
Supplemental Text S1: Detailed description of the Brownian dynamics algorithm

The Brownian dynamics (BD) approach developed here is quite general and can
be used to simulate enzymatic reactions at cell membranes including arbitrary arrays of
receptors and membrane-associated membrane particles.  The basic idea and numerical
aspects of the model have already been described in our preceding paper (1). The existing
algorithm was extended to account for more realistic interactions and is composed of the
following modules:

(I) A system of spatially independent processes, which includes binding and
dissociation reactions of cytosolic enzymes on receptors and substrate
particles, as well as the enzyme-catalyzed substrate transitions;

(II) Substrate diffusion, which combines the first-passage time algorithm to model
two-dimensional diffusion of Ras particles and the acceptance-rejection rules
to describe lateral interactions between substrate-bound enzymes and
receptors.

The two modules of the algorithm are repeated in a loop.  Discretization in time is
organized so that these modules share numerical data at certain matching time points, at
which the data is also redirected to output files.  The accuracy of the BD algorithm has
been checked against the theory (1) and nice agreement has been found.  In the absence
of diffusion effects, the algorithm provides nice agreement with an ODE system
describing dynamics of enzyme binding/dissociation and Ras transition.

Spatially-independent reactions

The computational procedure of the first module is built according to the recently
developed rule-based approach (2), which is an efficient implementation of the well-
known Gillespie method (3).  All receptor sites and Ras molecules are labeled and
classified in accordance with reaction types. Indices of molecules and sites are stored in
the corresponding arrays. At each time step, only one reaction can occur. The method
requires evaluation of macroscopic reaction rates before sampling every next reaction:

r1 = kon,SE  NGDP
free (GEF binding to Ras-GDP), (S1-1)

r2 = koff ,SE  NSE (dissociation of Ras-GDP/GEF complex), (S1-2)

r3 = kact  NSE (GEF-catalyzed Ras activation), (S1-3)

r4 = kGAP  NGTP
free (inactivation of Ras-GTP), (S1-4)

r5 = kon ,SP  NGTP
free (PI3K binding to Ras_GTP), (S1-5)

r6 = koff ,SP  NSP (dissociation of Ras-GTP/PI3K complex), (S1-6)

r7 = kon,RE  NRE
free (GEF binding to receptor sites), (S1-7)

r8 = koff ,RE  NRE (dissociation of receptor/GEF complex), (S1-8)



r9 = kon ,RP  NRP
free (PI3K binding to receptor sites), (S1-9)

r10 = koff ,RP  NRP (dissociation of receptor/PI3K complex).           (S1-10)

Here, NGDP
free  and NGTP

free  denote the numbers of free Ras particles in the GDP and GTP

states, respectively; NSE , NSP , NRE  and NRP  denote the numbers of molecular pairs
(bonds) in complexes Ras-GDP/GEF, Ras-GTP/PI3K, receptor/GEF and receptor/PI3K,
respectively; NRE

free  and NRP
free  are the numbers of free receptor sites available for an

association reaction with GEF and PI3K, respectively.  The concentration of each enzyme
in the cytosol is assumed to be constant, and therefore, all bimolecular reactions with
cytosolic enzymes are considered as pseudo-first order processes (cytosolic
concentrations are lumped into binding rate constants).

In the system of spatially independent Poisson processes, the waiting time to the
next reaction event is defined as

€ 

ΔtI = −ln(z1) /rtot , (S1-11)

where rtot = ri
i=1

10

∑  and 

€ 

z1 is a random number uniformly distributed on (0,1).  To select the

next reaction type (rule), the smallest integer J  should be found satisfying the following
condition:

€ 

rj > z2rtot
j=1

J

∑ , (S1-12)

where 

€ 

z2 is a second random number.  Note that the final probability of the reaction to
occur depends on the time step defined by the diffusion part (module II).  Each accepted
reaction is associated with a rule that updates arrays of receptor sites or Ras molecules;
the index of receptor site or Ras molecule is picked randomly in the corresponding array,
and shifted from the array of reactants to the array of products.

Surface diffusion module

The time step between matching points of the two modules is given by

€ 

Δtout =min{ΔtI , ΔtII}, (S1-13)

where 

€ 

ΔtII  is a maximum allowed time step for random walks, specified according to

€ 

ΔtII = (ν S)2 /(4D) , with ν ~O(10) .
Within each time interval 

€ 

Δtout , all particles are advanced iteratively.  In the BD
algorithm, we assume that the substrate particles do not interact with each other, and
therefore, their lateral diffusion and interactions with receptor-bound enzymes can be
modeled in two ways, as illustrated schematically in Fig. S1-1. In the first scheme (Fig.



S1-1a), within the specified time interval (t, t + Δtout )  all particles make random walks

with the same radial displacement, di = 2 DΔti , where Δti is the i th elementary time

step.  In the second scheme (Fig. S1-1b), each particle is advanced with no connection to
other particles until the time exceeds tout = t + Δtout . The simulations implementing both
schemes have shown that the second scheme is more efficient. In both schemes, a new
random walk position of the particle is chosen according to the circle point-picking
algorithm (4).

According to the second propagation scheme (Fig. 1-1b), the time step for the i th
random displacement of each particle is defined as

Δti = min{dmin
2 / (4D), tout − ti} ; Δti

i
∑ = Δtout , (S1-14)

where dmin  is the minimum receptor-particle distance and ti  is the moment in time before
the next, (i +1) th step.

Formation of a receptor/enzyme/Ras complex is only possible when Ras reaches
the encounter distance with the receptor bound enzyme, i.e., when the particle is inside
the reactive layer of thickness delta, dmin ≤ δ . Once that happens, the time for this
reaction is very short, much less than average times for interactions of cytosolic enzymes
with receptors and Ras.  The binding probability is calculated as

P(K , ΔtRL ) = 1−
pA (rn ,r0 ,K , ΔtRL )
pR (rn ,r0 ,K , ΔtRL )

, (S1-15)

where K = KRM +S  or KR+MS , r0  and rn  are previous and new radial positions of the
particle relatively the receptor/enzyme boundary, respectively; pA  and pB  are probability
distributions, which describe particles diffusing near absorbing and reflection boundaries,
respectively (1,5,6).  Calculation of pA  requires evaluation of the complementary error
function, erfc(x) .  To evaluate erfc(x)  more efficiently, a lookup table was used.  Inside
the reactive layer, planar geometry is assumed (δ << S ), the time step is constant
(ΔtRL = 10

−9  sec ), and new particle coordinates are sampled from the Gaussian
distribution using the Box-Muller method for generation of Gaussian deviates (7).
Selection of any particular lateral interaction is made according to the following rule: if
there are more than one possibility for a diffusing particle to bind receptor sites, a set of
Pj (K j , ΔtRL )  is calculated (Eq. S1-15), and then, the receptor binding site is selected by

sampling from the set of weighted probabilities (all sites may also be rejected). If the 2D
binding is accepted, then the particle is assigned to the corresponding receptor/enzyme
binding site.

The final probability of the event that has been selected among spatially
independent reactions (module I) is calculated as

€ 

PI = smin{1,Δtout /ΔtI}. (S1-16)



If the reactant selected in module I is also chosen to react through 2D interaction
in module II, then s = 0 , and the reaction selected in module II is accepted; otherwise,
s = 1 . If 

€ 

PI > z3, where 

€ 

z3 is a uniform random deviate on (0,1), then the reaction
selected in module I is accepted.

Dissociation of a receptor/enzyme/Ras complex takes place when either the
receptor/enzyme or enzyme/Ras bond breaks, and the Ras particle in the enzyme-bound
or free state is placed at a random position inside the reactive layer.
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Figure S1-1. Illustration of two distinct particle advancement schemes.  a. In the first
scheme, within specified time interval (t, t + Δtout )  all particles make random walks with
the same radial displacement, di = 2 DΔti , where Δti  is i th elementary time step, until
the specified time tout = t + Δtout  is reached.  b. In the second scheme, each particle is
advanced with no connection to other particles until the time exceeds tout = t + Δtout .


