Supplemental Data. Chen et al. (2008). Sphingolipid Long-Chain Base Hydroxylation is Important for Growth and for Regulation of Sphingolipid Content and Composition in *Arabidopsis*.

Supplemental Figure 1. Comparison of the ER localization of SBH1-CFP and SBH2-CFP versus a plasma membrane marker dye. Leaves of tobacco transiently expressing SBH1-CFP or SBH2-CFP were used for co-localization studies with the plasma membrane marker dye FM4-64. The micrographs presented here show a different localization pattern for SBH1-CFP and SBH2-CFP relative to FM4-64. All images were projection of ten×0.67 µm optical sections of either CFP or FM4-64 fluorescence through transformed leaf epidermal cells. Bar = 10 µm. (A) SBH1-CFP. (B) FM4-64 staining of the plasma membrane of the cell in (A). (C) Merge of A and B. (D) SBH2-CFP. (E) FM4-64 staining of the cell in (D). (F) Merge of D and E.

Supplemental Figure 2. LCB C-4 hydroxylase activity of fluorescent protein fusions of SBH1 and SBH2. The activity of N- or C-terminal fusions of SBH1 or SBH2 with YFP or CFP in the *S. cerevisiae sur2* Δ mutant was examined. As shown, both N- and C-terminal fusion proteins were able to restore C-4 LCB hydroxylation ability to the *sur2* Δ mutant as indicated by the production of C18- and C20-tri-hydroxy LCBs in *sur2* Δ cells upon galactose induction of fusion protein expression. (A) Yeast *sur2* Δ transformed with the empty vector pYES2. (B) Yeast *sur2* Δ expressing SBH1-CFP (C'-fusion). (C) Yeast *sur2* Δ expressing SBH2-CFP (C'-fusion). (D) Yeast *sur2* Δ expressing YFP-SBH1 (N'-fusion). (E) Yeast *sur2* Δ expressing YFP-SBH2 (N'- fusion).

Supplemental Figure 3. Expression analysis of *SBH1* and *SBH2* in *sbh1 sbh2* double mutants. RT-PCR analyses using gene specific primers show that the T-DNA double mutants *sbh1-1 sbh2-1* and *sbh1-2 sbh2-2* are null mutants for both *SBH1* and *SBH2*. An ubiquitin-conjugating enzyme gene (UBC, At5g25760) was used as a positive control. Shown are representative results from three independent analyses.

Supplemental Figure 4. Epidermal cell length in *Arabidopsis* Col-0 hypocotyls versus that in the *sbh1-1 sbh2-1* double mutant. Epidermal cells from the middle part of hypocotyls of (A) wild-type and (B) *sbh1-1 sbh2-1* plants grown on vertical MS plates in the dark for one week. Images were taken with DIC microscopy. Bar=100 μm.

Supplemental Figure 5. Content of sphingolipid classes in *sbh1-1 sbh2-1* double mutant and RNAi suppression lines. Total amounts of each sphingolipid class detected by LC-MS/MS profiling of wild-type Col-0 control plants (*Col-0*), *sbh1-1 sbh2-1* double mutant (*sbh1-1 sbh2-1*), and a C-4 LCB hydroxylase RNAi line with approximately 20% tri-hydroxy LCBs in total sphingolipid extract (*SBH RNAi*). Panel (A) shows the sum of the data for each class shown in Figure 9, and Panel B shows the sum of the data for each class in Figure 10. Bars represent the mean (n=3) and error bars show one standard deviation.

Supplemental Figure 6. Sphingolipid composition of leaves from *sbh1-1*, *sbh2-1* and the *SBH1*complemented *sbh1-1 sbh2-1* double mutant. Panels show ESI-MS/MS measurements of the sphingolipid composition and content of *sbh1-1* (A, D, G and J), *sbh2-1*, (B, E, H and K) and the complemented double mutant *sbh1-1/sbh2-1+SBH1* (C, F, I and L). Each panel shows measurements of individual molecular species for different sphingolipid classes as follows: (A-C) ceramides, (D-F) hydroxyceramides, (G-I) glucosylceramides, and (J-L) GIPCs (n=3 \pm SD).

Supplemental Table 1. Oligonucleotide primer sequences used for confirmation of T-DNA insertion sites of *SBH1* and *SBH2* mutants.

Primer	Oligonucleotide Sequence
LBa1*	5'- TGGTTCACGTAGTGGGCCATCG-3'
LB1*	5'-GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC-3'
SALK 090881 LP [†]	5'-TTCTGTGATTTGGCAATAGGG-3'
SALK 090881 RP [§]	5'-ATCCATTTCTCCAACCTCAGG -3'
SAIL 1292E_09 LP	5'-ATTTGTCAACTCAACAACGCC-3'
SAIL 1292E_09 RP	5'-TCCAGTTCAACAAAAGAACCG-3'
SALK 032139 LP	5'- TATAACGGTCTCCCATGCAAG-3'
SALK 032139 RP	5'-TTTCTAATCATATTTTCACCATTCG-3'
SALK 047916 LP	5'-GCTGCGAGAAGTTGTATTTGG-3'
SALK 047916 RP	5'-CCTTTTGTTGTCCTGAAGCTG-3'
SALK 024105 LP	5'-ACAAGAAGCCCCCAAAAGAAAG-3'
SALK 024105 RP	5'-TGAATCTCCTGCTTCTTGCTG-3'

*The LBa1 and LB1 oligonucleotides were used for screening of left T-DNA borders of SALK and SAIL mutants, respectively.

[†]LP, left gene-specific primer for genotyping of corresponding SALK or SAIL mutant.

[§]RP, right gene-specific primer for genotyping of corresponding SALK or SAIL mutant.

Supplemental Table 2. Oligonucleotide primer sequences used for RT-PCR, complementation, subcellular localizations, promoter-GUS assays, and Northern blot analyses.

Name	Oligonucleotide Sequence	Restriction Site Added
P1	5'-ATGC <u>GGCGCGCC</u> TGGTTTAGATTTAAACCCTTGGGTTCCC-3'*	AscI
P2	5'-ATGC <u>TTAATTAA</u> GGCTTCGCAGGTACTGTTTTATTTAGTC-3'*	PacI
Р3	5'-CACCATGATGATGGGTTTTGCTGTATCGGA-3'	None
P4	5'-ATCGTCTTTGAATTCTTTAGTCGGGCGAGCT-3'	None
Р5	5'- TTAATCGTCTTTGAATTCTTTAGTC-3'	None
P6	5'-CACCATGATGAGTTTCGTGATTTCAGATGAATT-3'	None
P7	5'-CTCATCTTTGGATACTTTGATTGGCCGTGTTT-3'	None
P8	5'- TTACTCATCTTTGGATACTTTGATT-3'	None
Р9	5'- AGATTTTGGAGTTTGGATATATGTTATGTATCTGC-3'	None
P10	5'- AGAATGGCCTCGTAGATGGATAGATTATAAAA -3'	None
P11	5'- TTTCTCTTTCTTTTGGGGGCTTCTT-3'	None
P12	5'- GGTCTCAAAACCTGGAATTATAAAGCAGATAA-3'	None
P13	5'-GCGCGACTGTTTAAAGAATACAAAGAG-3'	None
P14	5'-TCACCAGATCTTAGAAGATTCCCTGAGT-3'	None
P15	5'-GC <u>CTCGAG</u> AAACATATCCACTCTCAACACCACC-3'*	XhoI
P16	5'-ATGGTACCTTCTCAAGCGAGTAAGGCATGTAA-3'	KpnI
P17	5'-GC <u>TCTAGA</u> AAACATATCCACTCTCAACACCACC-3'	XbaI
P18	5'-GCAAGCTTTTCTCAAGCGAGTAAGGCATGTAA-3'	HindIII
P19	5'- GCAAGCTTTCTCCGTTCTCTCTCTCTCTCTC-3'	HindIII
P20	5'- ACTCTAGACCTAAATCTCAGCTTCTTCAGATCCTC-3'	XbaI
P21	5'-GCAAGCTTTTTGTTGTTGTTCTCCGACTCTAGTCCC-3'	HindIII
P22	5'-ACTCTAGACTCTAATTCTAATCAATCTCTCCCCC-3'	XbaI
P23	5'- ATGC <u>AAGCTT</u> ACCATGGCAATGATGATGGGTTTTGCTGTATCGGA-3'	HindIII
P24	5'- ATGC <u>TCTAGA</u> TTACTTGTACAGCTCGTCCATGCCGAGA-3'	XbaI
P25	5'- ATGCAAGCTTACCATGGCAATGATGAGTTTCGTGATTTCAGATGA-3'	HindIII
P26	5'- ATGCAAGCTTACCATGGTGAGCAAGGGCGAGGAGCTGT-3'	HindIII
P27	5'- ATGC <u>TCTAGAT</u> TAATCGTCTTTGAATTCTTTAGTC-3'	XbaI
P28	5'- ATGC <u>TCTAGA</u> TTACTCATCTTTGGATACTTTGATT-3'	XbaI

*The underlined sequences correspond to introduced restriction enzyme sites.

Oligonucleotide	Oligonucleotide Sequence	# of Cycles
PR-2(At3g57260)5'	5'-AGCCTCACCACCAATGTTGATGAT-3'	35 cycles
PR-2(At3g57260)3'	5'-GTTCTCGATGTTCTGCATTGCTTGT-3'	
PRXc(At3g49120)5'	5'-CAACATCGTCCACTTGGACAATCTT-3'	30 cycles
PRXc(At3g49120)3'	5'-CCTGCCAAAGTGACAGATTGTTGAG-3'	
SAG13(At2g29350)5'	5'-GAAACTCAGCTTCAAGAACGCTTACGTG-3'	30 cycles
SAG13(At2g29350)3'	5'-TCGCCCATTCGCAAGCTAAGTTT-3'	
FMO(At1g19250)5'	5'-CGTATTCGAAGCCTCGGATTCAGTC-3'	35 cycles
FMO(At1g19250)3'	5'-GGTATTCTTGGAACGTCGCCGTATT-3'	
SAG12(At5g45890)5'	5'-TTGACTGGAGGAAGAAAGGAGCTGT-3'	35 cycles
SAG12(At5g45890)3'	5'-CTTCAATTCCAACGCTAACCGGT-3'	
PR-3(At3g12500)5'	5'-AACGGTCTATGCTGCAGCGAGTT-3'	30 cycles
PR-3(At3g12500)3'	5'-GCGCTCGGTTCACAGTAGTCTGA-3'	
ERD11(At1g02930)5'	5'-ATGGCAGGAATCAAAGTTTTCGG-3'	25 cycles
ERD11(At1g02930)3'	5'-CCTCTTCTTCTTCAACAACGGTTTTG-3'	
UBC(At5g25760)5'	5'-ATGCAGGCATCAAGAGCGCGACTGT-3'	30 cycles
UBC(At5g25760)3'	5'-CACCGCCTTCGTAAGGAGTCTCCGA-3'	

Supplemental Table 3. Oligonucleotides and numbers of PCR cycles used for expression analysis of cell death and HR related genes.