histograms of sample interaction weights

describing functional connectivity between genes. Histograms are drawn from 250 out of 5000 best ranked model

fits. The histogram shows a consistent directed interaction between ptgs2 and egr3 (black) and between egr3
and akap12 (red), whereas the influence of akap12 on egr3 (green) is less consistent in different models due to

its obviously low signal-to-noise ratio, as calculated from the mean to standard deviation ratio of the histogram.

(F) Logarithm of the total divergence of the ptgs2 trajectories from (C) with corresponding colors. The total

divergence is a measure of separation of nearby trajectories as a function of time. The more negative the logarithm

of the divergence, i.e. the smaller the divergence, the faster the network settles back into a stable steady state

upon stimulation.
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Supplementary Figure 4: (A) Signal-To-Noise (S/N) ratio for the inferred interaction weights for networks of

size 3, 5, 7, 9 genes (from left to right). The S/N ratio is calculated from the ratio of mean to standard deviation

of the weighted sum of the highest ranked parameter fits (cf. Methods Section). (B) Signal-To-Noise ratio of

the amplitude, time constant and offset parameters of the inferred gene regulatory network for sizes 3, 5, 7, 9.
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Supplementary Figure 5: (A) Interaction weights Wij for the CTRNNs obtained by inverse modeling for

networks of size 3,5,7,9 genes (from left to right) with the genes first receiving an exponentially decaying and

then a second, time-delayed, pulsed input (cf. Methods section). (B) Signal-To-Noise values for the interaction

weights Wij depicted in (A). (C) Other CTRNN parameters for the 2nd stimulus model with network sizes 3, 5,

7 and 9 genes (from left to right). (D) Signal-To-Noise values for the other parameters depicted in (B).
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Supplementary Figure 6: Model simulations of nine gene networks. (A) Network simulation using parameter

values obtained from fitting the experimental data with a single, exponentially decaying input (cf. Eq. 4 and

Supplementary Table III A). (B) Simulation using parameter values obtained from fitting the experimental data

with two time-consecutive inputs (cf. Eq. 5 and Supplementary Table III B). Red line: spline-interpolated gene

expression kinetics from microarray experiment, black line: model simulation of gene kinetics, black dotted line:

learned input function to each gene.
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Supplementary Figure 7: Modulation of HGF induced migration by PTGS-2, PKA- and EGF-R activity, re-

spectively. To induce a migratory response, HaCaT cells were incubated (30 h) with or without 10ng/ml

recombinant human HGF. PTGS-2 activity was modulated using 50µM Meloxicam (4-Hydroxy-2-methyl-N-(5-

methyl-2-thiazolyl)-2H-1,2-benzothiazine-2-carbox-amide-1,1-dioxide1, PKA activity was modulated by addition

of 1µM H-89 (Calbiochem) and 200µM 8-(4-Chlorophenylthio)adenosine 3’,5’-cyclic monophosphate sodium salt

(Sigma) to inhibit and enhance PKA-activity, respectively. Inhibition of PKA by addition of 10µM Myristoylated

PKI (14-22) amide, cell-permeable PKA inhibitor (Biomol) gave rise to similar results (data not shown). EGF-R

activity was blocked by addition of 1µM GW 2974 (Sigma). Phase contrast microscopy photographs were taken

20h after initial HGF single pulse stimulation with 40x fold magnification. Migration front is indicated by a dotted

line.
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Supplementary Figure 8: Modulation of keratinocyte migration by PKA-pathway, EGF-R signaling and PTGS-

2 activity depend on the initiation of migration by HGF. To induce a migratory response, HaCaT cells were

incubated (30h) with or without 10ng/ml recombinant human HGF. PKA activity was modulated by addition

of 1µM H-89 (Calbiochem) or 200 µM 8-(4-Chlorophenylthio)adenosine 3’,5’-cyclic monophosphate sodium salt

(Sigma). Inhibition of PKA by addition of 10µM Myristoylated PKI (14-22) amide, cell-permeable PKA inhibitor

(Biomol) gave rise to similar results (data not shown). EGF-R activity was blocked by addition of 1µM GW 2974

(Sigma). Error bars denote ± standard deviation of mean migration distance from three independent experiments.


