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1 Model Definition: Differential Equations System, GEF and GAP ki-

netics

The mathematical model consists of four ordinary differential equations based on the biochemical
protein-protein interactions of Rab5 and Rab7. The concentrations of Rab5:GDP, Rab5:GTP,
Rab7:GDP and Rab7:GTP on the endosomal menrane are denoted as r5(t), R5(t), r7(t), R7(t),
respectively. Their physical unit is particle number per surface area.

The concentrations may change according to the processes considered in Fig. 1 yielding the
following equation system.

dr5

dt = K
−1 − (k1 + GEF5(R5, R7))r5(t) + GAP5(R5, R7)R5(t)

dR5

dt = GEF5(R5, R7)r5(t) − GAP5(R5, R7)R5(t)

dr7

dt = K
−2 − (k2 + GEF7(R5, R7))r7(t) + GAP7(R5, R7)R7(t)

dR7

dt = GEF7(R5, R7)r7(t) − GAP7(R5, R7)R7(t)

(1)

GEFi(R5, R7) and GAPi(R5, R7), i = 5, 7 are functions of the concentrations of the active forms of
Rab5 and Rab7 denoting the reaction mechanism of GDP-GTP exchange and hydrolysis, respec-
tively. Rab proteins only transiently interact with membranes and continuously shuttle between
membrane association and cytosolic GDI-association. K

−1 and K
−2 denote the dissociation flux

from GDI and k1, k2 the association rates with GDI. Concentrations of Rab-GDI and free GDI
are considered to be constant and included in the parameter values. This coupling to the constant
Rab-GDI pool renders the system open as opposed to other biomolecular switches that rely on the
conservation of system components [1].

To analyze how different kinetics influence the steady states behavior of membrane associated
Rab5:GTP and Rab7:GTP we screened different combinations of GEF and GAP kinetics as shown
in Table 1. Parameter values were sampled from reasonable ranges. The phenomenon of bistability
occurs in parameter intervals in which two stable states coexist which are separated by an unstable
state. Leaving the bistability interval upon a parameter change the system relaxes towards the
remaining stable state. Switching is not readily reversible by removing the stimulus, i.e. there is
hysteresis and reversal generally requires a stronger, opposite stimulus.

2 Model screening: phase plane analysis

We set out to classify, by means of steady state properties, the large set of models that can be
constructed by inserting combinations of rate laws for the experimentally unknown GEF5(R5, R7),
GAP5(R5, R7), GEF7(R5, R7), GAP7(R5, R7). The problem of screening sets of models for cor-
responding biological behaviour and reproduction of experimental results has also been faced by
other systems including oscillations of the somitogenesis clock [2]. Direct numerical simulation is
the common approach to analyse systems with many variables. For a finite set of parameter sam-
ples, however, this approach doesn’t guarantee to reveal the complete spectrum of model features.
Limited computational resources restrict the size of the set of samples.

Here we benefit from the low dimensionality of the system with only four variables. We apply
the analytical and graphical methods of phase plane analysis which request minimal computational
effort and allow to conclude (for the entire high-dimensional parameter space) about the system
behavior in terms of steady states, multistability and occuring bifurcations.

In order to test for steady states, we set the left hand sides of equation (1) to zero and insert

the solutions of two equations r5 = K
−1

k1
and r7 = K

−2

k2
into the remaining equations

0 = dR5

dt = GEF5(R5, R7)
K

−1

k1
− GAP5(R5, R7)R5,

0 = dR7

dt = GEF7(R5, R7)
K

−2

k2
− GAP7(R7, R5)R7.
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Figure 1: Rab proteins switch between the GTP-bound and GDP-bound conformation, defined
here as the ON and OFF state, respectively. Rab GTPases are present in the cytosol in the
OFF state bound to Rab-GDI, which delivers them to, and solubilises them from, the endosome
membrane. After dissociation from Rab-GDI, catalyzed by GDI-Displacement factor (GDF), Rab
proteins undergo continuous cycles of nucleotide exchange and hydrolysis. GDP/GTP nucleotide
exchange is catalyzed by GEFs and hydrolysis of GTP to GDP by GAPs. In the GTP-bound
form, Rab proteins interact with a set of effector proteins (e.g. EEA1, Rabaptin-5 for Rab5) that
stabilize the ON state and execute functions in membrane transport, conferring structural and
functional identity to the compartment harbouring them.
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Rab5 Type of kinetics Non-linear rate law

GEF5(R5, R7) Michaelis Menten kinetics
ke,5·R5

kg,5+R5

GEF5(R5, R7) Sigmoidal response to Rab5
ke,5

1+e(kg,5−R5)kf,5

GEF5(R5, R7) Exchange inhibition via Rab7
ke,5·R5

km(1+R7/ki)+R5

(Monod competitive inhibition)

GAP5(R5, R7) Sigmoidal response to Rab7
kh,5

1+e(kH,5−R7)ky,5

GAP5(R5, R7) Michaelis Menten kinetics kh,5 +
kH,5·R7

ky,5+R7

GAP5(R5, R7) Intrinsic hydrolysis kh,5

Rab7 Type of kinetics Non-linear rate law

GEF7(R5, R7) Michaelis Menten activation
ke,7·R7

kg,7+R7
+

kE,7·R5

kG,7+R5

GEF7(R5, R7) Michaelis Menten auto-activation,
ke,7·R7

kg,7+R7
+

kE,7

1+e(kG,7−R5)kF,7

Sigmoidal response to Rab7

GEF7(R5, R7) Sigmoidal response to Rab7,
ke,7

1+e(kg,7−R7)kf,7
+

kE,7·R5

kG,7+R5

Michaelis Menten activation via Rab5

GEF7(R5, R7) Sigmoidal responses to Rab7 and Rab5
ke,7

1+e(kg,7−R7)kf,7
+

kE,7

1+e(kG,7−R5)kF,7

GEF7(R5, R7) Sigmoidal responses to Rab7,
ke,7

1+e(kg,7−R7)kf,7

no activation via Rab5

GEF7(R5, R7) No activation via Rab7, ke,7 +
kE,7·R5

kG,7+R5

M. Menten activation via Rab5

GEF7(R5, R7) No activation via Rab7, ke,7 +
kE,7

1+e(kG,7−R5)kF,7

sigmoidal responses to Rab5

GAP7(R5, R7) Intrinsic hydrolysis kh,7

GAP7(R5, R7) Michaelis Menten kinetics kh,7 +
kH,7·R5

ky,7+R5

and intrinsic hydrolysis

Table 1: Kinetic rate laws have been combinatorially inserted into equation (1).
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The two equations can be rewritten in the form

R7(R5) = f1(R5, k1, ...ki),

R7(R5) = f2(R5, k2, ...ki),
(2)

which constitute the two nullclines for dR5/dt = 0 and separately dR7/dt = 0 in the phase
plane spanned by R5 and R7. The steady states of the original coupled system are given by the
intersections of both nullclines. For each given set of parameter values k1, ...ki, the nullclines also
correspond to steady state stimulus-response curves of two isolated subsystems, e.g. for dR5/dt = 0
the steady state relation between the input (stimulus) R5 and the output (response) R7 is given
by R7 = f1(R5, k1, ...ki).

We analytically calculated the nullclines to dR5/dt and dR7/dt for all GEF and GAP kinetics
listed in table 1. Figure 1 and figure 2 show the typical shape of the nullclines f1(R5, k1, ...ki)
and f2(R5, k2, ...ki) in the (R5, R7) phase plane. Note, the specific magnitude and scale of each
nullcline depends on parameter values whereas the qualitative shape is (for the relevant region of
the parameter space) independent of parameters.

The steady states of the coupled system are recovered by intersecting pairs of nullclines. We
have classified the models by the number of intersections of the two nullclines f1(R5, k1, ...ki),
f2(R5, k2, ...ki) which yields the number of coexisting steady states, see table 2. The model doesn’t
show any switching behaviour if only a single intersection of nullclines exists. If two intersections
are found then only one state can be stable and the system may undergo a transcritical bifurcation
that exchanges stability between the two steady states. In case of three or more intersections,
bistability is possible. Hence this latter scenario identifies model candidates with a Rab7-Rab7
switch.

We further analysed the relative location of the detected intersections in the phase plane which
allows to distinguish between dominance of Rab5:GTP or Rab7:GTP at steady state, see figure
3. If three intersections roughly line up on the diagonal then one state has both concentrations low
whereas another has both high. We term this behaviour an in-phase switch which is known from
toggle switches with mutual activation [4]. If, on the other hand, one intersection possesses high
R5 and low R7 and another intersection the reverse then a model with the biologically relevant
behaviour has been identified. For systems with an additional conservation relation, the latter
behaviour is known from toggle switches with mutual inhibition [1].

3 Verification of the phase plane analysis: bifurcation analysis and

simulations

The phase plane analysis has provided the understanding of how bistability can be achieved for
many model variants. Next we have to verify that upon parameter the existence of bistability in
the selected models can variation be exploited as a switch between the coexisting stable states.
The bifurcation analysis allows to determine the possible stable/unstable states of Rab5:GTP and
Rab7:GTP as functions R5(ki), R7(ki) of a control parameter (ki). We employed the method
of numerical continuation to compute steady state solutions along branches for selected control
parameters.

We used the software package AUTO [3]. Therein the solutions are represented as the root of
an extended system of algebraic equations derived by discretizing the ODEs. Any new solution
(the root) is then computed iteratively by the Newton algorithm. The software also monitors
the linear stability of the solutions and thereby detects critical values of the parameters where
the solutions change drastically, so called bifurcations. The critical parameter values where stable
solutions cease existence are of special interest. One universal scenario for such vanishing of a stable
solution occurs in phase plane terms via the coalescence and annihilation of the stable solution
(called a node) with an unstable solution (called a saddle). The bifurcation occuring at the critical
parameter value is then called a saddle-node bifurcation. Pairs of such saddle-node bifurcations
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Table 2: 54 model variants resulting from combinations of different GEF- and GAP-
kinetics for Rab5 and Rab7. Columns correspond to possible choices for Rab5-related reactions,
rows to Rab7. Trivial models with monostability have been omitted in this table. Green areas
denote models that can reproduce the switching from Rab5- to Rab7-dominated steady states. One
portion of these constitutes a toggle switch, the other a cut-out switch. Yellow marks in-phase
switches and red flaggs models without any bistability. Note that the cooperativity of at least one
of the auto-activating GEF reactions is a necessary condition for the system to show bistability.
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(1) (2) (3)

(4) (5) (6)

Figure 2: Phase plane analysis of nullclines to dR5/dt. The 6 panels correspond to the 6
columns of table 2. Parameter values were chosen such that the essential features of all nullclines
are scaled to the same axis range. (1) nullcline for column 1, table 2, parameter values: K

−1/k1 =
1.00 Units; ke,5 = 0.554 s−1; kg,5 = 1.20 Units; kH,5 = 0.42 s−1; kh,5 = 0.06 s−1; ky,5 = 0.65
Units. (2) nullcline for column 2, table 2, parameter values: K

−1/k1 = 1.00 Units; ke,5 = 0.17
s−1; kg,5 = 0.15 Units; kh,5 = 0.90 s−1; ky,5 = 3.60 Units. (3) nullcline for column 3, table 2,
parameter values: K

−1/k1 = 1.00 Units; ke,5 = 0.053 Units · s−1; kg,5 = 0.70 Units; kf,5 = 4.80
Units; kh,5 = 0.01 s−1; kH,5 = 0.05 s−1; ky,5 = 1.50 Units. (4) nullcline for column 4, table 2,
parameter values: K

−1/k1 = 1.00 Units; ke,5 = 0.70 Units · s−1; kg,5 = 1.30 Units; kf,5 = 4.50
Units; kH,5 = 0.004 s−1; kh,5 = 0.01 Units; ky,5 = 0.20 Units. (5) nullcline for column 5, table
2, parameter values: K

−1/k1 = 1.00 Units; ke,5 = 0.26 Units · s−1; kf,5 = 3.50 Units; kg,5 = 1.40
Units; kh,5 = 1.30 Units. (6) nullcline for column 6, table 2, parameter values: K

−1/k1 = 1.00
Units; ke,5 = 0.055 s−1; ki,5 = 0.40 Units; km,5 = 0.26 Units; kh,5 = 0.02 s−1. Units stands for
particle number per surface area.
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Figure 3: Phase plane analysis of nullclines to dR7/dt. The 9 panels correspond to the 9 rows
of table 2. Parameter values were chosen such that the essential features of all nullclines are scaled
to the same axis range. (A) nullcline for row A, table 2, parameter values: K

−2/k2 = 1.00 Units;
ke,7 = 0.50 s−1; kg,7 = 1.70 Units; kE,7 = 0.58 s−1; kG,7 = 1.50 Units; kh,7 = 0.20 s−1. (B)
nullcline for row B, table 2, parameter values: K

−2/k2 = 1.00 Units; ke,7 = 0.60 s−1; kg,7 = 2.50
Units; kE,7 = 0.70 Units·s−1; kG,7 = 1.00 Units; kF,7 = 4.50 Units; kh,7 = 0.30 s−1. (C) nullcline
for row C, table 2, parameter values: K

−2/k2 = 1.00 Units; ke,7 = 0.50 Units · s−1; kg,7 = 3.40
Units; kf,7 = 3.30 Units; kE,7 = 0.12 s−1; kG,7 = 0.60 Units; kh,7 = 0.05 Units. (D) nullcline for
row D, table 2, parameter values: K

−2/k2 = 1.00 Units; ke,7 = 0.70 Units ·s−1; kg,7 = 3.00 Units.
kf,7 = 3.50 Units; kE,7 = 0.40 Units · s−1; kG,7 = 2.70 Units. kF,7 = 1.50 Units; kh,7 = 0.10
Units. (E) nullcline for row E, table 2, parameter values: ke,7 = 0.26 Units · s−1; kg,7 = 1.40
Units. kf,7 = 3.50 Units; kh,7 = 1.30 s−1. (F) nullcline for row F, table 2, parameter values:
K

−2/k2 = 1.00 Units; ke,7 = 0.03 s−1; kE,7 = 0.24 s−1; kG,7 = 0.15 Units; kh,7 = 0.08 Units. (G)
nullcline for row G, table 2, parameter values: K

−2/k2 = 1.00 Units; ke,7 = 0.70 s−1; kE,7 = 0.02
Units · s−1; kG,7 = 1.50 Units; kF,7 = 3.50 Units; kh,7 = 0.20 Units. (H) nullcline for row H,
table 2, parameter values: ke,7 = 0.90 s−1; kg,7 = 3.50 Units. kE,7 = 0.50 Units · s−1; kG,7 = 1.50
Units. kF,7 = 4.50 Units; kh,7 = 0.10 s−1; kH,7 = 0.30 s−1; ky,5 = 0.30 Units. (I) nullcline for
row I, table 2, parameter values: ke,7 = 0.20 s−1; kg,7 = 1.50 Units; kE,7 = 0.12 s−1; kG,7 = 4.10
Units; kh,7 = 0.04 s−1; kH,7 = 0.20 Units · s−1; ky,5 = 1.20 Units. Units stands for particle
number per surface area.
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(A) (B)

(C) (D)

Figure 4: Phase plane analysis of intersections of nullclines. Parameter values are identical
to those in figures 1, 2. (A) Branching behavior. Model of box B,1 of table 2 has just two
intersections independent of the specific choice of the parameter values. (B) In-phase switch.
Model of box A,3 of table 2. Depending on parameters the steady states 1 and 2 or 2 and 3
may coalesce and vanish, enclosing the hysteresis region. However, steady state 1 always has both
concentrations lower than in steady state 3 which contradicts the experimental evidence on Rab5-
Rab7 conversion. (C) Toggle switch. Model of box I,3 of table 2. The relative location of the
three intersections corresponds to the experimental observations. (D) Cut-out switch. Model
of box C,3 of table 2 also possesses the three intersections in the experimentally observed relative
locations.
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are the reason (from a phase plane point of view) for hysteresis in bistable systems [4]. Hence the
employed strategy amounts to a bifurcation analysis.

The results of the bifurcation analysis are represented as bifurcation diagrams in figure 4.
The corresponding simulations are shown in figure 5. These results confirm the phase plane
analysis performed above with analytical and graphical methods. The analysis has selected two
model classes, the toggle switch and the cut-out switch, out of a large set of combinatorially
constructed models. In the main document we have compared the two selected models to a number
of independent experimental observations and found the cut-out switch (figures 3D, 4D, 5D to
be better supported by the experimental evidence.

4 Statistical analysis of single-endosome tracking data

4.1 Data collection

Out of a large pool of tracked early endosomes from 3 independent experiments, 28 intensity time
courses have been extracted by the criterion of a vanishing Rab5 intensity at the end of the track.
Track length varies widely. Each of the 28 extracted time courses was inspected manually and
found to display qualitative behaviour of one of the two classes: (i) strong intensity fluctuations
followed by a marked decay of intensity lasting 20 to 100 seconds and followed by very low intensity
for the remaining time or (ii) a continuous intensity decay with low rate and duration of several
100 seconds. 23 tracks belong to class (i) and 5 to class (ii).

4.2 Identification of conversion time points and data synchronisation

For the 23 data sets of class (i) the start time of the marked decay was determined manually.
No start time could be assigned to class (ii) data. The time axis of each set was shifted by the
individual start time such that all putative conversion events synchronize at a unique time point
which was chosen to be 0.

4.3 Intensity scaling

As the data sets were collected from 3 independent experiments, their overall intensities varied
systematically. To compensate for this systematic deviation all intensities of experiment 1 were
scaled by a constant factor 20822/20822=1, experiment 2 by 20822/13168 and experiment 3 by
20822/13636. The resulting data points are shown as dots in Fig. 4 of the main document and
illustrate the large amplitude of intensity fluctuations. As an example, track 5 of experiment 1 is
denoted by a full black curve. The presented time window is chosen such that even the shorter
data sets cover its full range.

4.4 Intensity statistics

In order to test for a positive or negative intensity trend, we averaged all 23 data points at each
time point which is denoted by the green curve. The gray interval indicates 70% confidence around
the average (green curve). We note that the averaged intensities possess a local minimum about
50 seconds before the putative conversion start at maximum intensity. The reason is not clear
and may well be pure coincidence. For the selection among the possible models it is essential to
discriminate a positive from a negative slope of R5(t) before conversion. The analysed data shows
a positive slope which is consistent with the predictions of the cut-out switch.
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(A) (B)

(C) (D)

Figure 5: Bifurcation analysis. Bold lines indicate stable steady states, dashed unstable states.
Green lines denote Rab5, blue lines denote Rab7. The limits of the bistability area are marked
by black dots. Arrows denote branch switching when the control parameter is slowly increased in
numerical simulations. The choice of the control parameter is arbitrary and the particular choice
served demonstration purposes only. (A) Branching behavior. Model of box A,2 of table 2
and figure 3A. (B) In Phase Switch. Model of box B,4 of table 2 and figure 3B. (C) Toggle
Switch. Model of box C,5 of table 2 and figure 3C. Parameter values: ke,5 = 0.06 s−1; kg,5 = 0.5
Units; kH,5 = 0.30 s−1; kg,7 = 0.10 Units; kG,7 = 1.060 Units; kh,7 = 0.05 Units. (D) Cut-
Out Switch. Model of box D,6 of table 2 and figure 3D. Parameter values: ki,5 = 0.06 Units;
km,5 = 0.06 Units; kh,5 = 0.01 s−1. ke,7 = 0.35 s−1; kE,7 = 0.03 s−1; kG,7 = 0.80 Units; Other
values are identical to those in figures 1,2,3.
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(A) (B)

(C) (D)

Figure 6: Numerical simulations. Green lines denote Rab5, blue lines denote Rab7. Parameter
values are identical to those in figures 1,2,3. During the numerical simulations, the control
parameter is slowly increased such that it spans the bistable regions in the bifurcation diagrams,
(figure 4). (A) Branching behavior. Model of box A,2 of table 2 and figures 3A, 4A. (B) In
Phase Switch. Model of box B,4 of table 2 and figures 3B, 4B. (C) Toggle Switch. Model of
box C,5 of table 2 and figures 3C, 4C. (D) Cut-Out Switch. Model of box D,6 of table 2 and
figures 3D, 4D. Parameter values are identical to those in figures 5.
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